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Abstract— This paper discusses a new, systematic approach to 

the synthesis of a NP-hard class of non-regenerative Boolean 
networks, described by FON[FOFF]={mi}[{Mi}], where for every 
mj[Mj]∈{mi}[{Mi}], there exists another mk[Mk]∈{mi}[{Mi}], such 
that their Hamming distance HD(mj, mk)=HD(Mj, Mk)=O(n), (where 
‘n’ represents the number of distinct primary inputs). The method 
automatically ensures exact minimization for certain important self-
dual functions with 2n-1 points in its one-set. The elements meant for 
grouping are determined from a newly proposed weighted incidence 
matrix. Then the binary value corresponding to the candidate pair is 
correlated with the proposed binary value matrix to enable direct 
synthesis. We recommend algebraic factorization operations as a post 
processing step to enable reduction in literal count. The algorithm 
can be implemented in any high level language and achieves best 
cost optimization for the problem dealt with, irrespective of the 
number of inputs. For other cases, the method is iterated to 
subsequently reduce it to a problem of O(n-1), O(n-2),…. and then 
solved. In addition, it leads to optimal results for problems exhibiting 
higher degree of adjacency, with a different interpretation of the 
heuristic, and the results are comparable with other methods.  

In terms of literal cost, at the technology independent stage, the 
circuits synthesized using our algorithm enabled net savings over 
AOI (AND-OR-Invert) logic, AND-EXOR logic (EXOR Sum-of-
Products or ESOP forms) and AND-OR-EXOR logic by 45.57%, 
41.78% and 41.78% respectively for the various problems. 

Circuit level simulations were performed for a wide variety of 
case studies at 3.3V and 2.5V supply to validate the performance of 
the proposed method and the quality of the resulting synthesized 
circuits at two different voltage corners. Power estimation was 
carried out for a 0.35micron TSMC CMOS process technology. In 
comparison with AOI logic, the proposed method enabled mean 
savings in power by 42.46%. With respect to AND-EXOR logic, the 
proposed method yielded power savings to the tune of 31.88%, while 
in comparison with AND-OR-EXOR level networks; average power 
savings of 33.23% was obtained.  
 

Keywords—AOI logic, ESOP, AND-OR-EXOR, Incidence 
matrix, Hamming distance. 

I. INTRODUCTION 
OGIC synthesis has matured as a field and is used in every 
major digital IC design worldwide [4]. Despite a wealth 

of research results and pioneering commercial tools, some 
significant problems remain open owing to its inherent 
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computational complexity [2]. Logic synthesis forms an 
important part of the design cycle for a digital circuit/system. 
Its actual significance should also be understood in the context 
of the increasingly important requirement to minimize power 
dissipation. The low power design challenge is one that 
requires abstraction, modeling and optimization at all levels of 
design hierarchy. The considerations range from the 
technology being used for the implementation, circuit and 
logic topologies, digital architectures and even the algorithms 
being implemented [1]. This articulates the fact that the power 
component should be considered early during the logic 
synthesis phase as well. Gate-level optimization may achieve 
power savings: in some specific cases more than 50% 
reduction in power, without loss of performance, may be 
achieved [4]. Also gate-level optimizations are relatively low 
cost in terms of design-effort compared with other techniques. 

This paper presents a novel and versatile synthesis method 
incorporating available gate library types. It is primarily aimed 
at combinatorial logic networks, whose ON/OFF set exhibits 
maximal and complementary pair-wise disjointness. In other 
words, the function set contains canonical terms, which differ 
based on their Hamming distance, (HD), which is O(n). The 
proposed technique guarantees best results for the above 
problem definition, where the optimality of the solution 
obtained is quantitatively evaluated in terms of total power 
consumption (P) of the circuit realized, and number of literals 
(NL) required for its implementation. Of course, a comparison 
based on NL is suitable not only for standard cell-based 
designs but also for FPGA technology targets. This is because 
literals tend to correlate quite well with circuit area in custom 
IC designs and they determine the number of look-up tables 
(LUTs) needed for realization of the functionality with FPGA.  

