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Abstract—By means of Sidi-Israeli’s quadrature rules, mechanical
quadrature methods (MQMs) for solving the first kind boundary in-
tegral equations (BIEs) of steady state Stokes problem are presented.
The convergence of numerical solutions by MQMs is proved based
on Anselone’s collective compact and asymptotical compact theory,
and the asymptotic expansions with the odd powers of the errors are
provided, which implies that the accuracy of the approximations by
MQMs possesses high accuracy order O (h3). Finally, the numerical
examples show the efficiency of our methods.

Keywords—Stokes problem; boundary integral equation; mechan-
ical quadrature methods; asymptotic expansions.

I. INTRODUCTION

Consider the following plane Stokes equation⎧⎨
⎩

−νΔu + gradp = 0, in Ω ∪ Ω
′
,

div u = 0, in Ω ∪ Ω
′
,

u = u0, on Γ,
(1)

where ν is viscosity, Ω is a bounded domain with the boundary
Γ. Compared with the other methods including the finite
difference method [16] and finite element method [14, 15] for
solving eq. (1), the boundary element method [7, 10, 11] which
turn eq. (1) into a boundary integral equation is of advantage
in the following aspects: (a) The dimensions are decreased;
(b) The trouble in numerical process for diverse equation is
avoided; (c) Outward problem is easy to deal. Up to now there
have been various methods to make (1) a boundary integral
equations. In this paper, the reformulated problem becomes the
first kind boundary integral equation (BIE) with a logarithmic
function. First, we solved density function t = t1, t2 and
constant c1, c2 satisfy integral equations

uok(x) = Σ2
i=1

∫
Γ

Uik(x−y)ti(y)dsy+ck, x ∈ Γ, k = 1, 2,

(2)
and constraint conditions∫

Γ

ti(y)dsy = 0, i = 1, 2. (3)
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Secondly, by the values of ti, ci(i = 1, 2), we can computing
integrals⎧⎨
⎩

uk(x) = Σ2
i=1

∫
Γ

Uik(x − y)ti(y)dsy + ck, x ∈ �2\Γ,

p(x) = Σ2
i=1

∫
Γ

Pi(x − y)ti(y)dsy, k = 1, 2, x ∈ �2\Γ,
(4)

where⎧⎨
⎩

Uik(x) = 1
4πν [δik ln(1/|x − y|) + (xi−yi)(xk−yk)

|x−y|2 ],

Pi = (xi − yi)/(2π|x − y|2), i, k = 1, 2
(5)

are fundamental solutions[1]. Notice that the solution of equa-
tions (2) and (3) are not unique, because the unit normal vector
n = (n1, n2) satisfies⎧⎨
⎩
∑2
i=1

∫
Γ

Uik(x − y)ni(y)dsy =
∫
Ω

divUkdy = 0,

∫
Γ

ni(y)dsy =
∫
Γ

ei · ndsy =
∫
Ω

diveidy = 0, i = 1, 2,

where ei is the unit vector of yi axis. Then, in order to obtain
a unique solution, we add a constraint condition

〈t, n〉 =
2∑
i=1

∫
Γ

ti(y)ni(y)dsy = 0 (6)

Kress R.[6] has already proved the solution of equation (1) is
unique, when (2), (3) and (6) are satisfied.

Due to the difficulties in theory , all the numerical methods
except Galerkin method [17] were unable to discuss the con-
vergence of numerical methods for computing (2), (3) and (6).
Since the discrete matrix is full, we have to calculate a double
integral for each entry in it by Galerkin method, which increase
the computation cost [8]. Obviously, the entries of discrete
matrices of the MQMs are explicit in computation, without
any singular integral [11]. However, the analysis of the MQMs
is more difficult than that of Galerkin and collocation methods
[9, 17, 18], because it is no longer within the framework of pro-
jection theory. In this paper, we make use of Sidi’s quadrature
rules [5] to compute weakly singular and singular integral.
Using Anselone’ asymptotically compact theory theorem [13],
the existence, the uniqueness, and the convergence and the
error estimation with O(h3) of the discrete equations are
shown. Some numerical examples are provided to illustrate
the features of the methods discussed in this paper.

This paper is organized as follows: in Section II, we
present the MQMs, and prove the convergence of MQMs. in
Section III, we provide the asymptotic expansion of errors.
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Two numerical examples are provided to verify the theoretical
results in Section IV, and some useful conclusions are listed
in Section V.

