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Mean square stability of impulsive stochastic delay
differential equations with markovian switching and

poisson jumps
Dezhi Liu

Abstract—In the paper, based on stochastic analysis theory and
Lyapunov functional method, we discuss the mean square stability
of impulsive stochastic delay differential equations with markovian
switching and poisson jumps, and the sufficient conditions of mean
square stability have been obtained. One example illustrates the main
results. Furthermore, some well-known results are improved and
generalized in the remarks.
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I. INTRODUCTION

MANY evolution processes which are changed at cer-
tain moments are always affected by impulsive, such

as, medicine, economics, biology, mechanics and so on. In
recent years, the stability and other properties of impulsive
differential equations have been investigated and many criteria
of stability for these systems have been obtained [see[1]-[4]].
Stochastic effects are often taken into account, which is very
necessary for good results, and some results of stability for
impulsive stochastic delay differential equations (SDDE) have
been gotten [see[10]-[13]]. However, the results of impulsive
SDDE with jumps are very few, so the investigation is very
necessary and valuable.

To the best of author’s knowledge, the stability of impulsive
SDDE have been studied. But the investigation of these
equations which are embedded markov chains and poisson
jumps are blank. In this paper, we will have a try to study
them to fill the gap.

The markov chain and poisson jumps become very popular
in recent years, because they are extensively used to model
on many phenomena emerging in a lot of areas. So the
first attempt that we investigate the mean square stability of
impulsive SDDE with markovian switching and poisson jumps
is very necessary.

This paper is organized as follows: In section II, we present
some basic preliminaries; In section III, the main result of
mean square stability and the proof have been given; In section
IV, some well-known results are generalized in the remarks
and an example is given to illustrate our conclusion.

II. PRELIMINARIES

Let {Ω,F , {Ft}t≥0,P} be a probability space with a
filtration satisfying the usual conditions, i.e., the filtration
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is continuous on the right and F0-contains all P-zero sets.
Let B(t) = (B1(t), B2(t), ..., Bm(t))T be an m-dimensional
Brownian motion defined on the probability space. || • || is the
Euelidean norm in Rn and ‖x(t)‖τ = sup

−τ≤θ≤0
‖x(t + θ)‖.

Let PC(I, Rn) = {φ : I → Rn|φ(t+) = φ(t) for t ∈
I; φ(t−) exists for t ∈ (t0,∞), φ(t−) =
φ(t) for all but points tk ∈ (t0,∞)}, where
I ⊂ R is an interval, φ(t−) and φ(t+) denote the left-hand
and right-hand limits of function. Let PC(δ) = {φ : φ ∈
PC([−τ, 0], Rn) and ‖φ‖τ ≤ δ} and PCF0

([−τ, 0], Rn)
denote the family of all F0-measurable PC([−τ, 0], Rn)-
valued stochastic process ϕ = {ϕ(s) : −τ ≤ s ≤ 0} such
that sup

−τ≤s≤0
E‖ϕ(s)‖2 < ∞, and PCb

F0
(δ) = {ϕ : ϕ ∈

PCb
F0

([−τ, 0], Rn), and E‖ϕ(s)‖2 < δ}.
Let {r(t), t ∈ Rt0 = [t0, +∞)} be a right-continuous

Markov chain on the probability space {Ω,F , {F}t≥0,P}
taking values in a finite state space S = {1, 2, ..., N} with
generator Γ = (γij)N×N given by

P (r(t + Δ) = j|r(t) = i)

=

{
γijΔ + o(Δ) , if i �= j

1 + γiiΔ + o(Δ) , if i = j

where Δ > 0.Here γij ≥ 0 is the transition rate from i to
j,if i �= j.while

γii = −
∑
j �=i

γij .

We assume that Markov chain r(·) is independent of the
Brownian motion B(·).It is known that almost every sample
path of r(t) is right continuous step function with a finite
number of simple jumps in any finite sub-interval of Rt0 .