The technique has its roots in the rudiments of graph and 
network theory. It enables best minimum solutions even for 
logic networks composed of terms exhibiting strong or 
complete adjacency, using a variation of the proposed 
heuristic, as will be seen in section 5. Although our analysis 
for some problem cases with function sets exhibiting 
adjacency as well as non-adjacency between their elements 
have yielded satisfactory experimental results, still an 
exhaustive analysis is deemed necessary to gain a complete 
insight about the effectiveness of our proposition for such 
function classes, which promises scope for further work in 
this direction. This phenomenon is also due to the NP-hard 
enumeration of such possible functions. The strategy 
considers the issue of output phase optimization as well. 
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The rest of this paper is organized as follows. Section 2 
provides concise background information pertaining to some 
traditional synthesis approaches available in literature, such as 
AND-OR-Invert (AOI) logic and also a briefing about some 
of the important classes in the large AND-EXOR logic family. 
We also provide a reference to AND-OR-EXOR three level 
networks. In Section 3, the inherent nature and fundamental 
properties governing Boolean functions exhibiting only 
maximal and exact bit-wise complementary support are 
mentioned anew. Section 4 discusses some essential graph 
theoretic principles. Section 5 describes the complete graph 
structure and weighted incidence matrix formulation with an 
illustration. Minimization heuristics for all problem categories 
are also described. Besides, the mode of direct synthesis by 
correlation of the binary data with another proposed binary 
value matrix is also dealt with in this section for 
minterms/maxterms as well. Section 6 briefly highlights the 
simulation mechanism, and gives details regarding the cases 
considered for simulation studies and subsequent validation. 
Comparison between the different synthesis procedures in 
terms of power and NL is also graphically illustrated in this 
section. Finally, we conclude in Section 7. 

II. CONVENTIONAL SYNTHESIS METHODS 
Conventional logic design is usually based on AND-OR 

logic and OR-AND logic. We have used AND-OR-Invert 
logic in common with the usual library descriptions in the 
technology domain; this will be referred to as AOI form in 
this paper. We have adopted single rail circuits for our 
implementation. Although double-rail inputs are available in 
the general case for designs targeting programmable logic 
devices, for standard cell based IC designs, the circuit inputs 
are generally single-rail. This is because single-rail circuits 
tend to have fewer interconnections and thereby less hardware 
area overhead.                                                                                            

EXOR based designs have certain well-known advantages 
over the above classical realization methods. Firstly, they pave 
way for a more concise expression for many basic arithmetic 
functions, thereby reducing the complexity of the networks. 
Secondly, many practical digital circuits used in the fields of 
coding theory, linear system, telecommunication and 
arithmetic coding contain basic functionality which are 
inherently mod-2 sum [6]. Finally, circuits containing EXOR 
gate types have excellent design-for-test properties [7] [8]. 
Such is their significance that even some earlier FPGA styles 
had incorporated 2-input EXOR gate in their basic granularity 
blocks, for example Cli 6006 from Concurrent Logic Inc.                                             

Various classes exist in AND-EXOR expressions involving 
only AND and EXOR gate types [6]. This is because any 
arbitrary logic function can be purely realized using only 
AND and EXOR logic gates. For example, the RM, GRM and 
PSDKRO form extensively rely upon such gates for 
implementation. Slight modification of the Shannon expansion 
to suit Galois field of order 2 (1) are made for the AND-
EXOR logic to derive Davio expansions (2), (3) and given by,  

F = [(x · Fx) ⊕ (x’ · Fx’)]                                                        (1) 
                              
F = [Fx’ ⊕ {x · (Fx ⊕ Fx’)}]                                                    (2) 
 
F = [Fx ⊕ {x’ · (Fx ⊕ Fx’)}]                                                    (3) 
 

In (1), (2) and (3), the symbols ‘·’ and ‘⊕’ stand for AND 
and EXOR operators respectively, while ‘+’ and ‘ ’ would 
imply logical OR and EXNOR operators.  

Recursive application of the above tree expansions results 
in various RM trees [6]. If only the positive Davio expansion 
(2) is used repeatedly for variable expansion with some fixed 
order of expansion of variables, a compact RM tree is 
generated. A GRM tree is created when a choice exists 
between positive Davio expansion (2) and negative Davio 
expansion (3) for each variable. If equations (1), (2) and (3) 
are used along with the choice of equations (2) and (3) in each 
sub-tree, the PSDKRO structure is generated. Importantly, in 
all these structures only two kinds of gates (AND and EXOR) 
are used for circuit realizations.  