II. MECHANICAL QUADRATURE METHODS

Assume that Γ is a smooth closed curve described by
the parameter mapping: x(s) = (x1(s), x2(s)) : [0, 2π]
→ Γ with |x′

(s)| = [|x1(s)|2+ |x2(s)|2]1/2 > 0, xi(s) ∈
C̃m[0, 2π], i = 1, 2. Let C̃m[0, 2π] denote the set of m times
differentiable periodic functions with periodic 2π. Define the
boundary integral operators on C̃m[0, 2π]

(A0v)(s) = − 1
4πν

∫ 2π

0

ln|2e−1/2sin
s − τ

2
| · v(τ) · |x′

(τ)|dτ,

(7)
and

(Av)(s) = − 1
4πν

∫ 2π

0

ln|x(s) − x(τ)| · v(τ) · |x′
(τ)|dτ

= (A0v)(s) + (A1v)(s), (8)

where

(A1v)(s) = − 1
4πν

∫ 2π

0

ln
|x(s) − x(τ)|
|2e−1/2sin s−τ2 | · v(τ) · |x′

(τ)|dτ,

(9)

(Kiv)(s) =
1

4πν

∫ 2π

0

ki(s, τ)v(τ)dτ, i = 0, 1, 2 (10)

with⎧⎪⎨
⎪⎩

k0(s, τ) = (x1(s)−x1(τ))(x2(s)−x2(τ))
(x1(s)−x1(τ))2+(x2(s)−x2(τ))2

|x′
(τ)|,

ki(s, τ) = (xi(s)−xi(τ))
2

(x1(s)−x1(τ))2+(x2(s)−x2(τ))2
|x′

(τ)|, i = 1, 2
(11)

Evidently, both the kernels of operators A1 and Ki (i =
0, 1, 2) are smooth kernel functions. However, the ker-
nel function of A0 has logarithmic singularity. Assume that
u ∈ C̃[0, 2π], we have

l(u, ·)v = l(u, v) =
∫ 2π

0

u(τ)v(τ) · |x(τ)|dτ, (12)

simply denoted by l(u, ·). Let A1+K1 = K3 and A1+K2 =
K4. Combing with lagrange multiplier, the integral equations
(2), (3) and (6) can describe be block construct pattern⎡
⎢⎢⎢⎢⎣

A0 + K3 K0 1 0 n1

K0 A0 + K4 0 1 n2

l(1, ·) 0 0 0 0
0 l(1, ·) 0 0 0
l(n1, ·) l(n2, ·) 0 0 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

t1
t2
c1

c2

μ

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

g1

g2

0
0
0

⎤
⎥⎥⎥⎥⎦ .

(13)
where gi(s) = u0i(x1(s), x2(s)), ti(s) = ti(x1(s), x2(s))
with i=1,2 and c1, c2 and μ are real number. The eq. (13) is
an operator equation from V = C̃m[0, 2π] × C̃m[0, 2π] × �3

to V. Let Ã = diag(A0, A0, 1, 1, 1) be an diagonal operator.
Hence, eq.(13) is equivalent to

D̃w = (Ã + B̃) = g (14)

with w = (t1, t2, c1, c2, μ)T , g = (g1, g2, 0, 0, 0)T . Applying
Ã−1 to both side of eq. (14), then we have

(I + Ã−1B̃)w = Ã−1g = f, (15)

where

Ã−1B̃ =

⎡
⎢⎢⎢⎢⎣

A−1
0 K3 A−1

0 K0 A−1
0 0 A−1

0 n1

A−1
0 K0 A−1

0 K4 0 A−1
0 A−1

0 n2

l(1, ·) 0 -1 0 0
0 l(1, ·) 0 -1 0
l(n1, ·) l(n2, ·) 0 0 -1

⎤
⎥⎥⎥⎥⎦ .

(16)
Take the mesh width h = 2π/m, τi = ih (i = 0, · · · ,m−1),
we know that kernel kj(s, τ) (j = 0, 3, 4) of operator Kj is
smooth periodic function. By the trapezoidal and quadrature
rule [2,3], we construct a high accuracy approximate Nyström
operator. Let v ∈ C̃[0, 2π], we have

(Kjmv)(s) = h
m−1∑
i=0

kj(s, τi)v(τi), j = 0, 3, 4. (17)

Since the kernel of A0 is of logarithmic singularity, we use
Side-Israeli’s quadrature rules [12] to construct the Nyström
approximate operator

(A0mv)(s) = − h

4πν
|

m−1∑
i=0,τi �=s

ln|2e−1/2sin
s − τi

2
|

· v(τi) · |x′
(τi)| + ln(

h

2π
e−1/2) · v(s) · |x′

(s)||.
(18)