Let {υ(dt, du), t ∈ Rt0 , u ∈ R} be a centered Poisson
random measure with parameter π(du)dt.

Consider the following impulsive stochastic delay differen-
tial equations with markovian switching and poisson jumps:

dx(t) =f(t, x(t), xt, r(t))dt + g(t, x(t), xt, r(t))dB(t)

+

∫ +∞

−∞

h(t, x(t), u)v(dt, du) t ≥ t0, t �= tk

x(tk) =Hk(x(t−k )) k = 1, 2, 3...

(1)

with the initial condition x0 = x(t0 + s) = ϕ(s) ∈
PCb

F0
(δ), where s ∈ [−τ, 0] and Hk(x(t−k )) =

(H1k(x(t−k )), H2k(x(t−k )), ..., Hnk(x(t−k )))T represents the
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impulsive perturbation and satisfies the global Lipschitz con-
dition as follows:

‖Hk(x(t−k ))‖ ≤ Mk‖x(t−k )‖ Mk ≥ 0, k = 1, 2, ..., (2)

the fixed moments of time tk satisfies 0 ≤ t1 ≤ t2 ≤ ... ≤
tk ≤ ..., lim

k→∞
tk = ∞.

In the paper, we always assume that under some conditions
the system (1) has a unique solution x(t) = (x1(t), ..., xn(t))T

and xt = (x1t, ..., xnt)
T , xit = xi(t − τi), i = {1, 2, ..., n} ,

and τ = max
0≤i≤n

{τi}.

Assume that:

f : R × Rn × Rn × S → Rn;

g : R × Rn × Rn × S → Rn×m;

h : R × Rn × R → Rn.

Further, assume that f(t, 0, 0, i) ≡ 0 and g(t, 0, 0, i) ≡ 0 for
all i ∈ S, and h(t, 0, ·) ≡ 0, then system (1) has a trivial
solution x(t) ≡ 0.

Denote by C2,1(Rn × [t0,∞) × S; R+) the family of all
non-negative function V (x, t, i) on Rn × [t0,∞) × S which
are continuously twice differential with respect to x and once
differential with respect to t.

For any (x, t, i) ∈ Rn × [t0,∞) × S, define an operator L

by

LV (x, y, t, i)

= Vt(x, t, i) + Vx(x, t, i)f(t, x, y, i)

+
1

2
trace[gT (t, x, y, i)Vxx(x, t, i)g(t, x, y, i)]

+

N∑
j=1

γijV (x, t, j) +

∫ +∞

−∞

[V (x + h(t, x, u), t, i)

− V (x, t, i) − Vx(x, t, i)h(t, x, u)]π(du),

(3)

where

Vt(x, t, i) =
∂V (x, t, i)

∂t
;

Vx(x, t, i) = (
∂V (x, t, i)

∂x1
, ...,

∂V (x, t, i)

∂xn

);

Vxx(x, t, i) = (
∂2V (x, t, i)

∂xi∂xj

)n×n.

The generalized Itô formula reads as follows:

EV (x(t + h), t + h, r(t + h))

= EV (x(t), t, r(t)) + E

∫ t+h

t

LV (x(s), xs, s, r(s))ds.
(4)

Definition 2.1 The solution of system (1) is mean square
stability if for any ε > 0, there exists a scalar δ > 0 and
the initial function ϕ ∈ PCb

F0
(δ), such that

E‖x(t)‖2 < ε, t ≥ t0.

III. MAIN RESULTS

Theorem 3.1Assume that there exit λ1 > 0, λ2 > 0, λ4 >

0, λ3 ∈ R and a Lyapunov function V (x, t, i) ∈ C2,1(Rn ×
[t0,∞) × S; R+), such that

(i)λ1‖x(t)‖2 ≤ v(x(t), t, i) ≤ λ2‖xt‖
2
τ ;

(ii)LV (x(t), xt, t, i) ≤ λ3V (x(t), t, i) + λ4V (xt, t, i)

t ∈ [tk−1, tk), k = 1, 2, ...;

(iii)0 < λ < 1, where λ = sup{λk|λk =
λ2

λ1
M2

k ,

k = 1, 2, ...};

(iv)(λ3 +
λ4

λ
)(tk − tk−1) < −lnλ, k = 1, 2, ....

where Mk, k = 1, 2, 3... have been defined in (2).Then the
trivial solution of system (1) is mean square stability.