Amongst the AND-EXOR expressions, Exclusive-OR- 
sum-of-products expression (ESOP) is the most general 
logical expansion of interest [6]. ESOP is basically a logical 
expression that combines arbitrary products terms by EXOR-
ing. For an n-variable function, there are at most 3tn different 
ESOPs with t products. Although, no efficient minimization 
algorithm is known for more than five variables and it is still 
open [6], heuristics have been formulated which obtain near 
minimum or exact minimum ESOP forms [9] [10] [11] [12].  

An AND-OR-EXOR network, where the output EXOR gate 
has only two inputs, is one of the simplest three-level 
architecture [13] [14]. In other words, here, the logic function 
is represented as an EXOR sum of two sum-of-products 
expressions. This network realizes an EXOR of two sum-of-
products expressions, where the products associated with a 
sum term are mutually disjoint. This network is suitable for 
implementing arithmetic functions and also for realization of 
many random functions. Since this configuration is found in 
the basic macro cell architecture of CPLDs, this form gained 
significance. Also the upper bound on the number of products 
in this representation is shown to be 5(2n-4), which is 37.5% 
smaller than the upper bound on the number of products in the 
conventional sum-of-product expression of the logic function 
(which is 2n-1) and 16.67% smaller than the maximum bound 
on the number of product terms in the AND-EXOR 
expansion, in which both complemented and uncomplemented 
forms of an input variable are used (3(2n-3)) [17]. 

III. FUNCTION DEFINITION AND PROPERTIES 
We will now highlight the basic definition of NP-class of 

logic functions and list their important properties anew.  

A. Function definition 
Let Z be a logic function with its support and ON-set 

defined as,     
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s[Z] = {xn-1, xn-2, …. , x0}                                                      (4) 
 
ZON = {mi}; 0 ≤ i ≤ (p-1), where 0 ≤ p ≤ 2|s[Z]|                                    (5) 
 

where, ZON stands for the ON-set of the function Z and 
{mi} refers to the set of all minterms. Now, for every mj, mk ∈ 
{mi}, that exists, the Boolean distance between the two binary 
tuples is given by HD (mj, mk) and is O(n). 

1) Property 1 
For the binary 2-tuple (mj, mk), whose HD is O(n), it 

naturally follows that (mj ∩ mk) = { } and the converse is also 
true. 

2) Property 2 
The upper bound for the number of exact bit-wise 

complementary pairs in the function set would be 2n-1/2|s[Z]|-1. 
3) Property 3 

For the upper bound of 2n-1 disjoint binary 2-tuples, the bit-
wise complementary pair is obtained by grouping an element 
in a finite set comprising 2n-1 elements with the absolute value 
of the element being ‘j’, such that j = 0,1,….,2(n-1)-1; with an 
unique element of another finite set of a similar cardinality, 
whose absoluteness is described by ‘k’, such that k = 2n-m; 
where m = 1,2,….,(n+1).  

The above definition and formulation of properties also 
hold good for the case of functions specified in terms of their 
OFF-set (i.e. in terms of their maxterms).  

IV. GRAPH THEORY FUNDAMENTALS 
A graph ‘G’ is a pair, G = (V, E), consisting of a finite set     

V ≠ φ and a set E of two-element subsets of V. In graph 
theory, infinite graphs are also studied, however here; we 
restrict ourselves to the finite case. The elements of V are 
called vertices. An element, e = {a, b} of E is called an edge 
with end vertices ‘a’ and ‘b’. We say that ‘a’ and ‘b’ are 
incident with ‘e’ and that ‘a’ and ‘b’ are adjacent or 
neighbours of each other, and write e = ab [5]. Further details 
regarding the pictorial descriptions and properties of all 
graphs and other network terminologies can be found in [5].   

