
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:8, 2007

2393

Abstract— This paper discusses a new, systematic approach to

the synthesis of a NP-hard class of non-regenerative Boolean
networks, described by FON[FOFF]={mi}[{Mi}], where for every
mj[Mj]∈{mi}[{Mi}], there exists another mk[Mk]∈{mi}[{Mi}], such
that their Hamming distance HD(mj, mk)=HD(Mj, Mk)=O(n), (where
‘n’ represents the number of distinct primary inputs). The method
automatically ensures exact minimization for certain important self-
dual functions with 2n-1 points in its one-set. The elements meant for
grouping are determined from a newly proposed weighted incidence
matrix. Then the binary value corresponding to the candidate pair is
correlated with the proposed binary value matrix to enable direct
synthesis. We recommend algebraic factorization operations as a post
processing step to enable reduction in literal count. The algorithm
can be implemented in any high level language and achieves best
cost optimization for the problem dealt with, irrespective of the
number of inputs. For other cases, the method is iterated to
subsequently reduce it to a problem of O(n-1), O(n-2),…. and then
solved. In addition, it leads to optimal results for problems exhibiting
higher degree of adjacency, with a different interpretation of the
heuristic, and the results are comparable with other methods.

In terms of literal cost, at the technology independent stage, the
circuits synthesized using our algorithm enabled net savings over
AOI (AND-OR-Invert) logic, AND-EXOR logic (EXOR Sum-of-
Products or ESOP forms) and AND-OR-EXOR logic by 45.57%,
41.78% and 41.78% respectively for the various problems.

Circuit level simulations were performed for a wide variety of
case studies at 3.3V and 2.5V supply to validate the performance of
the proposed method and the quality of the resulting synthesized
circuits at two different voltage corners. Power estimation was
carried out for a 0.35micron TSMC CMOS process technology. In
comparison with AOI logic, the proposed method enabled mean
savings in power by 42.46%. With respect to AND-EXOR logic, the
proposed method yielded power savings to the tune of 31.88%, while
in comparison with AND-OR-EXOR level networks; average power
savings of 33.23% was obtained.

Keywords—AOI logic, ESOP, AND-OR-EXOR, Incidence
matrix, Hamming distance.

I. INTRODUCTION
OGIC synthesis has matured as a field and is used in every
major digital IC design worldwide [4]. Despite a wealth

of research results and pioneering commercial tools, some
significant problems remain open owing to its inherent

Padmanabhan Balasubramanian is with the School of Computer Science,
The University of Manchester, Manchester, MAN M13 9PL UK (phone: +44-
161-275 6294; e-mail: spbalan04@gmail.com, padmanab@cs.man.ac.uk).

C. Hari Narayanan is with the School of Electrical Sciences, Vellore
Institute of Technology (University and IET, UK Accredited), Vellore,
Vellore – 632 014 India (e-mail: harinara_21@yahoo.com).

computational complexity [2]. Logic synthesis forms an
important part of the design cycle for a digital circuit/system.
Its actual significance should also be understood in the context
of the increasingly important requirement to minimize power
dissipation. The low power design challenge is one that
requires abstraction, modeling and optimization at all levels of
design hierarchy. The considerations range from the
technology being used for the implementation, circuit and
logic topologies, digital architectures and even the algorithms
being implemented [1]. This articulates the fact that the power
component should be considered early during the logic
synthesis phase as well. Gate-level optimization may achieve
power savings: in some specific cases more than 50%
reduction in power, without loss of performance, may be
achieved [4]. Also gate-level optimizations are relatively low
cost in terms of design-effort compared with other techniques.

This paper presents a novel and versatile synthesis method
incorporating available gate library types. It is primarily aimed
at combinatorial logic networks, whose ON/OFF set exhibits
maximal and complementary pair-wise disjointness. In other
words, the function set contains canonical terms, which differ
based on their Hamming distance, (HD), which is O(n). The
proposed technique guarantees best results for the above
problem definition, where the optimality of the solution
obtained is quantitatively evaluated in terms of total power
consumption (P) of the circuit realized, and number of literals
(NL) required for its implementation. Of course, a comparison
based on NL is suitable not only for standard cell-based
designs but also for FPGA technology targets. This is because
literals tend to correlate quite well with circuit area in custom
IC designs and they determine the number of look-up tables
(LUTs) needed for realization of the functionality with FPGA.

The technique has its roots in the rudiments of graph and
network theory. It enables best minimum solutions even for
logic networks composed of terms exhibiting strong or
complete adjacency, using a variation of the proposed
heuristic, as will be seen in section 5. Although our analysis
for some problem cases with function sets exhibiting
adjacency as well as non-adjacency between their elements
have yielded satisfactory experimental results, still an
exhaustive analysis is deemed necessary to gain a complete
insight about the effectiveness of our proposition for such
function classes, which promises scope for further work in
this direction. This phenomenon is also due to the NP-hard
enumeration of such possible functions. The strategy
considers the issue of output phase optimization as well.

