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Mathematical Reconstruction of an Object Image
Using X-Ray Interferometric Fourier Holography
Method

M. K. Balyan

Abstract—The main principles of X-ray Fourier interferometric
holography method are discussed. The object image is reconstructed
by the mathematical method of Fourier transformation. The three
methods are presented — method of approximation, iteration method
and step by step method. As an example the complex amplitude
transmission coefficient reconstruction of a beryllium wire is
considered. The results reconstructed by three presented methods are
compared. The best results are obtained by means of step by step
method.

Keywords—Dynamical diffraction, hologram, object image, X-
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1. INTRODUCTION

HE existing methods of optical holography- the Fresnel

holography,- the methods of on axis (Gabor) holography
and off-axis holography, the Fraunhofer holography, the
Fourier holography, the interferometric holography [1]-[3],
may be elaborated in X-ray range of frequencies. X-ray
holograms may be obtained based on the X-ray diffraction
(Bragg) optics [4]. The method of X-ray interferometric
holography was proposed in [5] and developed in [6], [7]. In
this method, an object under investigation is placed in one of
the interferometer arms, and the wave passing via the other
arm of the interferometer is the reference wave. A method for
reconstruction of a point source of X-ray waves was proposed
in [8]. Using the synchrotron sources of X-ray waves, the
methods of X-ray holography are developed: on-axis (Gabor)
holography [9]-[12] and the Fourier holography [12]-[14].

The dynamical two-wave Laue diffraction on two slits is a
simple dynamical diffraction Fourier holography method [15].
The Momose method is an X-ray interferometric phase
contrast method, where the Fourier transform method is
applied [16]. In [17]-[19], the Fraunhofer dynamical
diffraction holography method, and in [20], the Fourier
dynamical diffraction methods are proposed and theoretically
investigated. The X-ray interferometric Fresnel holography is
considered in [21] and the X-ray interferometric Fourier
holography method in [22]. In this paper, we describe the X-
ray Fourier interferometric method of holography, we present
the three methods of reconstruction, and we compare the
obtained results of the reconstructed amplitude transmission
coefficient of a beryllium wire.
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II. X-RAY INTERFEROMETRIC FOURIER HOLOGRAPHY

Let us briefly consider the X-ray interferometric Fourier
holographic scheme [22] and the basic formulas. Under the
exact Bragg angle an X-ray monochromatic plane wave with
unit amplitude falls on the three block X-ray interferometer

(Fig. 1).
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Fig. 1 X-ray interferometric Fourier holography scheme. S, M, A are
splitter, mirror and analyzer blocks, RP- the reflecting planes, Oxz
the coordinate system, CD the rang where the hologram is recorded,
1- object, 2- hologram, 3,4,5- slits, Eo, En, Eon, Eno, Eobj + Eref - the
amplitudes of beams in the interferometer

In one of the arms of the interferometer, an object with
amplitude transmission coefficient t(x,y) is placed. The
amplitude Epo may be presented in the form

Epot = Erer + Eqy (D
where E.er, Eopj are the amplitudes of the reference and object
waves, respectively. According to (1), the intensity
distribution on the exit surface of the analyzer (the third plate

of the interferometer) will be

*
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We consider the case when T3/Ar >> 1 and uT; >> 1, where
T3 - the thickness of the analyzer, p - linear absorption
coefficient of the interferometer blocks, A, — the extinction
length. The two first plates of the interferometer may have
lesser thicknesses, but so, that T; = T, < T3 and uT;, > 1. In
this case, only the weakly absorbing mode of c-polarization
may be taken into account [23], [24]. According to the
dynamical theory of X-ray diffraction [23]-[25], the

amplitudes may be presented in the form
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where Xefi20bj12 are the coordinates of the reference and
object waves left and right bounds on the exit surface of the
analyzer, 6o = Kyo/(2cos0) + /A, k = 27t/A - the wave number,
Yo = Yor T ixoi — the zero-order Fourier component of the
crystal susceptibility, A = Acos0/(xny-n)"?> (Ar = ReA is the
extinction length), yn = %-n = Yn + ixni — the Fourier
coefficients of the crystal susceptibility corresponding to the
diffraction vectors h and —h (without loss of the generality we
consider the case of a centrally-symmetrical crystal), 6 - the
Bragg angle. The expressions of the Green functions Gpo and
Ghn are given in [24], [25]. Used here the Green functions are
obtained presented in [25] multiplying them by
exp(ikyoT3/2cos0). The slit of the reference wave is narrow
and in (4) one may take the Green function out of the integral
sign