V. WEIGHTED INCIDENCE MATRIX, BINARY VALUE MATRICES 
AND SYNTHESIS MECHANISM 

In our case, the problem under consideration is represented 
in a novel way on the lines of a complete graph specification. 
The complete graph, Kn is a network with |V|=n and   
|E|=(n(n-1))/2. In other words, the empty graph, Kn’ is a graph 
with |Kn’|=n and |E(Kn’)|=0, where Kn’ is the complementary 
version of Kn [5]. The decimal equivalent of each binary cube 
shall correspond to a unique vertex label of the complete 
graph. So, the total number of minterms [maxterms] in the 
ON-set [OFF-set) of a completely specified logic function 
shall account for the number of vertices in the graph. As far as 
incompletely specified logic functions are concerned, whose 
DC-set ≠ { }, the inclusion of its elements in the ON-set or 
OFF-set is dictated by the optimality of the best minimal 
solution that could be predicted and hence all the DC cubes 

are initially considered as candidates.  
The algorithm for such a directed graph (digraph) can be 

implemented by means of any high-level language and run on 
a computer with even an incidence list representation.   

A. Weighted Incidence Matrix specification 
A directed multigraph G with a non-zero finite vertex set 

can in general be represented in matrix form by an Incidence 
matrix [5]. For our problem specification, we opt for a slightly 
modified form of the latter, designated as Weighted Incidence 
Matrix (WIM). The order of an incidence matrix would be    
‘n×(n(n-1)/2)’. The added feature of a weighted incidence 
matrix over the conventional one would be that each matrix 
element representing the presence of a directed edge from one 
vertex to another, is also multiplied by the decimal equivalent 
of the corresponding Boolean distance between the two 
vertices or binary cubes (to be read as an entry corresponding 
to a row ‘i’ and a column ‘j’), HD (i, j). In other words, every 
edge of this strongly connected graph will be associated with a 
weight, which is the Boolean distance between its head and 
tail vertices. Hence the proposed binary network is modeled 
on the basis of a complete graph structure. The typical 
structure of a four terminal logic network is shown in Fig. 1.  
 

 
 
 
 
 
 
 
 

Fig. 1 An example 4-terminal binary network 
 
Here We(x,y) represents the  weight of an edge, ‘e’  with  its 

head at vertex ‘y’ and tail at vertex ‘x’ and is equal to the 
decimal equivalent of the binary distance between those two 
vertices.  The directions of the edges, e1 to e6 are arbitrary. 
The weighted incidence matrix of Fig. 1 would be as follows. 

 
            e1                 e2                e3                  e4                   e5                    e6

 1 HD(a,d)    -1 HD(a,b)           0                      0              1 HD(a,ca
b

    
c
d

× × × )             0         
        0              1 HD(a,b)    -1 HD(b,c)            0                    0               1 HD(b,d)
        0                    0              1 HD(b,c)     -1 HD(c,d)   

× × ×
× ×  -1 HD(a,c)             0

-1 HD(a,d)            0                   0                1 HD(c,d)           0              -1 HD(b,d)

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

×
× × ×

 

HD(a,b) = We(a,b) = We(b,a) 
HD(a,c) = We(a,c) = We(c,a) 
HD(a,d) = We(a,d) = We(d,a) 
HD(b,c) = We(b,c) = We(c,b) 
HD(b,d) = We(b,d) = We(d,b) 
HD(c,d) = We(c,d) = We(d,c) 
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From the above matrix specification, it can be inferred that 
  

1 2 3 4
1 1 1 1

0
c c c cn n n n

i i i i
i i i i

m m m m
= = = =

= = = =∑ ∑ ∑ ∑                           (6) 

 
Here ‘mij’ indicates a matrix element with indices ‘i’ and ‘j’ 

representing the particular row and column. Also, the number 
of entries in each row of the above matrix would be (n-1).   
1) Case 1: Exact grouping procedure for logic functions with 
actual complementary ON-set/OFF-set 

