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Mean-Square Performance of Adaptive Filter
Algorithms in Nonstationary Environments

Mohammad Shams Esfand Abadi and John Håkon Husøy

Abstract—Employing a recently introduced unified adaptive filter
theory, we show how the performance of a large number of important
adaptive filter algorithms can be predicted within a general framework
in nonstationary environment. This approach is based on energy con-
servation arguments and does not need to assume a Gaussian or white
distribution for the regressors. This general performance analysis can
be used to evaluate the mean square performance of the Least Mean
Square (LMS) algorithm, its normalized version (NLMS), the family
of Affine Projection Algorithms (APA), the Recursive Least Squares
(RLS), the Data-Reusing LMS (DR-LMS), its normalized version
(NDR-LMS), the Block Least Mean Squares (BLMS), the Block
Normalized LMS (BNLMS), the Transform Domain Adaptive Filters
(TDAF) and the Subband Adaptive Filters (SAF) in nonstationary
environment. Also, we establish the general expressions for the
steady-state excess mean square in this environment for all these
adaptive algorithms. Finally, we demonstrate through simulations that
these results are useful in predicting the adaptive filter performance.

Keywords—Adaptive filter, general framework, energy conserva-
tion, mean-square performance, nonstationary environment.

I. INTRODUCTION

PERFORMANCE analysis of adaptive filtering algorithms
in nonstationary environments has been, and still is, an

area of active research [1], [2], [3]. When the input signal
properties vary with time, the adaptive filters are able to track
these variations. The aim of tracking performance analysis is
to characterize this tracking ability in nonstationary environ-
ments. In this area, many contributions focus on a particular
algorithm, making more or less restrictive assumptions on the
input signal. For example in [4], [5], the transient performance
of the LMS was presented in the nonstationary environments.
The former uses a random-walk model for the variations in the
optimal weight vector, while the latter assumes deterministic
variations in the optimal weight vector. The steady-state per-
formance of this algorithm in the nonstationary environment
for the white input is presented in [6]. The tracking perfor-
mance analysis of the signed regressor LMS algorithm can
be found in [7], [8], [9]. Also, the steady-state and tracking
analysis of this algorithm without the explicit use of the
independence assumptions are presented in [10].

Obviously, a more general analysis encompassing as many
different algorithms as possible as special cases, while at the
same time making as few restrictive assumptions as possible,
is highly desirable. In [11], a unified approach for steady-
state and tracking analysis of LMS, NLMS, and some adaptive
filters with the nonlinearity property in the error is presented.
Their approach was based on energy-conservation relation
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which was originally derived in [12] and [13]. Also in [14],
a unified approach to steady-state performance analysis of
a family of affine projection and data-reusing adaptive filter
algorithms in the stationary environments and without using
the independence assumptions have been presented based on
a theory of averaging analysis.

An important recent contribution is the tracking analysis of
the Affine Projection Algorithm(s) (APA) [15]. The analysis
is based on an energy conservation argument and using the
energy relation. Also, the transient and steady-state analysis
of data-reusing adaptive algorithms in the stationary environ-
ments is presented in [16] based on the weighted energy rela-
tion. But the performance of these algorithms in nonstationary
environment is not presented. There is a general performance
analysis of adaptive filters in [17] and [18]. But again, this
analysis was performed in the stationary environments.

We have shown previously [19] that the least mean squares
(LMS), the normalized LMS (NLMS), the affine projection
algorithm [3], the recursive least squares (RLS), the transform
domain adaptive filters (TDAF) [20] and the subband adaptive
filters (SAF) [21], [22], [23] can be derived through param-
eter selections in the generic filter vector update equations
presented in [19]. In this paper we extend these generic
update equations to show that other adaptive filter algorithms
such as the binormalized data-reusing (BNDR-LMS) [24],
the NLMS with orthogonal correction factors (NLMS-OCF)
[25], the data-reusing adaptive algorithms such as the data-
reusing LMS (DR-LMS) [26], the normalized data-reusing
LMS (NDR-LMS) [27] and the block adaptive algorithms such
as the block LMS (BLMS) and the block NLMS (BNLMS)
adaptive algorithms [2] are established through parameter
selections in these generic update equations. Accordingly, a
general formalism for the mean-square performance analysis
of adaptive filters in nonstationary environment is presented.
The strategy of the analysis is based on energy conservation
arguments and does not need to assume a Gaussian or white
distribution for the regressors [3]. Especially, we derive the
general expressions for the steady-state mean square error in
nonstationary environment for all the adaptive filter algorithms
covered by the generic update equations.