E..r = —exp(2ic,T))(2a,,)Gy, (X=X, T;) /4 (5)

ref °
where Xr is the coordinate of the reference wave center and
2arr — the size of the projection of the reference wave slit on
the entrance surface of the analyzer. In [22], it has been
shown, that the object wave amplitude (3) is proportional to
the Fourier transform of the object amplitude transmission
coefficient. Therefore, for reconstruction of the amplitude
transmission coefficient, the intensity distribution (2) must be
multiplied by exp(-2zmipx/D;) and integrated over the
hologram surface

E... = [ exp(=2nipx/ D)1, (x,y)dx  (6)

where Dy = T3Artg?0/Xeer, is a parameter. According to (2), (6)
is a sum of four terms. For the second and the third terms in
[22], the following approximate expressions are found

Erec2 = 2(2’a‘ref)|Q|2 Dt * (Xref - 2 pxref’ y) (7)

Erec3 = 2(2’aref)|Q|2 Dt(xref + 2 pXref H y) (8)

According to these expressions, (7) is the conjugate
reconstructed image, and (8) is the direct real image of the
object. The conjugate image is concentrated near the p = 1 and
for the conjugate image 1—obj/2Xrer < P < 1+80bj/2Xrer,
meanwhile the image is rotated by 180°. The real image (8) is
concentrated around p = -1 and —1-8u/2Xer < P <

—14a0bj/2Xrer. Taking the values of lyo from the experiment and
calculating the integral (6) from (8) one may find the
approximate values of the amplitude transmission coefficient
of the object under investigation. This is the analytical,
approximate method of reconstruction. According to the
analytical approximation (6)-(8) the zero order approximation
will be

1Y) =t Y) = B (P)/ Bz s (P) ©

where Eecs,s(p) is obtained from the expression of E.c3(p) and
there t(X,y) = 1. The relation between p and X is given by p =
X/(2Xrer) —1/2 and X is in the interval —Xper — @obj < X < —Xer +
aobj- The corresponding p lies in the interval —1 —8opi/(2Xrer) < P
< —1+awi/(2%er). The next approximation is obtained [22]
when for calculating Erec3(P) to expand t(x', y) near the point
X'0 = 2PXrer T Xrer into Taylor series taking into account the
linear terms and for the value at X' to use (9). By this way we
obtain

tX, ) =t (X, y)=t, (%, Y)—E" _,(p)/ E. ;. (P) (10)

where E(M3(p) is obtained from the expression Eec3(p)
substituting  t(X,y) by to'(Xo,Y)(X'= X'0), to'(Xo',y) is the
derivative of ty(x,y) at the point Xo' = 2PXrer+ Xrer. The iteration
procedure may be continued.

Instead of the iteration procedure a step by step method may
be used [22]. In this method, one takes the object narrow slit
(Fig. 1). Suppose that the object slit has the same width as the
reference wave’s slit. The right (or left) edge of the object is
set on the left (right) edge of the object slit. After moving the
object by a step (equal or not equal to the object slit size), the
Fourier hologram of this section of the object is recorded. This
procedure is repeated by N = aqj/a.r times, and at each step,
the Fourier hologram of the corresponding section of the
object is recorded. After all displacements of the object, we
obtain N holograms for the whole 2a,.rsize of the object. If the
object slit is sufficiently narrow, one may assume that ti(X, y)
(i=1...N) is a constant and is determined by the expression

ti (_Xref’ y) = Ereci (_1) / Erec3i,s (_1) (1 1)

where Erei(—1) and Eecsis(—1) have the same sense as in (9)
but for the step i. So, the object amplitude transmission
coefficient is constructed by means of N values of ti(—Xret, ) (i
= 1...N), by obtaining N holograms for p = —1. The
interpolation of the obtained function given by these N values
complete the problem of finding t(X,y).