Given a Boolean function, Z, whose ON-set, ZON = {mi}, 
such that |ZON| is even, then for every mj ∈ {mi}, there 
definitely exists another mk ∈ {mi}, where mj ∩ mk = φ, then 
HD(mj, mk) = n. Also, there does not exist any ml ∈ {mi}, 
such that HD(mj, ml) = HD(mk, ml) = O(unity). It has been 
observed that the number of functions belonging to this 
category grows exponentially with ‘n’ and hence the proposed 
technique would carry much significance for higher values of 
‘n’. A digraph is then drawn with |V(Kn)|=n and   
|E(Kn)|=(n(n-1)/2). A weighted incidence matrix is then 
formed as shown above. For max|mij|=max|mkj|=HD[O(n)], 
group the graph vertices or binary cubes corresponding to the 
ith and kth rows. The above procedure is continued until all the 
row entries in the matrix are checked, so that none is left 
ungrouped with any of the other vertices of the complete 
graph. Then the binary information corresponding to the term-
pair undergoes a literal matching with the value matrix 
mentioned in the next sub-section, so as to enable direct logic 
synthesis. The resulting factors are subjected to a weak 
factorization heuristic to yield the best and minimal 
irredundant solution. The above routine holds good for 
maxterm dependent functions also and takes the least 
polynomial time since single matrix iteration is sufficient to 
obtain terms, suitable for pairing.  

The above procedure is also ideal for certain self-dual logic 
functions which contain exactly 2n-1 elements in its one-set. A 
self-dual function can be generally described as follows. Let Z 
be a completely specified self-dual Boolean function, so that 
ZON={mi} and ZOFF={Mj}; such that |ZON|=|ZOFF| and i ≠ j. Let 
Mk∈{Mj}. Then the equality relation based on the indices,          
{i} xor k ∈ {j}, would hold well. If Z is an incompletely 
specified function, then the values for don’t cares are assigned 
such that the above relation is satisfied and the cardinality of 
either of the main functional sets (ON/OFF-set) would be 
(n/2). The method illustrated is suitable for effectively 
synthesizing practical digital circuits of any order, which 
contain such functionality and examples include parity 
generator and checker circuits, with even number of input 
literals. For odd inputs, the problem is first reduced in 
dimension to O(n-1) and then subsequently solved.  
2) Case 2: Exact two-level solution for function elements 
exhibiting complete adjacency 

For a logic function, F, whose ON-set is FON = {ma}, then 
for every mb ∈ {ma}, there exists atleast one mc  ∈ {ma}, such 
that mb ∩ mc ≠ { } or HD(mb, mc)<O(n). Hence the minimum 

binary distance is unity and the maximum value is (n-1). 
Then, similarly, a directed graph with |V(Kn)|=n and 
|E(Kn)|=(n(n-1)/2) is sketched. A weighted incidence matrix is 
framed. For |mij| = |mkj| = HD[O(unity)], combine those 
vertices corresponding to the ith and kth rows. Another 
weighted incidence matrix is framed for the vertex pair entries 
resulting from the previous matrix. This would constitute the 
second iteration. The shared literal would have to be neglected 
with a don’t care occupying that variable position. For the 
problem under consideration represented by this present 
matrix, the notion of adjacency for binary values would be 
governed by the following: 1&0, 0&1, 0&d, d&0, 1&d, d&1 
are understood as non-adjacent (whose HD=1), whereas 0&0 
and 1&1 are considered adjacent (whose HD=0). Here‘d’ 
refers to a don’t care term. In the new matrix, the presence of 
a unity element is to be checked. If found, the above 
procedure is continued, otherwise all the canonical terms 
would have been already co-joined to result in a minimum 
expression in standard disjunctive normal form. The vertex 
combinations would imply the reduced products and they have 
to be logically summed to obtain the above form. It has been 
found that the results obtained by this method match those 
obtained by standard synthesis solutions such as Quine-
McCluskey method or a standard two-level logic minimizer 
such as Espresso. The number of iterations in this case would 
depend upon the degree of grouping attained in the initial 
stages and as such this method covers the issue of output 
phase optimization and is also applicable for functions 
appearing in canonical product forms. An added advantage in 
this method is that it can be used to solve for both the normal 
phase as well as for the inverted phase of the function in 
parallel and then compare them based on the number of 
literals and realizable gates needed, in conformity with the 
directed acyclic graph specification of a logic circuit. 
3) Case 3: NP-hard function enumeration problem   