We have organized our paper as follows: In the following
section we briefly present and extend the generic adaptive filter
update equations of [19] forming the basis of our analysis.
In the next section, the general mean square performance
analysis of adaptive filters in nonstationary environment and
the general expression for the steady-state mean square error
in this environment are established. We conclude the paper
by showing a comprehensive set of simulations supporting the
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validity of our results.
Throughout the paper, the following notations are adopted:
‖.‖ Euclidean norm of a vector.
‖t‖2

Σ
Σ-Weighted Euclidean norm of a column vector t

defined as tT Σt.
vec(T) Creating an M2 × 1 column vector t through

stacking the columns of the M × M matrix T.
vec(t) Creating an M × M matrix T from the M2 × 1

column vector t.
A ⊗ B Kronecker product of matrices A and B.
Tr(.) Trace of a matrix.
(.)T Transpose of a vector or a matrix.
diag{...}Diagonal matrix of its entries {...}.
E{.} Expectation operator.

II. THE GENERIC ADAPTIVE FILTER UPDATE EQUATIONS
AND ADAPTIVE FILTER ALGORITHMS

In Figure 1 we show the prototypical adaptive filter setup,
where x(n), d(n) and e(n) are the input, desired and output
error signals, respectively. h(n) is the M × 1 column vector
of filter coefficients at time n. From [19], the generic filter

Fig. 1. Prototypical adaptive filter setup

vector update equation can be stated as,

h(n + 1) = h(n) + μC(n)X(n)e(n). (1)

where
e(n) = d(n) − XT (n)h(n), (2)

is the output error vector. The matrix X(n) is the M × K
input signal matrix defined as

X(n) = [x(nL), x(nL − D), . . . , x(nL − (K − 1)D)], (3)

where x(nL) = [x(nL), x(nL − 1), . . . , x(nL − M + 1)]T ,
and d(n) is a K × 1 vector of desired signal which is defined
as

d(n) = [d(nL), d(nL − D), . . . , d(nL − (K − 1)D)]T . (4)

The parameter K is a positive integer (usually, but not neces-
sarily K ≤ M ), L is the block length1, and D is the positive
integer parameter (D ≥ 1) that can increase the separation,
and consequently reduce the correlation among the regressors
in X(n)2.

The desired signal arise from the following data model

d(n) = xT (n)ht(n) + v(n), (5)

1Setting L = 1 we get sample-by-sample algorithms whereas selecting
L > 1 results in block-based algorithms in which chunks of L samples are
input to the algorithm for each coefficient update.

2The choice D ≥ 1 and L = 1 corresponds to NLMS-OCF adaptive filter
algorithm [25].

where v(n) is the measurement noise and assumed to be zero
mean, white, Gaussian, and independent of the input signal
matrix X(n) and ht(n) is the true time-variant unknown
column vector. We assume that the variation of ht(n) is
according to the random walk model [1], [2], [3]

ht(n + 1) = ht(n) + q(n). (6)

In Eq. 6, the sequence of q(n) is an independent and
identically distributed sequence with autocorrelation matrix
Q = E{q(n)qT (n)} and independent of other sequences.

The matrix C(n) is some M × M invertible matrix called
the preconditioner. Selecting C(n) as an approximate inverse
of the autocorrelation matrix, we can improve the convergence
speed dramatically relative to the case when no preconditioner
is employed [19]. One strategy for selecting the matrix C(n) is
using the regularized inverse of the estimated autocorrelation
matrix as a preconditioner. In this case, by using the matrix
inversion lemma, we can write

C(n)X(n) = X(n)W(n) (7)

where W(n) is the K × K invertible matrix called the
weighting matrix [17], [18]. For more details please refer to
[19]. From this one might argue that in some cases, a suitable
alternative form of the generic adaptive filter of Eq. 1 can be
stated as:

h(n + 1) = h(n) + μX(n)W(n)e(n). (8)