Let s = τj (j = 0, · · · ,m − 1) in eqs. (17) and (18),
the approximate equation of eq. (15) is a system of linear
equations with 2m + 3 unknowns, which is

D̄mwm = (Ām + B̄m)wm = gm, (19)

where wm = (tm1 (τ0), · · · , tm1 (τm−1), tm2 (τ0), · · · , tm2 (τm−1),
cm1 , cm2 , μm)T and gm = (gm1 (τ0), · · · , gm2 (τ0), · · · , 0, 0, 0)T

are column vectors of 2m + 3 dimensions and
D̄m ∈ C(2m+3),(2m+3). Once wm is solved by (19), by
the quadrature rule we obtain⎧⎨
⎩

Ūk(x) = h
∑2
i=1

∑m−1
j=0 Uik(x − y(τi)) · tmi (τj) · |x′

(τj)|,

p(x) = h
∑2
i=1

∑m−1
j=0 Pi(x − y(τi)) · tmi (τj) · |x′

(τi)|,
(20)

with Uk(x) = Ūk(x) + cmk and y(τj) = (x1(τi), x2(τj)),
x ∈ �2\Γ, by using (4), we can obtain the solution of eq.
(1).

Remarks 1: The entries of D̄m of the MQMs are explicit
in computation according to formula (17) and (18), without
any singular integral. So this method reduce the computation
cost.

III. ESTIMATION AND ASYMPTOTIC EXPANSIONS OF
ERRORS

Eq. (19) is equivalent to

(I + Ā−1
m B̄m)wm = Ā−1

m gm = fm, (21)
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where Ā−1
m B̄m is equivalent to⎡

⎢⎢⎢⎢⎣
A−1

0mK3m A−1
0mK0m A−1

0m 0 A−1
0mn1

A−1
0mK0m A−1

0mK4m 0 A−1
0m A−1

0mn2

lm(1, ·) 0 -1 0 0
0 lm(1, ·) 0 -1 0
lm(n1, ·) lm(n2, ·) 0 0 -1

⎤
⎥⎥⎥⎥⎦ , (22)

with ni = (ni(τ0), · · · , ni(τm−1))T , i = 1, 2. A0m, Kjm ∈
Cm,m. Define

lm(u, ν) = h

m−1∑
i=0

u(τi)v(τi)|x′
(τi)| (23)

discrete inner product which is denoted by lm(u, ν) for
convenience. In order to discuss the convergence of numerical
solution of eq. (21), we introduce two mappings. One is Rm:
�m−→Sm satisfying

RmZ =
m−1∑
i=0

Ziei(t), ∀ Z ∈ �m (24)

where Sm is a continue piecewise linear function subspace
and ei(t) are the basis functions of Sm, which satisfy ei(τj) =
δij , i, j = 0, · · · ,m − 1. Denoted by R̃m : �2m+3 → Sm ×
Sm ×�3 its prolongation operator, which is

R̃m(u, ν, c1, c2, c3)T = (Rmu,Rmν, c1, c2, c3)T ,

with u, ν ∈ �m, ci ∈ �, i = 1, 2, 3.
Another mapping is Im : C[0, 2π] → �m satisfying

Imv = ν = (v(τ0), · · · , v(τm−1))T . (25)

Similarly, denoted by Ĩm : �2m+3 → V its prolongation
operator, which is Ĩm(u, v, c1, c2, c3) = (Imu, Imv, c1, c2, c3)
with V = C[0, 2π] × C[0, 2π] × �3. Consider the following
operator equation

(I + Â−1
m B̂m)wm = R̃mfm, (26)

where Â−1
m B̂m has an analogy construction with Ā−1

m B̄m, just
by replacing A−1

0m and Kkm, (k = 0, 3, 4) with RmA−1
0m and

ImKkm in (22), respectively.
Obviously, if wm is a solution of (21), then R̃mwm is

a solution of (26) and vice versa. So the convergence of
approximate solution can be ascribed to prove Â−1

m B̂m is
collectively compact convergent to Ã−1B̃. Now we first
recall the following lemma from [4].

Lemma 1[4] Suppose that A0 is an integral operator of eq.
(7), K0 is also an integral operator with the smooth kernel
function, if kernel function k0(s, τ) ∈ C̃3([0, 2π]2), then

RmA−1
0mImK0m

c.c→ A−1
0 K0

where c.c→ denotes the collectively compact convergence.

Remarks 2: There are some difficulties in proving this
lemma. The main work is to estimate the upper and lower
bound of the eigenvalues of A0m. Since A0m is a symmetric
circulant matrix, by means of circulant matrix theory we
obtained λj > 1

2j , j = 1, · · · ,m − 1 of A0m. Therefore,

the inverse of A0m is existence and ||A−1
0m|| = O(m)[4].