Given a Boolean function, Z, whose ON-set, ZON = {mi}, 
such that |ZON| is odd, then for every mj ∈ {mi}, there exists an 
element, mk ∈ {mi}, where mj ∩ mk = φ, then HD(mj, mk) = n. 
In addition, there also exists atleast one more element,          
mp ∈ {mi}, where 1 < HD[mp, {mi}] < O(n-1) holds good. To 
quantify the number of functions belonging to this class is by 
itself an NP-hard problem as there are numerous functions 
belonging to this category and is beyond the scope of this 
work. Among the functions that we have considered, 
belonging to this category, we have achieved good 
simplification, enabling power optimized solutions. 
4) Case 4: Considering output phase optimization 

Similar to conventional PLA type output phase 
optimization, for the problem type described in the previous 
cases, binary networks can be drawn for both the normal 
phase of the function (F) as well as for the complementary 
phase (F’). Then their corresponding minimum solutions can 
be compared in terms of the number of irredundant prime 
implicants (implicates) and/or literals to decide on the best 
choice of function polarity.  
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If a logic function is described in terms of its OFF-set (with 
or without don’t cares), by default, it is translated into an ON-
set problem to be solved and the solution is inverted. This is 
necessitated due to the presence of an extra implicant required 
for a minimal OFF-set solution compared with the latter. In 
turn, this is attributed to the nature of the binary value matrix 
specification for maxterms as is evident from (8) and (9).      

To find a minimum solution for problem definitions 
associated with case 3, the technology independent heuristic 
would make a final choice based on the literal count of the 
resulting solutions corresponding to the normal and 
complementary function polarities. However, a comparison on 
the basis of realizable gates is also possible, if the circuit can 
be standardized to accommodate only gates available in a 
library. This seems to be a reasonable proposition as the 
directed acyclic graph representation for a combinatorial 
switching circuit would have a similar binary network.  

B. Synthesis with Binary Value Matrices 
The proposed synthesis technique, although primarily 

meant for effecting cost optimization by way of reducing the 
number of gates and literals needed for implementation, 
achieves the objective of minimizing the power cost of the 
Boolean network realized. Although power optimization is a 
consequence of the area-centric approach, it is a desirable 
outcome. The method proposed in this paper mainly paves 
way for efficient grouping and subsequent reduction of pair-
wise; maximally disjoint binary 2-tuples. This is possible by a 
binary value matrix for a 2-tuple fully disjoint ON-set pair 
described by equations (7) and (8) as follows, 

 
1 2 1 0

j

k

                x x . . . . . . . . . . . x         x
m   0          1      . . . . . . . . . . .      1          1

        
m   1          0      . . . . . . . . . . .      0          0

n n− −

⎡ ⎤
⎢ ⎥
⎣ ⎦

 
= [ (xn-1 ⊕  xn-2) ·…...……….….· (x1  x0) ]                        (7) 
 
= [ (xn-1   xn-2) +…...……..….+ (x1 ⊕ x0) ]’                       (8) 
 

A binary value matrix for a 2-tuple disjoint OFF-set pair 
would be described by (9) and (10), as given below. 
 

1 2 1 0

j

k

                 x x . . . . . . . . . . . x         x
  0          1      . . . . . . . . . . .      1          1

        
  1          0      . . . . . . . . . . .      0          0

n n

M
M

− −

⎡ ⎤
⎢ ⎥
⎣ ⎦

 

= [ (xn-1  xn-2) +……..….........+ (x0  xn-1) ]                      (9) 
 
= [ (xn-1 ⊕  xn-2) ·……….......….· (x0 ⊕ xn-1) ]’                    (10) 

 
It is clear that equations (7) and (8) and similarly equations 

(9) and (10) are equivalent duals of each other. The rows in 
the above matrices correspond to the canonical binary 2-tuple 
pair and the columns represent the support of the function. 

Hence a basic binary value matrix is of order ‘2×n’. The 
intersection of a row index with a column index is assigned a 
binary 1(0), if the variable associated with the minterm 
(maxterm) is present in normal form and 0(1) otherwise.   

