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Abstract—A model of the mathematical fluid dynamics which 

describes the motion of a three-dimensional viscous rotating fluid in a 
homogeneous gravitational field with the consideration of the salinity 
and heat transfer is considered in a vertical finite layer. The model is 
a generalization of the linearized Navier-Stokes system with the 
addition of the Coriolis parameter and the equations for changeable 
density, salinity, and heat transfer. An explicit solution is constructed 
and the proof of the existence and uniqueness theorems is given. The 
localization and the structure of the spectrum of inner waves is also 
investigated. The results may be used, in particular, for constructing 
stable numerical algorithms for solutions of the considered models of 
fluid dynamics of the Atmosphere and the Ocean. 
 

Keywords—Fourier transform, generalized solutions, Navier-
Stokes equations, stratified fluid.  

I. INTRODUCTION 

ET us consider a bounded domain 3R   and the 
following system of fluid dynamics 

 

1
2 1

1

2
1 2

2

3
3 1 2

3

3 3

4 3

0

0

0

div 0

0

0              ,    0.

u p
u u

t x

u p
u u

t x

u p
u W

t x

u

u
t
W

W u x t
t

 

 

   

 

 

        
        

       
  
 


 



      


 

 

Here  1 2 3, ,u u u u


 is a velocity field, ( , )p x t  is the scalar 

field of the dynamic pressure,  ,x t  is the dynamic density 

of the fluid,  ,W x t  is either dynamic salinity or dynamic 

temperature, Const   is the Coriolis parameter, and 
 , 1,...4i i   are constant nonzero stratification parameters. 

For the kinematic viscosity coefficient   ,we assume 0  . 

The considered equations are deduced, for example, in [1]. 
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The study of mathematical properties of different systems of 
fluid dynamics of rotating fluid was started in [2]-[4]. Various 
problems involving the spectrum of normal vibrations for 
stratified and rotating fluid were considered in [5]-[10]. For 
non-linear model considered in bounded domains, but without 
the equations for salinity and heat transfer, the solution of 
similar systems was studied in [11]. We can observe that, for 
some problems of Ocean and Atmosphere dynamics, 
particularly for the cases when the horizontal dimensions are 
considerably larger than vertical dimensions, the third 
equation of the previous system does not contain the terms 

3u

t




 and 3u (see, for example, [12]). Therefore, we will 

consider the system  
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in the domain 
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II. PROBLEM FORMULATION 

Our primary aim is to construct the solution of the problem 
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(1)-(3). The general idea of construction of such solution in a 
layer is taken from [14]. 

We will use the Laplace transform with respect to t, the 
Fourier transform with respect to x  and finite integral 
transforms with respect to 3x . We apply the Cosine-Fourier 

transform to the first, the second and the fourth equations of 
(1), and the Sine-Fourier transform to the rest of the equations. 
For that purpose, we multiply the first, the second and the 
fourth equations by 3cos n x , the rest of the equations we 

multiply by 3sin n x  , and integrate with respect to 3x  on the 

interval 30 x h  . Let us introduce the following notations: 
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Using the boundary value conditions (3), we transform the 

problem (1)-(3) into the following: 
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To solve the problem (4), (5), we assume that the initial 

conditions are sufficiently smooth and rapidly decreasing 

functions for x   , which allows us to apply the Fourier 

transform in x  and Laplace transform in t . 
After introducing the notations 
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we obtain the system of algebraic equations 
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Let us introduce the functions 
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From (7), we can represent the inverse Laplace transform 

for the functions i  as follows. 
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For the following, we assume  0 4
1  ,  1,2, 4,5,iv W i    
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We also suppose that the condition of consistency of the 

initial data and boundary values is fulfilled.  
After solving (6) and applying the inverse Fourier and 

Laplace transforms 1 1
x tF L 

 
   , we can represent the solution 

of the problem (4)-(5) as 
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In this way, the solution of the problem (1)-(3) can be 

represented as follows ([13]):  
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We define a strong solution of the problem (1)-(3) as a 

system of the functions  4 5, , ,v p v v


 such that 
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satisfy (1) and the conditions (2), (3). 
We define a weak solution of the problem (1)-(3) as a 

system of the functions    4 5, ,v v v V Q


 which satisfy the 

condition (2) and the integral identity 
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for all  0,t  and for every vector function 
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Our aim now is to study the properties of existence and 
uniqueness of the strong and weak solutions for (1)-(3). 