Finally, by the above estimation, and Sidi’s quadrature rule
and collectively compact operator theory, the lemma is proved.

Theorem 2 Assume Γ is a smooth curve. Then the operator
sequence Â−1

m B̂m is collectively compact convergent to Ã−1B̃
in V . That is, we have

Â−1
m B̂m

c.c→ Ã−1B̃.

Proof: First, we prove Â−1
m B̂m is of collectively compact

operator sequence. Choose an arbitrary sequence Zm ⊂ V ,
Zm = (Z1m, Z2m, c1m, c2m, c3m)T . Then there exists a con-
vergent subsequence Â−1

m B̂mZm. In fact, consider the first
complement

RmA−1
0mImK0mZ1m + RmA−1

0mImK3mZ2m

+ c1mRmA−1
0mImI + c3mRmA−1

0mImn1, (27)

of Â−1
m B̂mZm. From Lemma 1 we have

RmA−1
0mImKim

c.c→ A−1
0 Ki, i = 0, 3, 4 (28)

and
RmA−1

0mImni
c.c→ A−1

0 ni, i = 1, 2, (29)

since {cim, i = 1, 2, 3} is a bounded sequence of �, there
exist a infinite subsequence {m1} of inferior index sequence
{m}, with regard to (27) which is a convergence sequence.
Following the above arguments, we can also find an infinite
subsequence {m5} ⊂ {m4} ⊂ · · · {m1} ⊂ {m} such that
Â−1
m B̂m is a convergent sequence in V . Obviously, this implies

the pointwise convergence, i.e.,

Â−1
m B̂m

p→ Ã−1B̃.

We completed the proof of Theorem 2.

Corollary 3 When m is sufficiently large, there exists a
unique solution wm of (26) such that

‖wm−w‖ ≤ ‖(I+L̃)−1‖‖(L̂m − L̃)f‖ + ‖(L̂m − L̃)L̂mw‖
1 − ‖(I − L̂m)−1(L̂m − L̃)L̃m‖ ,

(30)
where ‖ · ‖ is the norm of V space. L̃ = Ã−1B̃, L̂M =
Â−1
m B̂m.

Remarks 3: According to the collectively compact
convergent theory, we can immediacy deduce Corollary 3.

Theorem 4 Suppose that Γ ∈ C2m+3, u0 ∈ C̃2m+2(Γ) ×
C̃2m+2(Γ). Then there exists a vector function ϕi ∈ V inde-
pendent of h such that the following asymptotic expansions
hold

wm(s)−w(s) =
m−1∑
k=1

h2k+1ϕk(s)+O(h2m+1), s ∈ τj . (31)

where w(s) and wm(s) be solutions of equations (15) and
(26), respectively.
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Proof: Based on the above assumptions, n1, n2, t1, t2 are
in C̃2m+3[0, 2π]. Let ε = wm − w, we have

((I + L̂m)ε)(s) = ((L̂m − L̃)w)(s), ∀s ∈ τi. (32)

By the proved result of asymptotic expansions of errors of
the first kind boundary integral equation (BIE), for ∀v ∈
C̃2m+2[0, 2π] , we obtained

((RmA−1
0mImKim − A−1

0 Ki)v)(s)

=
m−1∑
k=1

h2k+1ψik(s) + O(h2m+2), s ∈ τj , i = 0, 3, 4,

(33)

where ψik ∈ C̃2m+2−k[0, 2π] are independent of h. Similarly,
we also have

((RmA−1
0mIm − A−1

0 )ni)(s) =
m−1∑
k=1

h2k+1ξik(s) + O(h2m+2),

s ∈ τj , i = 1, 2, (34)

where ξik ∈ C̃2m+2−k[0, 2π] are independent of h. Besides,
according to the estimation of the convergence for the periodic
functions obtained by trapezoidal rule, we know

l(1, ni) − lm(1, ni) = O(h2m+2), i = 1, 2, (35)

l(ni, ti) − lm(ni, ti) = O(h2m+2), i = 1, 2. (36)

From L̃ and L̂m, by (33)−(36), we know there exists a vector
function ψk ∈ (C2m+2−k[0, 2π])2 ×�2 which is independent
of h and satisfies

((I + L̂m)ε)(s) =
m−1∑
k=1

h2k+1Ψk(s) + O(h2m+2), s ∈ τj .