For problems belonging to case 1, these matrices yield 
reduced, irredundant terms. For e.g. if F=∑m(6,9), then an 
ESOP minimization heuristic would yield a minimized 
expression of (a’bcd’) ⊕ (ab’c’d); a two-level logic minimizer 
would obtain the reduced solution as (a’bcd’) + (ab’c’d); 
whereas the binary value matrix would enable a minimized 
solution as (a ⊕ b)·(b ⊕ c)·(c ⊕ d), thus reducing the number 
of literals needed for realization by 25%. An AND-OR-EXOR 
network is not feasible for the above function in normal form. 

In general, the terms hence obtained would be subject to 
weak factorization operations, so that the final solution would 
be the best solution possible. For case 2, however these 
matrices are not warranted. For case 3, these matrices are 
reasonably helpful in obtaining reduced forms. However 
binary value matrices of O(< n) would also be considered for 
synthesis purpose. Again we apply traditional algebraic 
factorization operations so as to eliminate redundancy in the 
final minimized expression. The concept of output phase 
optimization would prove to be useful for such problems, 
where the number of cubes in SOP would be exponential, 
whereas they would be linear in ESOP forms.   

VI. SIMULATION MECHANISM AND RESULTS 
Let us consider a simple example benchmark, n168 [16], 

belonging to the NP-class of functions, to illustrate the 
significance of the proposed method.  

The truth table specification for the above function is given 
by [0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0]T. We now list the 
minimized expressions corresponding to AOI form, AND-
EXOR form, AND-OR-EXOR form and proposed form. 
These are given by (11), (12), (13) and (14) respectively. 

 
AOI = (a’b’c’d) + (a’b’cd’) + (a’bc’d’) + (a’bcd) 
            + (ab’c’d’) + (ab’cd) + (abc’d) + (abcd’)                (11) 
 
AND-EXOR = d’ ⊕ (a’b’c’) ⊕ (a’bc) ⊕ (abc’) ⊕ (ab’c)    (12) 
 
AND-OR-EXOR = d’ ⊕ (a’b’c’ + abc’) ⊕ (a’bc + ab’c)    (13) 
 
Proposed form = (a ⊕ b) (c  d)                                     (14)  

 
From the above equations, we find that the literal costs for 

the four different forms in order are 32, 13, 13 and 4 
respectively. This makes it clear that the proposed forms 
enables optimization in literal cost by 69.23% over the best of 
the remaining expressions. It is also clear that (14) would 
result in direct usage of library cells, found in a standard cell 
library. After translation of the above equations into a multi-
level format by means of conversion to a directed acyclic 
graph specification with nodes exhibiting a fan-in of only 2, 
and with gate sharing, we find that the proposed form enables 
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savings in device count as well.  
With respect to the number of transistors required for 

physical implementation of the expressions corresponding to 
(11), (12), (13) and (14), we find that they would be 146, 104, 
92 and 36 respectively, for implementation with static CMOS 
logic style. Hence, our synthesis methodology effects savings 
in device count by 60.87% over the best of other methods. 

Many non-regenerative logic functions, representing all 
possible problem cases (excepting case 2 as the solutions 
obtained by the proposed method are the same with respect to 
other methods) described above, were considered for 
simulation studies. Table 1 lists the description of the 
functionality. The MOS transistor descriptions corresponding 
to the synthesized gate level netlist of the different forms for 
each logic function were simulated as the back-end using 
Mentor Graphics ELDO for a 0.35 micron TSMC CMOS 
process technology. The estimation of power consumption of 
circuits based on a representative vector set, which includes 
input patterns with varying probabilities, is through tagged 
probabilistic simulation scheme [3], for two different supply 
voltages, viz. 3.3V and 2.5V. The practical results obtained 
for the target technology validate our proposition and 
arguments. The graphical comparison plots for the three 
different sources are depicted by Figures 2 and 3. The literal 
count comparison is depicted by Fig. 4.   