Proof For any ε > 0, there exists a scalar δ = δ(ε) > 0,
such that δ < λ1λ

λ2
ε. For any t0 ≥ 0 and x0 = ϕ ∈ PCb

F0
(δ),

let x(t) = x(t, t0, ϕ) be the solution of system (1).
Due to (4), we obtain that

EV (x(t), t, r(t))

= EV (x(tk), tk, r(tk)) + E

∫ t

tk

LV (x(s), xs, s, r(s))ds,

t ∈ [tk, tk+1)
(5)

For sufficiently small Δt > 0, such that t + Δt ∈ t ∈
[tk, tk+1). We get

EV (x(t + Δt), t + Δt, r(t + Δt))

= EV (x(tk), tk, r(tk))

+ E

∫ t+Δt

tk

LV (x(s), xs, s, r(s))ds, t ∈ [tk, tk+1]

(6)

Using (5), (6) and condition (ii), we observe that

EV (x(t + Δt), t + Δt, r(t + Δt)) − EV (x(t), t, r(t))

= E

∫ t+Δt

t

LV (x(s), xs, s, r(s))ds,

≤

∫ t+Δt

t

(λ3EV (x(s), s, r(s)) + λ4EV (xs, s, r(s)))ds,

t ∈ [tk, tk+1)

therefore,

D+EV (x(t), t, r(t)) ≤ λ3EV (x(t), t, r(t))

+ λ4EV (xt, t, r(t)), t ∈ [tk, tk+1).

Now we claim that

EV (x(t), t, r(t)) ≤
λ2

λ
δ, t0 ≤ t ≤ t1. (7)

Due to x0 ∈ PCb
F0

(δ) and condition (i), it’s obvious that

EV (x(t), t, r(t))

= EV (x(t0 + θ), t0 + θ, r(t0 + θ))

≤ λ2E‖x0‖
2
τ ≤ λ2δ ≤

λ2

λ
δ, t0 − τ ≤ t ≤ t0.
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If (7) does not hold, then there exists some s ∈ (t0, t1), such
that

EV (x(s), s, r(s)) >
λ2

λ
δ > λ2δ ≥ EV (x(t0), t0, r(t0)).

Let

s1 = inf{s ∈ [t0, t1)|EV (x(s), s, r(s)) >
λ2

λ
δ}.

For any t ∈ [t0 − τ, t0], EV (x(t), t, r(t)) < λ2

λ
δ, note that

EV (x(t), t, r(t)) is continuous for variable on [t0, t1), then

EV (x(s1), s1, r(s1)) = λ2

λ
δ;

EV (x(t), t, r(t)) ≤ λ2

λ
δ, t0 − τ ≤ t ≤ s1;

D+EV (x(s1), s1, r(s1)) ≥ 0.

(8)

From the inequalities λ2

λ
δ > λ2δ, then there exists s2 ∈

[t0, s1), such that

EV (x(s2), s2, r(s2)) = λ2δ;
EV (x(t), t, r(t)) ≥ λ2δ, s2 ≤ t ≤ s1;
D+EV (x(s2), s2, r(s2)) ≥ 0.

(9)

Combing (8) and (9), we get

EV (Xt, t, r(t)) ≤
λ2

λ
δ ≤

1

λ
EV (x(t), t, r(t)), t ∈ [s2, s1],

and

D+EV (x(t), t, r(t))

≤ λ3EV (x(t), t, r(t)) + λ4EV (xt, t, r(t))

≤ (λ3 +
λ4

λ
)EV (x(t), t, r(t))

(10)

Therefore, for any t ∈ [s2, s1]∫ s1

s2

D+EV (x(s), s, r(s))

EV (x(s), s, r(s))
ds ≤

∫ s1

s2

(λ3 +
λ4

λ
)ds.