We are now in the position to make specific choices for the
preconditioner matrix C(n) or the weighting matrix W(n) as
well as for the parameters K, L, and D. Different adaptive
filter algorithms can now be seen as specific instantiations
of the generic adaptive filter update equations (Eq. 1 and
Eq. 8). These algorithms are the least mean squares (LMS),
the normalized LMS (NLMS), ε-NLMS3, family of affine
projection algorithms (APA) such as the standard version
of APA, the regularized APA (R-APA) [28], the binormal-
ized data-reusing LMS (BNDR-LMS) [24], the NLMS with
orthogonal correction factors (NLMS-OCF) [25], the data-
reusing adaptive algorithms such as the data-reusing LMS
(DR-LMS), and the normalized DR-LMS (NDR-LMS) [27],
the recursive least squares (RLS)4, the transform domain adap-
tive filter (TDAF) algorithms5[20], and the subband adaptive
filters (SAF)6. The particular choices and their corresponding
algorithms are summarized in Table I. It is interesting to
note that the adaptive filter algorithms in [21], [22], [23],
while derived from different points of view, are the same
[18]. Selecting the parameters in the generic adaptive filter
according to Table I for the SAF and setting ε = 0, result in
Eq. 8 from [22].

3ε is the regularization parameter and I is the identity matrix.
4The signal matrix X̃(n) has the same structure as X(n), but with

horizontal dimension exceeding the vertical dimension M and 0 � λ ≤ 1.
5The matrix T is an M × M orthogonal transform matrix.
6F is the K × L matrix whose columns are unit pulse responses of a

L channel orthogonal perfect reconstruction critically sampled filter bank
system. In this case, L is the number of subband and K is the length of
the channel filters of the analysis filter bank.
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TABLE I
THE MOST COMMON FAMILIES OF ADAPTIVE FILTER ALGORITHMS CAN BE DESCRIBED THROUGH EITHER h(n + 1) = h(n) + μC(n)X(n)e(n) OR

h(n + 1) = h(n) + μX(n)W(n)e(n).

Algorithm K L D C(n)/W(n)

LMS K = 1 L = 1 D = 1 C(n) = I

NLMS K = 1 L = 1 D = 1 W(n) = [1/‖x(n)‖2].I

ε − NLMS K = 1 L = 1 D = 1 W(n) = (ε + xT (n)x(n))−1.I

or

C(n) = (εI + x(n)xT (n))−1

APA K ≤ M L = 1 D = 1 W(n) = (XT (n)X(n))−1

BNDR − LMS K = 2 L = 1 D = 1 W(n) = (XT (n)X(n))−1

R − APA K ≤ M L = 1 D = 1 W(n) = (εI + X
T (n)X(n))−1

or

C(n) = (εI + X(n)XT (n))−1

NLMS − OCF K ≤ M L = 1 D ≥ 1 W(n) = (XT (n)X(n))−1

DR − LMS K ≤ M L = 1 D = 1 C(n) = I

BLMS K = L L <=> M D = 1 C(n) = I

NDR − LMS K ≤ M L = 1 D = 1 W(n) = diag{1/‖x(n)‖2, ..., 1/‖x(n − K + 1)‖2}
BNLMS K = L L <=> M D = 1 W(n) = diag{1/‖x(nL)‖2, ..., 1/‖x(nL − K + 1)‖2}

SAF K L D = 1 W(n) = F{εI + diag{FT
X

T (n)X(n)F}}−1
F

T

RLS K = 1 L = 1 D = 1 C(n) = [X̃(n)X̃T (n)]−1

(sliding window) or

C(n) = [
∑n

i=0
λn−ix(i)xT (i)]−1

(exp.weighted window)

TDAF K = 1 L = 1 D = 1 C(n) = T.{diag[TT
X̃(n)X̃T (n)T]}−1.TT

or

C(n) = T.{diag[
∑n

i=0
λn−i

T
T x(i)xT (i)T]}−1.TT

III. GENERAL MEAN-SQUARE PERFORMANCE ANALYSIS
OF ADAPTIVE FILTER ALGORITHMS IN NONSTATIONARY

ENVIRONMENT

In this section based on the generic update equations, we
present the general mean-square performance analysis and
develop the general expression for the steady-state excess
mean square error (EMSE) in nonstationary environment.