(37)
According to Theorem 2, we know

‖ε‖ = O(h3). (38)

Define ϕ3 and ϕ3m be solutions of equations

(I + L̃)ϕ3 = Ψ3, (39)

and
(I + L̂m)ϕ3m = R̃mΨ3, (40)

respectively. We obtain the following result by estimating (40)
again

(wm − w − h3ϕ3)(s) = O(h5), s ∈ τj (41)

By mathematical induction, we can obtain result of Theorem
4. Hence, the proof of (31) is completed.

Remarks 4: From Theorem 4 and (31), we can easily obtain
the following error ratio

log2| wm(s) − w(s)
w2m(s) − w(s)

| ≈ 3. (42)

Remarks 5: When the boundary Γ are polygons, we can
obtain the same convergence and error ratio results similar to
the case of closed smooth boundary.

TABLE I
e BY MQMS AND GALERKIN [1]

r \ e \ h 1/7 1/14 1/64 GM [1]

4 9.81E-4 1.09E-4 1.2E-3
8 4.60E-4 5.50E-5 1.0E-4
16 2.22E-4 2.75E-5 5.0E-5

TABLE II
THE ERRORS OF u AT THE POINT (0.15, 1.15)

Λk Λ3 Λ4 Λ5 Λ6 Λ7

eu
k 4.062E-3 1.199E-4 1.407E-5 1.757E-6 2.195E-7

ru
k − 25.081 23.092 23.003 23.000

TABLE III
THE ERRORS OF u AT THE POINT (0.35, 1.35)

Λk Λ3 Λ4 Λ5 Λ6 Λ7

eu
k 7.835E-4 1.670E-4 2.078E-5 2.593E-6 3.239E-7

ru
k − 22.231 23.006 23.002 23.001

TABLE IV
THE ERRORS OF p AT THE POINT (0.15, 1.15)

Λk Λ3 Λ4 Λ5 Λ6 Λ7

ep
k 3.766E-3 1.453E-4 1.581E-5 1.973E-6 2.465E-7

rp
k − 24.696 23.200 23.003 23.001

IV. NUMERICAL EXAMPLES

Example 1. Consider (1), where an infinitely long circle
cylinder Ω with radius r̃ rotates round a central axes at an
invariably angular velocity ϑ, and u0 = (−y, x), (x, y) ∈ Γ,
and exact solution u = νr̃2/r with ν = 1 and r̃ = 1. In
Table I, we list the errors e in the second and thirth column
by MQMs, and the errors e in the fourth column by Galerkin
method [1].

Obviously, from Table I, we can see numerically
en|n=7
en|n=14

≈ 8, to agree with (42) very well.

Example 2 (see [11]). Consider (1), where
Ω = (0, 1) × (1, 2) with the edge Γ = ∪4

m=1Γm, where
Γ1 = {(x1, 1) : 0 ≤ x1 ≤ 1}, Γ2 = {(1, x2 + 1) : 0 ≤
x2 ≤ 1}, Γ3 = {(x1, 2) : 0 ≤ x1 ≤ 1}, and
Γ4 = {(0, x2 + 1) : 0 ≤ x2 ≤ 1}. The Dirichlet condition
u0 = (0, x1(x1 − 1), (x1, x2) ∈ Γ. The exact solution of (1)
is u = (0, x1(x1 − 1)) and p = 2νx2,where ν = 1.

Let euk = |uexact−uΛk |, epk = |pexact−pΛk
|, ruk = euk/euk−1,

and rpk = epk/epk−1, where k = 3, · · · , 7. Let Λk denote
(2k, 2k, 2k, 2k), where (2k, 2k, 2k, 2k) (k = 3, · · · , 7)
represents the piecewised boundary node number set of the
boundary (Γ1,Γ2,Γ3,Γ4). The errors and error ratio of u and
p at the interior points (0.15, 1.15), and (0.35, 1.35) using
n (= 4 × 2k, k = 3, · · · , 7) nodes by MQMs are listed in
Table II-V respectively. From the numerical results we can
see that log2r

u
k ≈ 3 and log2r

p
k ≈ 3, which mean that the

convergence rates of u and p are O (h3) for MQMs.
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TABLE V
THE ERRORS OF p AT THE POINT (0.35, 1.35)

Λk Λ3 Λ4 Λ5 Λ6 Λ7

ep
k 6.973E-4 1.723E-4 2.134E-5 2.662E-6 3.326E-7

rp
k − 22.017 23.013 23.003 23.001

V. CONCLUSIONS

In this article, we construct MQMs for solving Stokes equa-
tions BIE by using sidi’s quadrature rules to compute weakly
singular integrals and prove that the methods is convergent.
The calculation of the discrete matrix costs very little and the
most of work can be saved.
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