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Abstract—Mathematical models can be used to describe the 
transmission of disease. Dengue disease is the most significant 
mosquito-borne viral disease of human. It now a leading cause of 
childhood deaths and hospitalizations in many countries. Variations 
in environmental conditions, especially seasonal climatic parameters, 
effect to the transmission of dengue viruses the dengue viruses and 
their principal mosquito vector, Aedes aegypti. A transmission model 
for dengue disease is discussed in this paper. We assume that the 
human and vector populations are constant. We showed that the local 
stability is completely determined by the threshold parameter, 0B . If 

0B  is less than one, the disease free equilibrium state is stable. If 

0B  is more than one, a unique endemic equilibrium state exists and 
is stable. The numerical results are shown for the different values of 
the transmission probability from vector to human populations.  

Keywords—Dengue disease, mathematical model, season, 
threshold parameters.

I. INTRODUCTION

ENGUE d Fever (DF), Dengue Haemorrhagic Fever 
(DHF) and Dengue Shock Syndrome (DSS) are 
increasingly important public health problems in the 

tropical and subtropical areas. Dengue has been recognized in 
over 100 countries and 2.5 billion people live in areas where 
dengue is endemic [1]. Dengue disease caused by four distinct 
serotypes virus known as DEN-1, DEN-2, DEN-3 and DEN-
4. It is transmitted to the human by biting of the infected 
female Aedes mosquitoes as the primary mosquito vector. 
Infection by any single type apparently produces permanent 
immunity to it, but only temporary cross immunity to the 
others. The mosquitoes never recover from the infection since 
their infective period ends with their death [2].  

Infection with one of these viruses characteristically results 
in fever, headache and rash. The clinical spectrum can vary, 
however, from asymptomatic to more severe infections with 
bleeding and shock. The manifestations of DHF include 
hemorrhage and shock, which is the result of a sudden loss of 
intravascular volume consequent to vascular leakage. As no 
vaccine presently exists, the only method of controlling or 
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preventing dengue and DHF is to combat the mosquito vectors 
[1].  

Environments, climatic variables such as temperature, 
humidity, season and precipitation significantly influence 
mosquito development. Temperature affects to the 
development of the mosquitoes, as well as dengue viral 
development. Dengue infection is endemic in Thailand and 
many other tropical countries. Fig. 1 shows the incidence rate 
of dengue disease per 1,000,000 reported to the Division of
Epidemiology, Ministry of Public Health classified by month, 
Thailand during the period 1999-2008. As we see, dengue 
cases generally peak in June, July and August. 

Fig. 1  The incidence rate of  dengue patients according to the disease 
severity month-by-month between 1999 and 2008 [3]. 

Mathematical modeling of infectious disease has a long 
history. The starting point is generally taken to be a paper by 
Daniel Bernoulli [4] on the prevention of smallpox by 
inoculation. To control the dengue effectively, we should 
understand the dynamics of the disease transmission and take 
into account all of the relevant details, such as the dynamics of 
the Esteva and Vargas [5] developed a model for the dengue 
disease transmission and included the dynamics of the Aedes
aegypti mosquitoes into a standard SIR (susceptible-infective-
recover) epidemic model of a single population. Their model 
shows that there is a threshold number which is a function of 
Aedes equilibrium population size and of the Aedes 
recruitment rate, above which the disease will be endemic and 
below which the disease will vanish. 

In this paper, we develop a mathematical model as an 
interesting tool for the understanding of the dengue 
transmission for the difference season. Our interest here is to 
derive and analyze the model taking into account the 
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seasonality dengue compartment in the transmission model. 
In the next section, we formulate the model. In section 3, 

we analyze the model. The equilibrium states of this system 
and their stability are obtained. Finally, we give the numerical 
results and conclusion.  

II. THE MATHEMATICAL MODEL
In our model, we assume that the human and vector 

population have constant size. Let TN  and vN  be the human 
and vector population sizes. The mathematical model for this 
transmission is based on the transmission diagram in Fig. 2.  

Fig. 2  Transmission diagram of dengue disease with season. 

All tables and figures you insert in your document are only to 
help you gauge the size of your paper, for the convenience of 
the referees, and to make it easy for you to distribute 
preprints.  