A. General mean-square performance analysis of adaptive
filter algorithms in nonstationary environment based on Eq. 1

In the mean-square performance analysis, we need to study
the time evolution of the E{‖ε(n)‖2

Σ
}, where Σ is any Hermi-

tian and positive-definite matrix7, and ε(n) is the weight-error
vector which is defined as

ε(n) = ht(n) − h(n). (9)

From Eq. 9, the generic weight-error vector update equation
based on Eq. 1 can be stated as

ε(n + 1) = ε(n) + q(n) − μC(n)X(n)e(n). (10)

From Eq. 2 and Eq. 5, the output estimation error vector e(n)
can be represented as

e(n) = XT (n)ε(n) + v(n). (11)

7When Σ = I, the Mean Square Deviation (MSD) and when Σ = R,
where R = E{x(n)xT (n)} is the autocorrelation matrix of the input signal,
the Excess Mean Square Error (EMSE) expressions are established.

Substitute Eq. 11 in Eq. 10, we obtain

ε(n + 1) = ε(n) + q(n) − μC(n)X(n)(XT (n)ε(n) + v(n)).
(12)

Now taking the Σ-weighted norm from both sides of Eq. 12,

‖ε(n + 1)‖2
Σ = ‖ε(n)‖2

Σ′ + ‖q(n)‖2
Σ +

μ2vT (n)XΣ(n)v(n) + {Some Cross Terms}, (13)

where

Σ′ = Σ − μΣC(n)X(n)XT (n)
−μX(n)XT (n)CT (n)Σ + μ2X(n)XΣ(n)XT (n) (14)

and
XΣ(n) = XT (n)CT (n)ΣC(n)X(n). (15)

Taking the expectation from both sides of Eq. 13

E{‖ε(n + 1)‖2
Σ} = E{‖ε(n)‖2

Σ′} + E{‖q(n)‖2
Σ}

+μ2E{vT (n)XΣ(n)v(n)}, (16)

we obtain the time evolution of the weight-error variance. The
expectation of ‖ε(n)‖2

Σ′ is difficult to calculate because of
dependency of Σ′ on C(n) , X(n), and of ε(n) on prior
regressors. To solve this problem we need to use the following
independence assumptions [15].

1) The matrix sequence X(n) is independent and identi-
cally distributed. This assumption guarantees that ε(n)
is independent of both Σ′ and X(n).
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2) ε(n) is independent of C(n)X(n)XT (n).
Using these independence assumptions, the final results is

E{‖ε(n + 1)‖2
Σ} = E{‖ε(n)‖2

Σ′} + E{‖q(n)‖2
Σ}

+μ2E{vT (n)XΣ(n)v(n)}, (17)

where now Σ′ is

Σ′ = Σ − μΣE{C(n)X(n)XT (n)}
−μE{X(n)XT (n)CT (n)}Σ
+μ2E{X(n)XΣ(n)XT (n)}. (18)

Looking only at the second term of the right hand side of
Eq. 17 we obtain

E{vT (n)XΣ(n)v(n)} = E{Tr(v(n)vT (n)XΣ(n))}
= Tr(E{v(n)vT (n)}E{XΣ(n)}). (19)

Since E{v(n)vT (n)} = σ2
vI, where σ2

v is the variance of the
measurement noise, and E{‖q(n)‖2

Σ
} = Tr(QΣ), Eq. 17 can

be stated as

E{‖ε(n + 1)‖2
Σ} = E{‖ε(n)‖2

Σ′} + Tr(QΣ)
+μ2σ2

vTr(E{XΣ(n)}), (20)

Applying the vec(.) operator [29] on both sides of Eq. 18
yields

vec(Σ′) = vec(Σ) − μvec(ΣE{C(n)X(n)XT (n)}) −
μvec(E{X(n)XT (n)CT (n)}Σ) +

μ2vec(E{X(n)XΣ(n)XT (n)}). (21)

Since, in general vec(PΣQ) = (QT ⊗ P)vec(Σ) [29], we
find that Eq. 21 can be written as