Matrix Based Synthesis of EXOR dominated
Combinational Logic for Low Power

Padmanabhan Balasubramanian, and C. Hari Narayanan

L

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:8, 2007

2394

The rest of this paper is organized as follows. Section 2
provides concise background information pertaining to some
traditional synthesis approaches available in literature, such as
AND-OR-Invert (AOI) logic and also a briefing about some
of the important classes in the large AND-EXOR logic family.
We also provide a reference to AND-OR-EXOR three level
networks. In Section 3, the inherent nature and fundamental
properties governing Boolean functions exhibiting only
maximal and exact bit-wise complementary support are
mentioned anew. Section 4 discusses some essential graph
theoretic principles. Section 5 describes the complete graph
structure and weighted incidence matrix formulation with an
illustration. Minimization heuristics for all problem categories
are also described. Besides, the mode of direct synthesis by
correlation of the binary data with another proposed binary
value matrix is also dealt with in this section for
minterms/maxterms as well. Section 6 briefly highlights the
simulation mechanism, and gives details regarding the cases
considered for simulation studies and subsequent validation.
Comparison between the different synthesis procedures in
terms of power and NL is also graphically illustrated in this
section. Finally, we conclude in Section 7.

II. CONVENTIONAL SYNTHESIS METHODS
Conventional logic design is usually based on AND-OR

logic and OR-AND logic. We have used AND-OR-Invert
logic in common with the usual library descriptions in the
technology domain; this will be referred to as AOI form in
this paper. We have adopted single rail circuits for our
implementation. Although double-rail inputs are available in
the general case for designs targeting programmable logic
devices, for standard cell based IC designs, the circuit inputs
are generally single-rail. This is because single-rail circuits
tend to have fewer interconnections and thereby less hardware
area overhead.

EXOR based designs have certain well-known advantages
over the above classical realization methods. Firstly, they pave
way for a more concise expression for many basic arithmetic
functions, thereby reducing the complexity of the networks.
Secondly, many practical digital circuits used in the fields of
coding theory, linear system, telecommunication and
arithmetic coding contain basic functionality which are
inherently mod-2 sum [6]. Finally, circuits containing EXOR
gate types have excellent design-for-test properties [7] [8].
Such is their significance that even some earlier FPGA styles
had incorporated 2-input EXOR gate in their basic granularity
blocks, for example Cli 6006 from Concurrent Logic Inc.

Various classes exist in AND-EXOR expressions involving
only AND and EXOR gate types [6]. This is because any
arbitrary logic function can be purely realized using only
AND and EXOR logic gates. For example, the RM, GRM and
PSDKRO form extensively rely upon such gates for
implementation. Slight modification of the Shannon expansion
to suit Galois field of order 2 (1) are made for the AND-
EXOR logic to derive Davio expansions (2), (3) and given by,

F = [(x · Fx) ⊕ (x’ · Fx’)] (1)

F = [Fx’ ⊕ {x · (Fx ⊕ Fx’)}] (2)

F = [Fx ⊕ {x’ · (Fx ⊕ Fx’)}] (3)

In (1), (2) and (3), the symbols ‘·’ and ‘⊕’ stand for AND
and EXOR operators respectively, while ‘+’ and ‘ ’ would
imply logical OR and EXNOR operators.

Recursive application of the above tree expansions results
in various RM trees [6]. If only the positive Davio expansion
(2) is used repeatedly for variable expansion with some fixed
order of expansion of variables, a compact RM tree is
generated. A GRM tree is created when a choice exists
between positive Davio expansion (2) and negative Davio
expansion (3) for each variable. If equations (1), (2) and (3)
are used along with the choice of equations (2) and (3) in each
sub-tree, the PSDKRO structure is generated. Importantly, in
all these structures only two kinds of gates (AND and EXOR)
are used for circuit realizations.

Amongst the AND-EXOR expressions, Exclusive-OR-
sum-of-products expression (ESOP) is the most general
logical expansion of interest [6]. ESOP is basically a logical
expression that combines arbitrary products terms by EXOR-
ing. For an n-variable function, there are at most 3tn different
ESOPs with t products. Although, no efficient minimization
algorithm is known for more than five variables and it is still
open [6], heuristics have been formulated which obtain near
minimum or exact minimum ESOP forms [9] [10] [11] [12].

