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Abstract—The objective of the present communication is to 

develop new genuine exponentiated mean codeword lengths and to 
study deeply the problem of correspondence between well known 
measures of entropy and mean codeword lengths. With the help of 
some standard measures of entropy, we have illustrated such a 
correspondence. In literature, we usually come across many 
inequalities which are frequently used in information theory. 
Keeping this idea in mind, we have developed such inequalities via 
coding theory approach. 
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code, Mean codeword length, Uncertainty, Noiseless channel 

I. INTRODUCTION 
N coding theory, one of the many applications of notion of 
uncertainty will be to the problem of efficient coding of 

messages to be sent over a noiseless channel, that is, our only 
concern is to maximize the number of messages that can be 
sent over the channel in a given time. Let us assume that the 
messages to be transmitted are generated by a random variable 
X and each value ix , i = 1, 2, ...., n of X must be represented 
by a finite sequence of symbols chosen from the set 
{ Daaa .....,,, 21 }. This set is called code alphabet or set of 

code characters and sequence assigned to each ix , i = 1, 2, 

....., n is called code word. Let in be the length of code word 

associated with ix satisfying Kraft’s [10] inequality given by 
the following mathematical expression: 

            1 2 ... 1nll lD D D−− −+ + + ≤                              (1)                                                                
Where, D is the size of alphabet. In calculating the long run 

efficiency of communications, we choose codes to minimize 
average code word length, given by 
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Where, ip  is the probability of occurrence of ix . For 
uniquely decipherable codes, Shannon’s [13] noiseless coding 
theorem which states that 
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Determines the lower and upper bounds on L in terms of 
Shannon’s [13] entropy ( )H P . Campbell [5] for the first 
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time introduced the idea of exponentiated mean codeword 
length for uniquely decipherable codes and proved a noiseless 
coding theorem. He considered a special exponentiated mean 
of order α given by 
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and showed that its lower bound lies between  )(PRα  and 

1)( +PRα  where  )(PRα is expressed as:       
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The above is Renyi’s [12] measure of entropy of order α . 
As 1α → , it is easily shown that L Lα → and ( )R Pα   

approaches ( )H P .  
Guiasu and Picard [6] defined the weighted average length 

for a uniquely decipherable code as 

           
1

1

n
i i i

n
i

i i
i

u n pL
u p=

=

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

∑
∑

                                        (6)                   

Longo [11] interpreted (6) as the average cost of 
transmitting letters ix with probability ip and utility iu and 
provided some practical interpretation of this length and also 
derived the lower and upper bounds for the cost function (6). 

In the literature of coding theory, for the given value of an 
inequality, say, Kraft’s [10] inequality, we have a pair of 
problems. For a given mean codeword length, we can find its 
lower bounds for all uniquely decipherable codes. In the 
inverse problem, we can find the mean value for the given pair 
of lower bounds. The direct problem has a unique answer, 
though it may not always be easy to find an analytical 
expression for it. However, the inverse problem has no unique 
answer in the sense that the same lower bounds may arise for 
a number of means. The challenge is to find as many of the 
means as possible, which have the given pair of values as 
lower bounds and this is the theme of the present 
communication.  

In section II, we have developed two new mean codeword 
lengths with the help of divergence measures. In section III, 
we have illustrated the correspondence between standard 
measures of entropy and the codeword lengths. The 
development of new inequalities has been made in section IV.  
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II. DEVELOPMENT OF TWO NEW MEAN CODEWORDS  

A. For the development of first mean, we consider Sharma 
and Mittal’s [15] measure of directed divergence given by 
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Taking logarithms and then dividing both sides of equation 
(8) by ( )1s − , we get the following expression: 
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that is  
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Since 
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lies between ( )rR P and ( ) 1rR P + where ( )rR P  is a 

Renyi’s [12] measure of entropy of order r . 
It can easily be proved that:  (i) When 1 2 ... nl l l l= = = , 
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−
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−
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1 2, ,..., nl l l     
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Thus, the mean codeword length introduced in equation  is 
a genuine mean codeword length as it satisfies the essential 

properties of being a mean codeword length.  

B. For the development of second mean, we consider 
Bhattacharya’s [2] measure of directed divergence is given by 
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Taking Logarithms on both sides of (11), we get  
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a Renyi’s [12] measure of entropy of order
1
2

. 