Applying condition (iii) and (iv), we have∫ s1

s2

(λ3 +
λ4

λ
)ds ≤

∫ t1

t0

(λ3 +
λ4

λ
)ds

= (λ3 +
λ4

λ
)(t1 − t0) < −lnλ.

So ∫ s1

s2

D+EV (x(s), s, r(s))

EV (x(s), s, r(s))
ds < −lnλ.

At the same time,∫ s1

s2

D+EV (x(s), s, r(s))

EV (x(s), s, r(s))
ds =

∫ EV (x(s1),s1,r(s1))

EV (x(s2),s2,r(s2))

du

u

=

∫ λ2

λ
δ

λ2δ

du

u

= ln(
λ2

λ
δ) − ln(λ2δ)

= −lnλ,

which is a contradiction, so (7) holds.
Combing (2),(7) and condition (i), we get

EV (x(t1), t1, r(t1)) = EV (H1(x(t−1 )), t1, r(t1))

≤ λ2E‖H1(x(t−1 )‖2
τ

≤ λ2M
2
1 E‖x(t−1 )‖2

τ

≤
λ2M

2
1

λ1
sup

−τ≤θ≤0
EV (x(t−1 + θ),

t−1 + θ, r(t−1 + θ))

≤ λ
λ2

λ
δ ≤ λ2δ ≤

λ2

λ
δ

Now we assume that for m = 1, 2, ..., k, the following
inequalities hold,

EV (x(t), t, r(t)) ≤ λ2

λ
δ, tm−1 ≤ t ≤ tm;

EV (x(tk), tk, r(tk)) ≤ λ2

λ
δ, k = 1, 2, ...,

(11)

for m = k + 1, we claim that

EV (x(t), t, r(t)) ≤
λ2

λ
δ, tk ≤ t ≤ tk+1. (12)

If (12) does not hold, then there exists some p ∈ (tk, tk+1),
such that

EV (x(p), p, r(p)) >
λ2

λ
δ > λ2δ ≥ EV (x(tk), tk, r(tk)).

Let

p1 = inf{p ∈ [t0, t1)|EV (x(p), p, r(p)) >
λ2

λ
δ}.

For any t ∈ [tk−1, tk], EV (x(t), t, r(t)) < λ2

λ
δ, note that

EV (x(t), t, r(t)) is continuous for variable on [tk, tk+1), then

EV (x(p1), p1, r(p1)) = λ2

λ
δ;

EV (x(t), t, r(t)) ≤ λ2

λ
δ, t0 − τ ≤ t ≤ p1;

D+EV (x(p1), p1, r(p1)) ≥ 0.

(13)

From the inequalities λ2

λ
δ > λ2δ, then there exists p2 ∈

[tk, p1), such that

EV (x(p2), p2, r(p2)) = λ2δ;
EV (x(t), t, r(t)) ≥ λ2δ, p2 ≤ t ≤ p1;
D+EV (x(p2), p2, r(p2)) ≥ 0.

(14)

Combing (13) and (14), we get

EV (Xt, t, r(t)) ≤
λ2

λ
δ ≤

1

λ
EV (x(t), t, r(t)), t ∈ [p2, p1],

and

D+EV (x(t), t, r(t))

≤ λ3EV (x(t), t, r(t)) + λ4EV (xt, t, r(t))

≤ (λ3 +
λ4

λ
)EV (x(t), t, r(t))

(15)

Therefore, for any t ∈ [p2, p1]∫ p1

p2

D+EV (x(s), s, r(s))

EV (x(s), s, r(s))
ds ≤

∫ p1

p2

(λ3 +
λ4

λ
)ds.