An AND-OR-EXOR network, where the output EXOR gate
has only two inputs, is one of the simplest three-level
architecture [13] [14]. In other words, here, the logic function
is represented as an EXOR sum of two sum-of-products
expressions. This network realizes an EXOR of two sum-of-
products expressions, where the products associated with a
sum term are mutually disjoint. This network is suitable for
implementing arithmetic functions and also for realization of
many random functions. Since this configuration is found in
the basic macro cell architecture of CPLDs, this form gained
significance. Also the upper bound on the number of products
in this representation is shown to be 5(2n-4), which is 37.5%
smaller than the upper bound on the number of products in the
conventional sum-of-product expression of the logic function
(which is 2n-1) and 16.67% smaller than the maximum bound
on the number of product terms in the AND-EXOR
expansion, in which both complemented and uncomplemented
forms of an input variable are used (3(2n-3)) [17].

III. FUNCTION DEFINITION AND PROPERTIES
We will now highlight the basic definition of NP-class of

logic functions and list their important properties anew.

A. Function definition
Let Z be a logic function with its support and ON-set

defined as,

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:8, 2007

2395

s[Z] = {xn-1, xn-2, …. , x0} (4)

ZON = {mi}; 0 ≤ i ≤ (p-1), where 0 ≤ p ≤ 2|s[Z]| (5)

where, ZON stands for the ON-set of the function Z and
{mi} refers to the set of all minterms. Now, for every mj, mk ∈
{mi}, that exists, the Boolean distance between the two binary
tuples is given by HD (mj, mk) and is O(n).

1) Property 1
For the binary 2-tuple (mj, mk), whose HD is O(n), it

naturally follows that (mj ∩ mk) = { } and the converse is also
true.

2) Property 2
The upper bound for the number of exact bit-wise

complementary pairs in the function set would be 2n-1/2|s[Z]|-1.
3) Property 3

For the upper bound of 2n-1 disjoint binary 2-tuples, the bit-
wise complementary pair is obtained by grouping an element
in a finite set comprising 2n-1 elements with the absolute value
of the element being ‘j’, such that j = 0,1,….,2(n-1)-1; with an
unique element of another finite set of a similar cardinality,
whose absoluteness is described by ‘k’, such that k = 2n-m;
where m = 1,2,….,(n+1).

The above definition and formulation of properties also
hold good for the case of functions specified in terms of their
OFF-set (i.e. in terms of their maxterms).

IV. GRAPH THEORY FUNDAMENTALS
A graph ‘G’ is a pair, G = (V, E), consisting of a finite set

V ≠ φ and a set E of two-element subsets of V. In graph
theory, infinite graphs are also studied, however here; we
restrict ourselves to the finite case. The elements of V are
called vertices. An element, e = {a, b} of E is called an edge
with end vertices ‘a’ and ‘b’. We say that ‘a’ and ‘b’ are
incident with ‘e’ and that ‘a’ and ‘b’ are adjacent or
neighbours of each other, and write e = ab [5]. Further details
regarding the pictorial descriptions and properties of all
graphs and other network terminologies can be found in [5].

V. WEIGHTED INCIDENCE MATRIX, BINARY VALUE MATRICES
AND SYNTHESIS MECHANISM

In our case, the problem under consideration is represented
in a novel way on the lines of a complete graph specification.
The complete graph, Kn is a network with |V|=n and
|E|=(n(n-1))/2. In other words, the empty graph, Kn’ is a graph
with |Kn’|=n and |E(Kn’)|=0, where Kn’ is the complementary
version of Kn [5]. The decimal equivalent of each binary cube
shall correspond to a unique vertex label of the complete
graph. So, the total number of minterms [maxterms] in the
ON-set [OFF-set) of a completely specified logic function
shall account for the number of vertices in the graph. As far as
incompletely specified logic functions are concerned, whose
DC-set ≠ { }, the inclusion of its elements in the ON-set or
OFF-set is dictated by the optimality of the best minimal
solution that could be predicted and hence all the DC cubes

are initially considered as candidates.
The algorithm for such a directed graph (digraph) can be

implemented by means of any high-level language and run on
a computer with even an incidence list representation.

A. Weighted Incidence Matrix specification
A directed multigraph G with a non-zero finite vertex set

can in general be represented in matrix form by an Incidence
matrix [5]. For our problem specification, we opt for a slightly
modified form of the latter, designated as Weighted Incidence
Matrix (WIM). The order of an incidence matrix would be
‘n×(n(n-1)/2)’. The added feature of a weighted incidence
matrix over the conventional one would be that each matrix
element representing the presence of a directed edge from one
vertex to another, is also multiplied by the decimal equivalent
of the corresponding Boolean distance between the two
vertices or binary cubes (to be read as an entry corresponding
to a row ‘i’ and a column ‘j’), HD (i, j). In other words, every
edge of this strongly connected graph will be associated with a
weight, which is the Boolean distance between its head and
tail vertices. Hence the proposed binary network is modeled
on the basis of a complete graph structure. The typical
structure of a four terminal logic network is shown in Fig. 1.