The human population is subdivided into the susceptible 
hS , the infectious human in high epidemic season hhI (in June, 

July and August), the infectious human in low epidemic 
season hhI (every months except June, July and August),and 
the recovered hR . The vector population is subdivided into 
the susceptible vS  and the infectious vI . The dynamical 
equations for human population are  

v hh v hlh
T h v v h

T T

b bdS
N ( I I )S

dt N m N m
  (1) 

v hhhh
v h h hh

T

bdI
I S ( r)I

dt N m
  (2) 

v hlhl
v h h hl

T

bdI
I S ( r)I

dt N m
  (3) 

h
hh hl h h

dR
r(I I ) R

dt
  (4) 

and the dynamical equations for vector population are as 
follows 

v hh v hl v
v hh hl v

T T

dS b b
A ( I I )S

dt N m N m
  (5) 

v hh v hl v
hh hl v v v

T T

dI b b
( I I )S I

dt N m N m
  (6) 

The equation for hR  and vS  in (4)-(5) can be eliminated since 
at time t, we have h hh hl h TS I I R N  and v v vS I N .
To simplify the mathematical analysis of this study, we 
normalize the equations (1)-(6) by defining new variables 

h h TS S N , hh hh TI I N , hl hl TI I N , h h TR R N ,

v v v v vS S N S (A )  and v v v v vI I N I (A ) .
The total human and vector populations are constant,    thus 

rates of change for total human and vector populations equal 
to zero. This gives birth and death rates are equal for the 
human population, the total vector population equals to 

vA .We obtain the equations as follows: 

h v hh v hl
h h v v v v h

T T

dS b b( I (A ) I (A ))S
dt N m N m

  (7) 

v hhhh
v v h h hh

T

bdI
I (A )S ( r)I

dt N m
  (8) 

v hlhl
v v h h hl

T

bdI
I (A )S ( r)I

dt N m
  (9) 

v hh v hl v
hh T hl T v v v

T T

dI b b
( I N I N )(1 I ) I

dt N m N m
  (10) 

where
TN  is the total human population, 

vN  is the total vector population, 

hS  is the number of susceptible human population, 

hhI  is the number of infectious human  in high epidemic 
season,

hlI  is the number of infectious human  in low epidemic 
season,

hR  is the number of recover human population, 

vS  is the number of susceptible vector population, 

vI  is the number of infectious vector population, 

h  is the death rate in the human population, 
 is the birth rate in the human population, 
v  is the death rate in the vector population, 

v hh  is the transmission probability from vector to human 
(in high epidemic season), 

v hl  is the transmission probability from vector to human 
(in low epidemic season), 

hh v  is the transmission probability from human (in high 
epidemic season) to vector, 

hl v  is the transmission probability from human (in low 
epidemic season) to vector, 

r  is the recover rate in the human population 
b  is the biting rate of vector. 
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The our model, we define the transmission probability from 
vector to human (in high epidemic season) and the 
transmission probability from human (in high epidemic 
season) to vector are more than 0.5 but not more than 1 

v hh0.5 , hh v 1) and the transmission probability from 
vector to human (in low epidemic season) and the 
transmission probability from human (in low epidemic season) 
to vector are more than or equal zero but not more than 0.5 
( v hl0 , hl v 0.5 ) with the new two conditions 

h hh hl hS I I R 1 and v vS I 1 .

III. ANALYSIS OF THE MODEL

A.  Equilibrium Point 
In this section we will find the equilibrium points of 

equations (7)-(10) in the region of , with  

h hh hl v h hh hl v(S , I , I , I ) 0 S , I , I , I 1 .

Direct calculation shows that equations (7)-(10) has two 
possible equilibrium points: the disease free equilibrium point 
and a unique endemic equilibrium point.      Two equilibrium 
points are found by setting the right hand side of   (7)-(10) 
equal to zero. This gives 

1) the disease free equilibrium point 
0E (1,0,0,0)   and 

2) the endemic disease equilibrium point  
* * * *

1 h hh hl vE (S , I , I , I )
where

* 1 2
h *

1 2 2 v

S
M I

  (11) 

*
* 1 2 v
hh *

1 1 2 2 v

I
I

M ( M I )
  (12) 

*
* 2 1 v
hl *

1 1 2 2 v

I
I

M ( M I )
  (13) 

* 3 1 1 2
v

3 1 2

M M
I

M M M
  (14) 

with 
v hh T

1
v T

b N
(N m)

 , v hl T
2

v T

b N
(N m)

, hh v T
3

v T

b N
(N m)

,

hl v T
4

v T

b N
(N m)

,
2 2

v hh T v
1 2

v h T

b N (A )
(N m)

 , 

2 2
v hl T v

2 2
v h T

b N (A )
(N m)

 , h
1

h

r
M , 2 1 2 2 1M ,

3 1 2 3 2 1 4M .

B. Local Asymptotical Stability  
The local stability of an equilibrium point is determined 

from the Jacobian matrix of the right hand side of the above 
set of differential equations evaluated at the equilibrium point.  

  C.   Local Asymptotical Stability  

For the equations defined by (7)-(10), the Jacobian matrix 
evaluated at 0E  is the 4 4 matrix given by 

h 1 h 2
h

1 2

h 1
h 1

1

h 2
h 1

2

v 3 v 4 v

0 0

0 M 0

0 0 M

0

              (15) 

The eigenvalues are obtained by solving the matrix 
equation, 4det(J I ) 0 . To evaluate the determinant, we 
obtained the following characteristic equation 

2
h h 1 1 2( )( M )( a a ) 0              (16) 

where
1 h 1 va M ,               (17) 

1 1 2 2 3 1 1 4 2
2 h v

1 2

M
a ( )        (18) 

Looking at the characteristic equation, (16), we see that two 
of the eigenvalues are h  and h 1M .