Applying condition (iii) and (iv), we have∫ p1

p2

(λ3 +
λ4

λ
)ds ≤

∫ t1

t0

(λ3 +
λ4

λ
)ds

= (λ3 +
λ4

λ
)(t1 − t0) < −lnλ.
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So ∫ p1

p2

D+EV (x(s), s, r(s))

EV (x(s), s, r(s))
ds < −lnλ.

At the same time,

∫ p1

p2

D+EV (x(s), s, r(s))

EV (x(s), s, r(s))
ds =

∫ EV (x(p1),p1,r(p1))

EV (x(p2),p2,r(p2))

du

u

=

∫ λ2

λ
δ

λ2δ

du

u

= ln(
λ2

λ
δ) − ln(λ2δ)

= −lnλ,

which is a contradiction, so (12) holds.
Combing (2),(12) and condition (i), we get

EV (x(tk+1), tk+1, r(tk+1))

= EV (Hk+1(x(t−k+1)), tk+1, r(tk+1))

≤ λ2E‖Hk+1(x(t−k+1)‖
2
τ

≤ λ2M
2
k+1E‖x(t−k+1)‖

2
τ

≤
λ2M

2
k+1

λ1
sup

−τ≤θ≤0
EV (x(t−k+1 + θ), t−k+1 + θ, r(t−k+1 + θ))

≤ λ
λ2

λ
δ ≤ λ2δ ≤

λ2

λ
δ

By the mathematical induction, we can conclude that

EV (x(t), t, r(t)) ≤ λ2

λ
δ, tk−1 ≤ t ≤ tk;

EV (x(tk), tk, r(tk)) ≤ λ2

λ
δ, k = 1, 2, ....

Therefore

EV (x(t), t, r(t)) ≤
λ2

λ
δ, t ≥ t0,

which yields

E‖x(t)‖2 ≤
λ2

λ1λ
< ε, t ≥ t0.

Now, we can obtain that the solution of system (1) is mean
square stability by definition 2.1.

IV. REMARKS AND AN EXAMPLE

Remark 4.1 When r(t) ≡ 0 and h(t, x(t), ·) ≡ 0, the
system (1) reduces to

dx(t) =f(t, x(t), xt)dt + g(t, x(t), xt)dB(t)

t ≥ t0, t �= tk

x(tk) =Hk(x(t−k )) k = 1, 2, 3...

(16)

with the initial condition x0 = x(t0 + s) = ϕ(s) ∈ PCb
F0

(δ),
where s ∈ [−τ, 0], which is recently studied in the similar
literatures.That is to say, we generalize the results of the
similar literatures.

Example 4.1 Consider the following impulsive stochastic
delay differential equations:(

dx1(t)
dx2(t)

)
= [

(
−10.5 0

0 −12.2

) (
x1(t)
x2(t)

)

+

(
1.2 −0.2
0.6 2.4

) (
sinx1(t)

arctanx2(t)

)

+

(
1.6 0.3
−0.5 1.8

) (
sinx1(t −

1
2 )

arctanx2(t −
1
3 )

)
]dt

+

(
2x1(t) x2(t −

1
3 )

x1(t −
1
2 ) −x2(t)

) (
dB1(t)
dB2(t)

)
,

t ≥ t0, t �= tk(
x1(tk)
x2(tk)

)
=e−0.1k

(
0.5 −0.15
0.12 0.6

) (
x1(t

−
k )

x2(t
−
k )

)
k = 1, 2, 3...

(17)

where t0 = 0 and tk = tk−1 + 0.15 (k=1,2,...).
Let λ1 = 0.5600, λ2 = 0.6800, λ3 = −1.8670, λ4 = 2.1071
and Mk = 0.62e−0.1k, 0 < λ = 0.313 < 1, then (λ3 +
λ4

λ
)(tk − tk−1) = 0.7293 < 1.1608 = −lnλ. So the solution

of system (17) is mean square stability by our theory.
Remark 4.2 With the process of example 4.1, we can obtain

that the conditions of mean square stability have become much
easier to be satisfied than the similar literatures.
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