Fig. 1 An example 4-terminal binary network

Here We(x,y) represents the weight of an edge, ‘e’ with its

head at vertex ‘y’ and tail at vertex ‘x’ and is equal to the
decimal equivalent of the binary distance between those two
vertices. The directions of the edges, e1 to e6 are arbitrary.
The weighted incidence matrix of Fig. 1 would be as follows.

 e1 e2 e3 e4 e5 e6

 1 HD(a,d) -1 HD(a,b) 0 0 1 HD(a,ca
b

c
d

× × ×) 0
 0 1 HD(a,b) -1 HD(b,c) 0 0 1 HD(b,d)
 0 0 1 HD(b,c) -1 HD(c,d)

× × ×
× × -1 HD(a,c) 0

-1 HD(a,d) 0 0 1 HD(c,d) 0 -1 HD(b,d)

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

×
× × ×

HD(a,b) = We(a,b) = We(b,a)
HD(a,c) = We(a,c) = We(c,a)
HD(a,d) = We(a,d) = We(d,a)
HD(b,c) = We(b,c) = We(c,b)
HD(b,d) = We(b,d) = We(d,b)
HD(c,d) = We(c,d) = We(d,c)

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:8, 2007

2396

From the above matrix specification, it can be inferred that

1 2 3 4
1 1 1 1

0
c c c cn n n n

i i i i
i i i i

m m m m
= = = =

= = = =∑ ∑ ∑ ∑ (6)

Here ‘mij’ indicates a matrix element with indices ‘i’ and ‘j’

representing the particular row and column. Also, the number
of entries in each row of the above matrix would be (n-1).
1) Case 1: Exact grouping procedure for logic functions with
actual complementary ON-set/OFF-set

Given a Boolean function, Z, whose ON-set, ZON = {mi},
such that |ZON| is even, then for every mj ∈ {mi}, there
definitely exists another mk ∈ {mi}, where mj ∩ mk = φ, then
HD(mj, mk) = n. Also, there does not exist any ml ∈ {mi},
such that HD(mj, ml) = HD(mk, ml) = O(unity). It has been
observed that the number of functions belonging to this
category grows exponentially with ‘n’ and hence the proposed
technique would carry much significance for higher values of
‘n’. A digraph is then drawn with |V(Kn)|=n and
|E(Kn)|=(n(n-1)/2). A weighted incidence matrix is then
formed as shown above. For max|mij|=max|mkj|=HD[O(n)],
group the graph vertices or binary cubes corresponding to the
ith and kth rows. The above procedure is continued until all the
row entries in the matrix are checked, so that none is left
ungrouped with any of the other vertices of the complete
graph. Then the binary information corresponding to the term-
pair undergoes a literal matching with the value matrix
mentioned in the next sub-section, so as to enable direct logic
synthesis. The resulting factors are subjected to a weak
factorization heuristic to yield the best and minimal
irredundant solution. The above routine holds good for
maxterm dependent functions also and takes the least
polynomial time since single matrix iteration is sufficient to
obtain terms, suitable for pairing.

The above procedure is also ideal for certain self-dual logic
functions which contain exactly 2n-1 elements in its one-set. A
self-dual function can be generally described as follows. Let Z
be a completely specified self-dual Boolean function, so that
ZON={mi} and ZOFF={Mj}; such that |ZON|=|ZOFF| and i ≠ j. Let
Mk∈{Mj}. Then the equality relation based on the indices,
{i} xor k ∈ {j}, would hold well. If Z is an incompletely
specified function, then the values for don’t cares are assigned
such that the above relation is satisfied and the cardinality of
either of the main functional sets (ON/OFF-set) would be
(n/2). The method illustrated is suitable for effectively
synthesizing practical digital circuits of any order, which
contain such functionality and examples include parity
generator and checker circuits, with even number of input
literals. For odd inputs, the problem is first reduced in
dimension to O(n-1) and then subsequently solved.
2) Case 2: Exact two-level solution for function elements
exhibiting complete adjacency