Thus, the mean codeword length introduced in equation 
(12) is a genuine mean codeword length as it can easily be 
proved that it satisfies the essential properties of being a mean 
codeword length. 

III. CORRESPONDENCE BETWEEN MEAN CODEWORD 
LENGTHS AND THE ENTROPY MEASURES  

The object of the present paper is to go deeper into the 
problem of correspondence between well known measures of 
entropy and mean codeword lengths. We state the results in a 
broader framework as follows: 

(a) To every mean codeword length, there corresponds a 
measure of entropy or a monotonic increasing function of a 
measure of entropy. 

(b) To every measure of entropy, there corresponds a 
mean codeword length or a monotonic increasing function of 
the mean codeword length. 

For many purposes, especially for maximization of entropy 
purposes, every monotonic increasing function of a measure 
of entropy is as good as a measure of entropy and for such 
purposes; all such functions should be regarded as equivalent. 
A monotonic increasing function of mean codeword lengths is 
not the same as a mean codeword length, but minimizing a 
monotonic increasing function of a mean codeword length 
gives the same results as minimizing the mean codeword 
length itself. Thus, we do not lose anything significant from 
our results by using monotonic increasing functions of 
entropy and mean codeword lengths. Below, we illustrate the 
correspondence between standard measures of entropy and the 
codeword lengths: 

Theorem: For all uniquely decipherable codes, the lower 
bound of exponentiated mean codeword length 
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is the Varma’s [16] measure of entropy. 
Proof: Here we use Holder’s inequality 
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Taking log on both sides of (14), we get 
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The R.H.S of (15) is Varma’s [16] measure of entropy and 
L.H.S is a genuine mean codeword length as it satisfies the 
essential properties of being a mean codeword length. 
  It has been proved that Shannon’s [13] entropy, Renyi’s 
[12] entropy of order  , Kapur’s [8] entropy of order   and type  
all provide lower bounds for different mean codeword lengths, 
while Havrada and Charvat’s [7], Arimoto’s [1] and Behara 
and Chawla’s [3] measures of entropy provide lower bounds 
for some monotonic increasing functions of mean codeword 
lengths but not for mean codeword length’s themselves. 
Below, we discuss the correspondence between standard 
measures of entropy and the possible lower bounds: 

A. Kapur’s [8] measure of entropy as a possible lower 
bound  

Kapur’s [8] measure of entropy of order α and type β is 
given by 
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We know that 
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Where L.H.S is Renyi’s [12] entropy of order α  and R.H.S 
is an exponentiated mean of orderα developed in equation 
(9). 

that is, 
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Equality sign holds in both cases when il
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Dividing both sides by 2α β+ − , we get 
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The L.H.S. of equation (17) is Kapur’s [8] measure of 
entropy of orderα and type β  but R.H.S. is neither a mean 
codeword length nor a monotonic increasing unction of mean 
codeword length. 

B. Sharma and Mittal’s [14] measure of entropy as a 
possible lower bound  

Sharma and Mittal’s [14] measure of entropy is given by 
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If 1β < , we have 
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The L.H.S. of equation (19) is Sharma and Mittal’s [14] 
measure of entropy but R.H.S is neither a mean codeword 
length nor a monotonic increasing unction of mean codeword 
length. 

In the literature of information theory, we usually come 
across many inequalities which are frequently applicable and 
used for the manipulation of mathematical results. The 
following section deals with development of such inequalities 
and relations between measures of entropy via coding theory 
approach.   

IV. NEW INEQUALITIES VIA CODING THEORY APPROACH  
In this section, we generate the following inequalities by 

using well known measures of directed divergence: 
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A. Burg’s [4] measure of entropy is given by 
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Also, Burg’s [4] measure of directed divergence is given by 
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            (22)                                                          

If we take 1 2 ... nl l l l= = = =  in (22), we get 
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Thus, we have 
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which is a new inequality. 

B. Jensen’s divergence is given by 
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in equation (23), we get 
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If we take  1 2 ... nl l l l= = = =  in (24), we get 
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Thus, we have  

( )1( ) 0nH P pϕ+ ≤   

which gives the relation between Shannon’s [13] measure 
of entropy and Burg’s [4] entropy. 

C. Kapur’s [9] measure of directed divergence is given by 
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Putting  
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 in equation (25), we get 

or 
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If we take 1 2 ... nl l l l= = = =  in (26), we get 
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This is a well known inequality, already existing in the 
literature of information theory and has been proved by some 
other technique. 
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