σ′ = σ − μ(E{X(n)XT (n)CT (n)} ⊗ I).σ −
μ(I ⊗ E{X(n)XT (n)CT (n)}).σ +

μ2(E{(X(n)XT (n)CT (n)) ⊗ (X(n)XT (n)CT (n))}).σ, (22)

where σ′ = vec(Σ′) and σ = vec(Σ). With definition of the
M2 × M2 matrix G,

G = I − μE{X(n)XT (n)CT (n)} ⊗ I −
μI ⊗ E{X(n)XT (n)CT (n)} +

μ2E{(X(n)XT (n)CT (n)) ⊗ (X(n)XT (n)CT (n))}, (23)

Eq. 22 can be stated as

σ′ = G.σ. (24)

The second term of the right hand side of Eq. 20 can be written
as

Tr(E{XΣ(n)}) = Tr(E{C(n)X(n)XT (n)CT (n)}.Σ). (25)

Defining γ through

γ = vec(E{C(n)X(n)XT (n)CT (n)}) (26)

we have

Tr(E{C(n)X(n)XT (n)CT (n)}) = γT .σ (27)

With the above considerations, the recursion of Eq. 20 can
now be stated as

E{‖ε(n + 1)‖2
σ} = E{‖ε(n)‖2

Gσ} + μ2σ2
vγT σ + Tr(QΣ).

(28)
From this recursion, we will be able to evaluate the steady-
state excess mean square error (EMSE). When n goes to
infinity, we obtain

E{‖ε(∞)‖2
σ} = E{‖ε(∞)‖2

Gσ}+μ2σ2
vγT σ+Tr(QΣ). (29)

therefore

E{‖ε(∞)‖2
(I−G)σ} = μ2σ2

vγT σ + Tr(QΣ). (30)

If (I − G)σ = vec(I) and (I − G)σ = vec(R) = r, the
steady-state MSD and EMSE expressions in nonstationary
environment are established respectively. Doing this, the final
results are

EMSE = μ2σ2
vγT (I−G)−1r+Tr(Qvec((I−G)−1r)), (31)

and the mean square coefficient deviation (MSD) is given by

MSD = μ2σ2
vγT (I − G)−1vec(I) +

Tr(Qvec((I − G)−1vec(I))). (32)

Also, from Eq. 11, we know that e(n) = xT (n)ε(n) + v(n).
Therefore, the steady-state MSE is given by

MSE = EMSE + σ2
v . (33)

From the general expression (Eq. 31), we will be able to
predict the steady-state performance of LMS, ε-NLMS, R-AP,
BLMS, DR-LMS, RLS, and the transform domain adaptive
filter algorithms in nonstationary environment.

B. General mean-square performance analysis of adaptive
filter algorithms in nonstationary environment based on Eq. 8

Following the same approach in previous section for the
generic update equation (Eq. 8), the steady-state EMSE is
given by:

EMSE = μ2σ2
v�T (I−Z)−1r+Tr(Qvec((I−Z)−1r)), (34)

where

Z = I − μE{X(n)W(n)XT (n)} ⊗ I −
μI ⊗ E{X(n)W(n)XT (n)} +

μ2E{(X(n)W(n)XT (n)) ⊗ (X(n)W(n)XT (n))}, (35)

and
� = vec(E{X(n)W2(n)XT (n)}). (36)

Also, the mean square coefficient deviation (MSD) in the
steady-state is obtained by

MSD = μ2σ2
v�T (I − Z)−1vec(I) +

Tr(Qvec((I − Z)−1vec(I))), (37)

and, the steady-state MSE is given by Eq. 33. From the general
expression (Eq. 34), we will be able to predict the steady-
state performance of LMS, ε-NLMS, AP, R-AP, BNDR-
LMS, NLMS-OCF, BLMS, BNLMS, DR-LMS, NDR-LMS,
and the subband adaptive filter algorithms in nonstationary
environment.