 
TABLE I  

LOGIC FUNCTION SPECIFICATION 
Logic 
Function 
ID 

Canonical ON-set specification 
of the Boolean function 

LF14 {0,4,5,6,7,8,9,10,13,15} 
LF24 {0,1,3,6,7,8,10,13} 
LF34 {0,3,12,15} 
LF44 {5,6,9,10} 
LF54 {0,3,5,6,9,10,12,15} 
LF64 {1,2,4,7,8,11,13,14} 
LF74 {5,6,7,9,10,11} 
LF84 {1,2,13,14} 
LF94 {0,1,2,5,10,13,14,15} 
LF104 {0,1,2,4,11,13,14,15} 
LF114 {0,1,4,5,6,7,10,15} 
LF125 {8,11,20,23} 
LF135 {0,1,6,7,10,11,12,13,18,19,20,21,24,25,30,31} 
LF145 {1,2,5,6,25,26,29,30} 
LF155 {0,3,12,15,16,19,28,31} 
 
LF165 

{0,3,4,7,10,11,12,13,14,15,16,17,18,19,20,21, 
22,23,24,27,28,31} 

LF175 {1,2,5,6,16,18,25,26,29,30} 
LF185 {5,10,21,26,28,29} 
LF195 {8,9,10,11,21,22} 
LF205 {1,2,5,6,16,18,25,26,29,30} 
LF215 {1,2,9,10,13,14,17,18,20,21,29,30} 
LF225 {4,5,10,11,19,20,21,23,26,27} 
LF235 {0,4,9,11,12,14,17,19,20,22} 
LF246 {17,18,21,22,41,42,45,46} 
LF256 {7,8,55,56} 
LF266 {3,4,11,12,51,52,59,60} 
LF276 {3,4,11,12,16,24,32,40,51,52,59,60} 
LF286 {0,4,8,12,13,14,17,18,45,46,49,50} 
LF296 {0,9,18,27,36,45,54,63} 
LF306 {17,18,29,30,52,53,54,55,56,59} 

LFMn: LF – Logic Function, M – Function ID, n – number of inputs 
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Fig. 2 Average power consumption at 3.3V supply 
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Fig. 3 Average power dissipation at 2.5V supply 

VII. CONCLUSION 
This paper has addressed an important issue of practical 

relevance, by means of introducing a novel approach to logic 
reduction particularly for a certain NP hard class of Boolean 
functions, based on graph theory, and suitable for easier 
implementation with a high-level language. Our approach is 
greatly simplified in comparison with those of existing 
methods by enabling a systematic reduction procedure. The 
other advantage is that it also minimizes functions not 
exhibiting auto-symmetry. This adds to the pedagogical value 
of this research work and is ideal for obtaining reduced 
solutions, even manually, for logic functions with fewer 
inputs, dominated by EXOR/EXNOR logic functionality.    
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Fig. 4 Literal count comparison for various forms 
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At the logic level, although a number of logic types exist 
within the large family of AND-EXOR logic, we have 
selected the most general ESOP forms. We have also 
considered the conventional AOI logic and the AND-OR-
EXOR three level networks. A multilevel logic synthesis 
approach has been followed throughout this work, as it 
usually produces the most cost effective realization of logic 
functions [15]. Also fan-in considerations with respect to the 
target technology necessitated a multilevel approach. The 
significance of our contribution is substantiated by improved 
results, in quantitative comparison with the traditional ones, at 
both technology-independent (in terms of literal cost) and 
dependent phases (with respect to power estimation) around 
two voltage corners, compatible with a 0.35µm TSMC CMOS 
process technology. 

The proposed form consistently outperforms the other 
forms, as it acknowledges the presence of all library cells, 
such as EXOR, EXNOR, NAND, NOR and NOT, instead of 
relying upon restricted gate functionality. At 3.3V supply, it 
achieves mean power savings of 41.99%, 31.26% and 32.4% 
over multi-level AOI, AND-EXOR and AND-OR-EXOR 
forms respectively; while at 2.5V supply, it enables 
corresponding average savings of 42.92%, 32.49% and 
34.06%. However, it should also be noted that the proposed 
method considers only the usage of library cells with a 
maximum fan-in of 2. Hence the method is technology-aware 
and is particularly useful for ASIC based designs. The method 
can be exploited to result in much more compact and reduced 
level circuits if FPGAs are the target technology, wherein fan-
in does not result in a profound variation in speed. Therefore 
with FPGA as target, the heuristic would enable savings in 
terms of area and resources utilized (for e.g. LUTs in a FPGA) 
as this is evident from the overall reduction in literal count 
(43.04%) for a multi-level synthesis approach.  
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