III. PROBLEM SOLUTION 

Theorem 1 The system of functions (8) defines a strong 
solution of the problem (1)-(3). 
Proof. Evidently, it is sufficient to show that the series (8) 
converge uniformly with respect to x and t, together with their 
term-by-term derivatives in x and t , and that the initial 
conditions (2) are satisfied. Let us investigate the first 
component of the solution, since the rest of the components 

are analogous. For 02 , 0t t    , the derivatives of the 

series which define  1 ,v x t , are estimated in the following 

way: 
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We observe that the constants 1C  in (9) and (10), in general, 

depend on 0t . Due to the arbitrary choice of 0 0t  , it follows 

from (9), (10), that the series (8) converge uniformly in x and 
t, together with the series obtained as a result of term-by-term 
differentiation with respect to x and t.  

Let us prove that  1 ,v x t  satisfies the initial condition (2). 

For that, we represent the general term of the series as follows. 
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where ,i j  is the Kronecker symbol and  ,G x t  is the 

singular solution of the heat transfer equation. 
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To estimate the term 1,2v̂  for 0t t , we use the explicit form 
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follows that, for the function  1 ,v x t , the initial conditions (2) 

are satisfied, which completes the proof. 
Theorem 2 The weak solution of the problem (1)-(3), is 
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Proof. Let us consider the component  1 ,v x t  of the solution. 

Using the Parseval formula and the explicit representation (8), 
we have 

 

           

         

2 2 2

2 2

2 2 2

1 1 1
1

2
2 2

1 1
1

1
ˆ ˆ, ,0, 2 , ,

2
,0, 2 , , .

L L L
n

L L
n

v x t v x t v x n t
h

v t v n t
h


 



  




 


    
 

    
 




 

 
Let us estimate the general term of the last series. With the 

help of the obvious inequality    2 2 22a b a b    and the 
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Therefore, we have obtained that 
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Repeating the same reasoning, we verify that the derivatives 

 1 ,tD v x t  belong to the functional space  2L Q . Thus, we 

obtain that    1 ,v x t V Q . The rest of the components for 

the solutions are estimated analogously. The uniqueness of the 
solution follows from Theorem 2. In this way, the theorem is 
proven. 

Now, let us consider the initial system of fluid dynamics for 
compressible fluid 
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in a bounded domain 3R   with the boundary   of the 

class 1C . We associate system (13) to the boundary conditions 
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The consideration of the separated variables of the form 
(15) permits to interpret every non-stationary process as a 
linear sum of the normal oscillations. The spectrum of inner 
vibrations may be used for investigating the properties of the 
stability of the solutions. As well, the spectral properties of 
M  may be used in the studying of weakly non-linear flows, 
since the points of bifurcation are the points of the spectrum of 
the operator M .

 

We observe that the above defined operator M  is a closed 
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it consists of the eigenvalues of infinite multiplicity, limit 
points of the point spectrum, and the points of the continuous 
spectrum. 

Therefore, the spectral points outside of the essential 
spectrum, are eigenvalues of finite multiplicity. For calculating 
the essential spectrum of M, we would like to refer to the 
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the matrices M I  and G are homogeneous functions with 

respect to ,  , then it is sufficient to verify the Lopatinski 

conditions for unitary vectors  . Let us choose a local system 

of coordinates so that 1 21 ,  0   .         

For the matrix  M I , we construct first the adjoint 

matrix  M I  , then we multiply  M I   by the 

boundary conditions matrix G and thus obtain the following.  
 

 
2

3 3
1 32 2

,0, ,0,0,0 ,G M I n B B n B
  
 

   
      

    
 

where  21B     . 

Since  G M I   is a vector row, then evidently, the 

Lopatinski conditions are satisfied, and thus, the theorem is 
proved.  
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