For a logic function, F, whose ON-set is FON = {ma}, then
for every mb ∈ {ma}, there exists atleast one mc ∈ {ma}, such
that mb ∩ mc ≠ { } or HD(mb, mc)<O(n). Hence the minimum

binary distance is unity and the maximum value is (n-1).
Then, similarly, a directed graph with |V(Kn)|=n and
|E(Kn)|=(n(n-1)/2) is sketched. A weighted incidence matrix is
framed. For |mij| = |mkj| = HD[O(unity)], combine those
vertices corresponding to the ith and kth rows. Another
weighted incidence matrix is framed for the vertex pair entries
resulting from the previous matrix. This would constitute the
second iteration. The shared literal would have to be neglected
with a don’t care occupying that variable position. For the
problem under consideration represented by this present
matrix, the notion of adjacency for binary values would be
governed by the following: 1&0, 0&1, 0&d, d&0, 1&d, d&1
are understood as non-adjacent (whose HD=1), whereas 0&0
and 1&1 are considered adjacent (whose HD=0). Here‘d’
refers to a don’t care term. In the new matrix, the presence of
a unity element is to be checked. If found, the above
procedure is continued, otherwise all the canonical terms
would have been already co-joined to result in a minimum
expression in standard disjunctive normal form. The vertex
combinations would imply the reduced products and they have
to be logically summed to obtain the above form. It has been
found that the results obtained by this method match those
obtained by standard synthesis solutions such as Quine-
McCluskey method or a standard two-level logic minimizer
such as Espresso. The number of iterations in this case would
depend upon the degree of grouping attained in the initial
stages and as such this method covers the issue of output
phase optimization and is also applicable for functions
appearing in canonical product forms. An added advantage in
this method is that it can be used to solve for both the normal
phase as well as for the inverted phase of the function in
parallel and then compare them based on the number of
literals and realizable gates needed, in conformity with the
directed acyclic graph specification of a logic circuit.
3) Case 3: NP-hard function enumeration problem

Given a Boolean function, Z, whose ON-set, ZON = {mi},
such that |ZON| is odd, then for every mj ∈ {mi}, there exists an
element, mk ∈ {mi}, where mj ∩ mk = φ, then HD(mj, mk) = n.
In addition, there also exists atleast one more element,
mp ∈ {mi}, where 1 < HD[mp, {mi}] < O(n-1) holds good. To
quantify the number of functions belonging to this class is by
itself an NP-hard problem as there are numerous functions
belonging to this category and is beyond the scope of this
work. Among the functions that we have considered,
belonging to this category, we have achieved good
simplification, enabling power optimized solutions.
4) Case 4: Considering output phase optimization

Similar to conventional PLA type output phase
optimization, for the problem type described in the previous
cases, binary networks can be drawn for both the normal
phase of the function (F) as well as for the complementary
phase (F’). Then their corresponding minimum solutions can
be compared in terms of the number of irredundant prime
implicants (implicates) and/or literals to decide on the best
choice of function polarity.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:8, 2007

2397

If a logic function is described in terms of its OFF-set (with
or without don’t cares), by default, it is translated into an ON-
set problem to be solved and the solution is inverted. This is
necessitated due to the presence of an extra implicant required
for a minimal OFF-set solution compared with the latter. In
turn, this is attributed to the nature of the binary value matrix
specification for maxterms as is evident from (8) and (9).

To find a minimum solution for problem definitions
associated with case 3, the technology independent heuristic
would make a final choice based on the literal count of the
resulting solutions corresponding to the normal and
complementary function polarities. However, a comparison on
the basis of realizable gates is also possible, if the circuit can
be standardized to accommodate only gates available in a
library. This seems to be a reasonable proposition as the
directed acyclic graph representation for a combinatorial
switching circuit would have a similar binary network.

B. Synthesis with Binary Value Matrices
The proposed synthesis technique, although primarily

meant for effecting cost optimization by way of reducing the
number of gates and literals needed for implementation,
achieves the objective of minimizing the power cost of the
Boolean network realized. Although power optimization is a
consequence of the area-centric approach, it is a desirable
outcome. The method proposed in this paper mainly paves
way for efficient grouping and subsequent reduction of pair-
wise; maximally disjoint binary 2-tuples. This is possible by a
binary value matrix for a 2-tuple fully disjoint ON-set pair
described by equations (7) and (8) as follows,

1 2 1 0

j

k

 x x x x
m 0 1 1 1

m 1 0 0 0

n n− −

⎡ ⎤
⎢ ⎥
⎣ ⎦

= [(xn-1 ⊕ xn-2) ·…...……….….· (x1 x0)] (7)

= [(xn-1 xn-2) +…...……..….+ (x1 ⊕ x0)]’ (8)

A binary value matrix for a 2-tuple disjoint OFF-set pair
would be described by (9) and (10), as given below.

1 2 1 0

j

k

 x x x x
 0 1 1 1

 1 0 0 0

n n

M
M

− −

⎡ ⎤
⎢ ⎥
⎣ ⎦

= [(xn-1 xn-2) +……..….........+ (x0 xn-1)] (9)

= [(xn-1 ⊕ xn-2) ·……….......….· (x0 ⊕ xn-1)]’ (10)

It is clear that equations (7) and (8) and similarly equations

(9) and (10) are equivalent duals of each other. The rows in
the above matrices correspond to the canonical binary 2-tuple
pair and the columns represent the support of the function.