III. AN EXAMPLE AND COMPARISON OF THE RESULTS OF
VARIOUS METHODS

Let us consider an example of object amplitude
transmission coefficient t(X,y) reconstruction for a beryllium
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wire by the radius Ry =50pm and with the axes

perpendicular to the diffraction plane. The width of the object
slit is equal to 2R, and the width of the reference wave slit

is equal to 4 pm, X =50/c0s6 pm, Xy =X . We

consider the reflection Si(220), 1=0.71 A0(17.46 keV),
T, =T, =1mm, T; =5mm. The refractive index of the object
isn=1-0+if, § >0 and is connected with the refraction in
the object, >0 and is connected with the absorption in the
object. For beryllium &=1.118-10"°,8=2.69-107"". The

theoretical expression for t(X,Y) is

t(x, y) = exp[-2ik(S —i ﬁ)\/ R2, —(X+ X )2 cos? 8], (12)

Let us calculate |hol using (2) and (12) and let us assume

that these calculated values are experimentally obtained values
of the intensity of the object Fourier hologram. Then using (9),
one obtains zero order approximation - t,(X,Y) . In Fig. 2, the

intensity distribution (2) on the hologram is presented.
lhol

0.0015
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0.0005

-0.75-05-025 0 025 05 075
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Fig. 2 The intensity distribution on the Fourier interferometric
hologram of the beryllium wire

In Figs. 3 (a) and (b), the real and imaginary parts of the
object amplitude transmission coefficient t,(x)obtained by

means of the zero order approximation (9) are presented and
are compared with the corresponding true values t(x) (12).

The resolution is sufficient to reconstruct the amplitude
transmission coefficient in the middle part of the wire, but it is
not sufficient at the edges of the wire.

In Figs. 4 (a) and (b), the real and imaginary parts of the
object amplitude transmission coefficient are presented using
the first order iteration (10). These values are compared with
the corresponding true values of t(x) (12).

As it is seen from Figs. 3 and 4, the first iteration gives
more precise results than the approximation of the zero order.

Instead of continuing the iterations, let us determine the
amplitude transmission coefficient of the beryllium wire using
the described above step by step method of reconstruction.

Let us take the width of the object wave the same as for the
reference wave, i.e. 4 um, the step of the displacement 4pum,

Xret =25/0086  pm, Xoppj =—Xrf . For N =25, let us

calculate all 1.,;(x) (i=1,...,25) and let us determine t; using

(11). Let us construct the interpolation function using these 25
values. In Fig. 5, the hologram for the step i=13 is shown (for
this step the center of the object is coincided with the center of
the object slit). In Figs. 6 (a) and (b), real and imaginary parts
of the object amplitude transmission coefficient obtained by
the step by step method are compared with the corresponding
true values (12). It is clearly seen that the more precise results
are obtained by the step by step method in comparison with
the approximation and iteration methods. The obtained values
are almost the same as the true values.

a

Relt(x)]

x{um)

Fig. 3 The comparison of the zero order reconstructed real and
imaginary parts of the beryllium wire amplitude transmission
coefficient with the corresponding true values (12). a. 1- the
reconstructed zero order approximation value of the real part t,(X)
(dashed line), 2- the real part of the true value (solid line); b. 1-the
reconstructed zero order approximation value of the imaginary part
ty(X) (dashed line), 2- the imaginary part of the true value (solid

line)

IV. CONCLUSIONS

The main principles of the X-ray Fourier interferometric
holographic method are presented and discussed. The
reconstruction of the object amplitude transmission coefficient
is obtained by means of three methods — approximation
method, iteration method and step by step method. As an
example, the reconstruction of the beryllium cylindrical wire
amplitude transmission coefficient is considered. The results
of three methods of reconstruction are compared with each
other and with the true values of the amplitude transmission
coefficient. The best results are obtained by the step by step
method of reconstruction.
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The method of the X-ray interferometric Fourier
holography may be experimentally realized with the help of
X-ray synchrotron sources and XFELs. The method may be
used in X-ray microscopy for determination amplitude
transmission coefficient of inhomogeneous objects (the
amplitude and the phase ones) as well as for determination of
the density of objects (of its internal structure) and of the
refractive index.

a

Re[t(x)] 2
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05
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Fig. 4 The comparison obtained by (10) by the first order iteration of
the real and imaginary parts of the beryllium wire amplitude
transmission coefficient with the corresponding true values (12). a. 1-

the reconstructed value of the real part t;(X) (dashed line), 2- the
real part of the true value (solid line); b. 1-the reconstructed value of
the imaginary part t;(X) (dashed line), 2- the imaginary part of the
true value (solid line)
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Fig. 5 The intensity distribution on the X-ray Fourier interferometric

hologram of the wire obtained by means of step by step method for
the step i=13

Fig.

6 The comparison obtained by (11) of the step by step method of

the real and imaginary parts of the beryllium wire amplitude

transmission coefficient with the corresponding true values (12). a. 1-
the reconstructed value of the real part (dashed line), 2- the real part
of the true value (solid line); b. 1-the reconstructed value of the
imaginary part (dashed line), 2- the imaginary part of the true value
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