International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:11, 2008

2574

IV. SIMULATION RESULTS

We justify the theoretical results presented in this paper by
several computer simulations in a system identification setup.
The unknown system has 8 taps and is selected at random.
The input signal, x(n) is a first order autoregressive (AR(1))
signal generated according to

x(n) = ρx(n − 1) + w(n), (38)

where w(n) can be either a zero mean white Gaussian signal or
a zero mean uniformly distributed random sequence between
−1 and 1. For the Gaussian case, ρ is set to 0.9. As a
result, a highly colored Gaussian signal is generated. For the
uniform case, ρ is set to 0.5. The measurement noise, v(n),
with σ2

v = 10−3 was added to the noise free desired signal
generated through d(n) = ht(n)T x(n). The unknown channel
changes according to Eq. 6. We assumed an independent and
identically distributed sequence for q(n) with autocorrelation
matrix Q = σ2

q .I where σ2
q = 0.0025σ2

v . The adaptive filter
and the unknown channel are assumed to have the same
number of taps. For the TDAF algorithm, an 8-point Discrete
Cosine Transform (DCT) was employed as the orthogonal
transform. The filter bank used in the subband adaptive filters
was the four subband Extended Lapped Transform (ELT) [30].
In all the simulations actually observed steady-state MSE are
obtained by averaging over 500 steady-state samples from
500 independent realizations for each μ value for a given
algorithm.

Figs. 2 and 3 show the steady-state MSE curves of NDR-
LMS adaptive algorithm as a function of the step-size in
nonstationary environment for both colored Gaussian and
uniform input signals with K = 2. The theoretical results are
calculated according to Eq. 33 and Eq. 34. As we can see there
is a global minimum for the steady-state MSE in nonstationary
environment. The theoretical results are in good agreement
with simulation results. The agreement is better for the small
value of the step-size for both colored and Gaussian input
signals. For the large value of the step-size, some deviation
between simulated and theoretical values is observed. But the
results are still useful.

Figs. 4 and 5 show the the steady-state MSE curves of the
TDAF algorithm as a function of the step-size in nonstationary
environment. Fig. 4 shows the results for colored Gaussian
input. The theoretical results have been obtained through Eq.
31 and Eq. 33. Again in the results, there is an optimal value
for the step-size, that minimizes the MSE in the nonstationary
environments. This fact can be seen in Fig. 5 for colored
uniform input signal. Good agreement between simulated
and theoretical values, especially for small step-size is again
observed.

Figs. 6 and 7 show the steady-state MSE curves of the
subband adaptive filter algorithm as a function of the step-
size in nonstationary environment for both colored Gaussian
and uniform input signals. In both simulations, the the number
of subband is set to 4. The theoretical results are calculated
according to Eq. 33 and Eq. 34. The results are in good
agreement with simulation results and as before, there is an
optimal value for the step-size, that minimizes the MSE in

nonstationary environment. Compared with the other simu-
lations, the theoretical values don’t have as good agreement
with the simulated values as before. But still, reasonable
agreements, especially for the large value of the step-size for
both colored Gaussian and uniform input signals are observed.
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Fig. 2. Steady-state MSE of normalized data-reusing LMS (NDR-LMS)
algorithm as a function of the step-size with K = 2 in nonstationary
environment for colored Gaussian input (Input: Gaussian AR(1), ρ = 0.9).
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Fig. 3. Steady-state MSE of normalized data-reusing LMS (NDR-LMS)
algorithm as a function of the step-size with K = 2 in nonstationary
environment for colored Uniform input (Input: Uniform AR(1), ρ = 0.5).

V. SUMMARY AND CONCLUSION

In this paper we have presented a general framework for the
mean square performance analysis of adaptive filter algorithms
based on generic adaptive filter update equations presented in
[19] in the nonstationary environments. Through the general
expressions and selection of the parameters according to Table
I, the steady-state EMSE of the LMS, NLMS, ε-NLMS,
family of AP (R-APA, BNDR-LMS, NLMS-OCF), the data-
reusing (DR-LMS, NDR-LMS), RLS, the transform domain,
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Fig. 4. Steady-state MSE of TDAF algorithm as a function of the step-size in
nonstationary environment for colored Gaussian input (Input: Gaussian AR(1),
ρ = 0.9).
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Fig. 5. Steady-state MSE of TDAF algorithm as a function of the step-
size in nonstationary environment for colored Uniform input (Input: Uniform
AR(1), ρ = 0.5).

the block adaptive filters (BLMS, BNLMS), and the subband,
adaptive filter algorithms were predicted in the nonstationary
environment. We demonstrated the usefulness of the general
performance results for NDR-LMS, the transform domain, and
the subband adaptive filter algorithms.
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