Hence a basic binary value matrix is of order ‘2×n’. The
intersection of a row index with a column index is assigned a
binary 1(0), if the variable associated with the minterm
(maxterm) is present in normal form and 0(1) otherwise.

For problems belonging to case 1, these matrices yield
reduced, irredundant terms. For e.g. if F=∑m(6,9), then an
ESOP minimization heuristic would yield a minimized
expression of (a’bcd’) ⊕ (ab’c’d); a two-level logic minimizer
would obtain the reduced solution as (a’bcd’) + (ab’c’d);
whereas the binary value matrix would enable a minimized
solution as (a ⊕ b)·(b ⊕ c)·(c ⊕ d), thus reducing the number
of literals needed for realization by 25%. An AND-OR-EXOR
network is not feasible for the above function in normal form.

In general, the terms hence obtained would be subject to
weak factorization operations, so that the final solution would
be the best solution possible. For case 2, however these
matrices are not warranted. For case 3, these matrices are
reasonably helpful in obtaining reduced forms. However
binary value matrices of O(< n) would also be considered for
synthesis purpose. Again we apply traditional algebraic
factorization operations so as to eliminate redundancy in the
final minimized expression. The concept of output phase
optimization would prove to be useful for such problems,
where the number of cubes in SOP would be exponential,
whereas they would be linear in ESOP forms.

VI. SIMULATION MECHANISM AND RESULTS
Let us consider a simple example benchmark, n168 [16],

belonging to the NP-class of functions, to illustrate the
significance of the proposed method.

The truth table specification for the above function is given
by [0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0]T. We now list the
minimized expressions corresponding to AOI form, AND-
EXOR form, AND-OR-EXOR form and proposed form.
These are given by (11), (12), (13) and (14) respectively.

AOI = (a’b’c’d) + (a’b’cd’) + (a’bc’d’) + (a’bcd)
 + (ab’c’d’) + (ab’cd) + (abc’d) + (abcd’) (11)

AND-EXOR = d’ ⊕ (a’b’c’) ⊕ (a’bc) ⊕ (abc’) ⊕ (ab’c) (12)

AND-OR-EXOR = d’ ⊕ (a’b’c’ + abc’) ⊕ (a’bc + ab’c) (13)

Proposed form = (a ⊕ b) (c d) (14)

From the above equations, we find that the literal costs for

the four different forms in order are 32, 13, 13 and 4
respectively. This makes it clear that the proposed forms
enables optimization in literal cost by 69.23% over the best of
the remaining expressions. It is also clear that (14) would
result in direct usage of library cells, found in a standard cell
library. After translation of the above equations into a multi-
level format by means of conversion to a directed acyclic
graph specification with nodes exhibiting a fan-in of only 2,
and with gate sharing, we find that the proposed form enables

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:8, 2007

2398

savings in device count as well.
With respect to the number of transistors required for

physical implementation of the expressions corresponding to
(11), (12), (13) and (14), we find that they would be 146, 104,
92 and 36 respectively, for implementation with static CMOS
logic style. Hence, our synthesis methodology effects savings
in device count by 60.87% over the best of other methods.

Many non-regenerative logic functions, representing all
possible problem cases (excepting case 2 as the solutions
obtained by the proposed method are the same with respect to
other methods) described above, were considered for
simulation studies. Table 1 lists the description of the
functionality. The MOS transistor descriptions corresponding
to the synthesized gate level netlist of the different forms for
each logic function were simulated as the back-end using
Mentor Graphics ELDO for a 0.35 micron TSMC CMOS
process technology. The estimation of power consumption of
circuits based on a representative vector set, which includes
input patterns with varying probabilities, is through tagged
probabilistic simulation scheme [3], for two different supply
voltages, viz. 3.3V and 2.5V. The practical results obtained
for the target technology validate our proposition and
arguments. The graphical comparison plots for the three
different sources are depicted by Figures 2 and 3. The literal
count comparison is depicted by Fig. 4.

TABLE I

LOGIC FUNCTION SPECIFICATION
Logic
Function
ID

Canonical ON-set specification
of the Boolean function

LF14 {0,4,5,6,7,8,9,10,13,15}
LF24 {0,1,3,6,7,8,10,13}
LF34 {0,3,12,15}
LF44 {5,6,9,10}
LF54 {0,3,5,6,9,10,12,15}
LF64 {1,2,4,7,8,11,13,14}
LF74 {5,6,7,9,10,11}
LF84 {1,2,13,14}
LF94 {0,1,2,5,10,13,14,15}
LF104 {0,1,2,4,11,13,14,15}
LF114 {0,1,4,5,6,7,10,15}
LF125 {8,11,20,23}
LF135 {0,1,6,7,10,11,12,13,18,19,20,21,24,25,30,31}
LF145 {1,2,5,6,25,26,29,30}
LF155 {0,3,12,15,16,19,28,31}

LF165

{0,3,4,7,10,11,12,13,14,15,16,17,18,19,20,21,
22,23,24,27,28,31}

LF175 {1,2,5,6,16,18,25,26,29,30}
LF185 {5,10,21,26,28,29}
LF195 {8,9,10,11,21,22}
LF205 {1,2,5,6,16,18,25,26,29,30}
LF215 {1,2,9,10,13,14,17,18,20,21,29,30}
LF225 {4,5,10,11,19,20,21,23,26,27}
LF235 {0,4,9,11,12,14,17,19,20,22}
LF246 {17,18,21,22,41,42,45,46}
LF256 {7,8,55,56}
LF266 {3,4,11,12,51,52,59,60}
LF276 {3,4,11,12,16,24,32,40,51,52,59,60}
LF286 {0,4,8,12,13,14,17,18,45,46,49,50}
LF296 {0,9,18,27,36,45,54,63}
LF306 {17,18,29,30,52,53,54,55,56,59}

LFMn: LF – Logic Function, M – Function ID, n – number of inputs

0 5 10 15

LF1

LF3

LF5

LF7

LF9

LF11

LF13

LF15

LF17

LF19

LF21

LF23

LF25

LF27

LF29

Lo
gi

c
Fu

nc
tio

n
ID

Power dissipation (nW) for 3.3V
supply

Proposed form

AND-OR-EXOR form

AND-EXOR form

AOI form

Fig. 2 Average power consumption at 3.3V supply

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:8, 2007

2399

0 5 10

LF1

LF2

LF3

LF4

LF5

LF6

LF7

LF8

LF9

LF10

LF11

LF12

LF13

LF14

LF15

LF16

LF17

LF18

LF19

LF20

LF21

LF22

LF23

LF24

LF25

LF26

LF27

LF28

LF29

LF30

Lo
gi

c
Fu

nc
tio

n
ID

Power dissipation (nW) for 2.5V
supply

Proposed form

AND-OR-EXOR form

AND-EXOR form

AOI form

Fig. 3 Average power dissipation at 2.5V supply

VII. CONCLUSION
This paper has addressed an important issue of practical

relevance, by means of introducing a novel approach to logic
reduction particularly for a certain NP hard class of Boolean
functions, based on graph theory, and suitable for easier
implementation with a high-level language. Our approach is
greatly simplified in comparison with those of existing
methods by enabling a systematic reduction procedure. The
other advantage is that it also minimizes functions not
exhibiting auto-symmetry. This adds to the pedagogical value
of this research work and is ideal for obtaining reduced
solutions, even manually, for logic functions with fewer
inputs, dominated by EXOR/EXNOR logic functionality.

0 10 20 30

LF1

LF2

LF3

LF4

LF5

LF6

LF7

LF8

LF9

LF10

LF11

LF12

LF13

LF14

LF15

LF16

LF17

LF18

LF19

LF20

LF21

LF22

LF23

LF24

LF25

LF26

LF27

LF28

LF29

LF30

Lo
gi

c
Fu

nc
tio

n
ID

Literal cost

Proposed form

AND-OR-EXOR form

AND-EXOR form

AOI form

Fig. 4 Literal count comparison for various forms

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:8, 2007

2400

At the logic level, although a number of logic types exist
within the large family of AND-EXOR logic, we have
selected the most general ESOP forms. We have also
considered the conventional AOI logic and the AND-OR-
EXOR three level networks. A multilevel logic synthesis
approach has been followed throughout this work, as it
usually produces the most cost effective realization of logic
functions [15]. Also fan-in considerations with respect to the
target technology necessitated a multilevel approach. The
significance of our contribution is substantiated by improved
results, in quantitative comparison with the traditional ones, at
both technology-independent (in terms of literal cost) and
dependent phases (with respect to power estimation) around
two voltage corners, compatible with a 0.35µm TSMC CMOS
process technology.

The proposed form consistently outperforms the other
forms, as it acknowledges the presence of all library cells,
such as EXOR, EXNOR, NAND, NOR and NOT, instead of
relying upon restricted gate functionality. At 3.3V supply, it
achieves mean power savings of 41.99%, 31.26% and 32.4%
over multi-level AOI, AND-EXOR and AND-OR-EXOR
forms respectively; while at 2.5V supply, it enables
corresponding average savings of 42.92%, 32.49% and
34.06%. However, it should also be noted that the proposed
method considers only the usage of library cells with a
maximum fan-in of 2. Hence the method is technology-aware
and is particularly useful for ASIC based designs. The method
can be exploited to result in much more compact and reduced
level circuits if FPGAs are the target technology, wherein fan-
in does not result in a profound variation in speed. Therefore
with FPGA as target, the heuristic would enable savings in
terms of area and resources utilized (for e.g. LUTs in a FPGA)
as this is evident from the overall reduction in literal count
(43.04%) for a multi-level synthesis approach.

REFERENCES
[1] A.P. Chandrakasan, and R.W. Brodersen, “Minimizing power

consumption in digital CMOS circuits,” Proc. of the IEEE, vol. 83(4),
April 1995, pp. 498-523.

[2] Christopher Umans, et. al., “Complexity of two-level logic
minimization,” IEEE Trans. on CAD of Integrated Circuits and Systems,
vol. 25(7), July 2006, pp. 1230-1246.

[3] C. –S. Ding, et al., “Gate-level power estimation using tagged
probabilistic simulation,” IEEE Trans. on CAD of Integrated Circuits
and Systems, vol. 17(11), November 1998, pp. 1099-1107.

[4] Sasan Iman, and Massoud Pedram. Logic Synthesis for Low Power VLSI
Designs. New York: Springer Publishing, 1998.

[5] Dieter Jungnickel. Graphs, Networks and Algorithms. New York:
Springer-Verlag, 2nd Edition, 2005.

[6] Tsutomu Sasao. Switching Theory for Logic Synthesis. Kluwer
Academic Publishers, 1999.

[7] U. Kalay, M. Perkowski, and D. Hall, “A minimal universal test set for
self test of EXOR-Sum-of-Products circuits,” IEEE Trans. on
Computers, vol. 49(3), March 1999, pp. 267-276.

[8] H. Rahaman, et al., “Testing of stuck-open faults in generalized Reed-
Muller and EXOR sum-of-products CMOS circuits,” IEE Proc. on
Computers and Digital Techniques, vol.151(1), January 2004, pp. 83-91.

[9] Tsutomu Sasao, “EXMIN2: A simplification algorithm for Exclusive-
OR-Sum-of-Products expressions for multiple-valued-input two-valued-
output functions,” IEEE Trans. on CAD of Integrated Circuits and
Systems, vol. 12(5), May 1993, pp. 621-632.

[10] N. Song, and M. Perkowski, “Minimization of Exclusive Sum of
Products Expressions for Multi-Output Multiple-Valued Input,
Incompletely Specified Functions”, IEEE Trans. on CAD of integrated
Circuits and Systems, vol. 15(4), April 1996, pp. 385-395.

[11] Alan Mishchenko, and Marek Perkowski, “Fast heuristic minimization
of Exclusive-Sums-of-Products”, Proc. of 5th International Reed-Muller
Workshop, 2001, pp. 242-250.

[12] Stergios Stergiou, and George Papakonstantinou, “Exact minimization
of ESOP expressions with less than eight product terms,” Journal of
Circuits, Systems and Computers, vol. 13(1), February 2004, pp. 1-15.

[13] D. Debnath, and T. Sasao, “A heuristic algorithm to design AND-OR-
EXOR three-level networks”, Proc. of ASP-DAC, 1998, pp. 69-74.

[14] E.V. Dubrova, D.M. Miller, and J.C. Muzio, “AOXMIN-MV: a heuristic
algorithm for AND-OR-XOR minimization,” Proc. of 4th International
Reed-Muller Workshop, 1999, pp. 37-53.

[15] Giovanni De Micheli, Synthesis and optimization of digital circuits.
New York: McGraw Hill, 1st Edition, 1994.

[16] M.A. Harrison, Introduction to Switching and Automata Theory.
Mc-Graw Hill, 1965.

[17] E.V. Dubrova, D.M. Miller, and J.C. Muzio, “Upper bound on number
of products in AND-OR-XOR expansion of logic functions,” IET
Journal of Electronics Letters, vol. 31(7), March 1995, pp. 541-542.

Padmanabhan Balasubramanian completed his B.E degree in Electronics
and Communication Engineering from University of Madras, TN, India in
1998 and his M.Tech in VLSI System from National Institute of Technology,
Tiruchirappalli, TN, India in 2005. He was earlier Lecturer in the School of
Electrical Sciences at Vellore Institute of Technology (University and IET,
UK Accredited), Vellore, TN, India. He is working towards his PhD in the
School of Computer Science at The University of Manchester, Lancashire,
UK. His research interests are in logic synthesis for low power, asynchronous
design; CMOS based design and timing optimization issues.

C. Hari Narayanan received his B.Tech in Electronics and Communication
Engineering from School of Engineering, Cochin University of Science and
Technology, Cochin, Kerala, India in 2004. He is currently pursuing his final
year M.Tech in VLSI Design from Vellore Institute of Technology (University
and IET, UK Accredited), Vellore, TN, India. His interests are in software
programming and digital design.