Both of them are negative. Next, we will check the sign of 
other eigenvalues. From 2

1 2a a 0 , the two conditions 
of Routh-Hurwitz criteria [6] for local asymptotical stability in 
second order characteristic polynomial equation are 
i) 1a 0 ,
ii) 2a 0 .

After we check the stability of the equilibrium point, we 
can see 1a is always positive and 2a is positive when 

2 3 1 1 4 2

1 1 2

1
M

. Moreover, we found that the disease free 

equilibrium point is locally stable for 
2 3 1 1 4 2

0
1 1 2

B 1
M

.

  D.     Disease Endemic Equilibrium point  
The stability of the endemic disease equilibrium point,  1E ,

like that of 0E , is determined by looking at the eigenvalues of 
the Jacobian evaluated at 0E . The Jacobian for this 
equilibrium point is  

* * * *h 1 h 2 h 1 h 2
h v v h h

1 2 1 2

* *h 1 h 1
v h 1 h

1 1

* *h 2 h 2
v h 1 h

2 2
* * * *

v 3 v v 4 v v 3 hh v 4 hl v

I I 0 0 S S

I M 0 S

I 0 M S

0 (1 I ) (1 I ) I I

   (19)                   

where *
hS , *

hhI , *
hlI  and *

vI  are given by equation (11)-(14) 
.The characteristic equation for the Jacobian matrix evaluated 
at the second equilibrium state, given by (7)-(10), is
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3 2
h 1 2 1 0( M )( b b b ) 0    (20) 

     It can be seen that one eigenvalue is h 1M . Next we 
found the other eigenvalues by solving the equation  

           3 2
2 1 0b b b 0                       (21) 

with
* *

2 2 1 2 1 h v h3 h 2 v 1b ( ((1 M ) I ) M I ) / ,          (22) 
* *

1 2 h 1 1 2 h v h3 h 2 vb ( (M ( ( I ) M I
* *

v h3 1 2 2 v(I ( M I ) * *
3 v h 1M ( 1 I )S ))) / ,        (23) 

2 * * * *
0 2 h v 1 h3 1 2 2 v 3 v h 1b ( (M I ( M I ) M ( 1 I )S ) /     (24)

                                 
By using Routh-Hurwitz criteria [6], each equilibrium point 

is locally stable if the following conditions are satisfied,
i) 2b 0
ii) 0b 0
iii) 2 1 0b b b
We can see 2b  is always positive. For the second and the 

third conditions we shown these conditions by using the 
following figures 

Fig. 3 The parameter space for the endemic equilibrium point which 
satisfies the Routh-Hurwitz criteria with the value of parameters: 
respectively, for with h 1/(365 65) day-1, v (1/14)  day-1,

A 10,000 , T v hlN 100,000, b 1/ 3, r 1/ 3, m 0, 0.4,

hh v 0.7  , hl v 0.4 and v hh0 1.

We found that 0E  is locally stable for 0B 1  and 1E  is locally 
stable for 0B 1.

E.  Numerical Simulation 
In this paper, we are interested in the transmission of 

dengue disease with the effect of season. The values of the 
parameter used in this study are as follows: h 1/(365 65)
per day corresponds to a life expectancy of 65 years in human. 
The mean life of mosquito is 14 days; v (1/14)  per day. 
The recovery rate equals to 1/3 per day. We assume that no 
alternative host. The conditions of parameters are 

v hh v hl , hh v hl v  , v hh hh v0.5 , 1 and 

v hl hl v0 , 0.5 .
The other parameters are arbitrarily chosen. We presented  

the numerical solutions of (7)-(10)  for the endemic 
equilibrium state on the following figures. 

Fig. 4 Numerical solutions of (7)-(10), demonstrate the times series 
of hS , hhI hlI  and vI  respectively, for 0B 4.24613 ,

'
0B 2.06061 with h 1/(365 65) day-1, v (1/14)  day-1,

A 10,000 , T v hhN 100,000, b 1/ 3, r 1/ 3, m 0, 0.7,

v hl hh v hl v0.4, 0.7, 0.4 . The fractions of populations 

oscillate  to the endemic  state (0.235571, 0.0000615,
0.0000351,0.0002664) .

Fig. 5 Numerical solutions of (7)-(10), demonstrate the times series 
of hS , hhI hlI  and vI  respectively, for 0B 8.49226 ,

'
0B 2.91415  with h 1/(365 65) day-1, v (1/14)  day-1,

A 20,000 , T v hhN 100,000,b 1/3, r 1/ 3,m 0, 0.7,

v hl hh v hl v0.4, 0.7, 0.4 . The fractions of populations 
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oscillate to the endemic state   (0.117791,0.00007098,
0.00004056,0.000307486) .

IV. DISCUSSION AND CONCLUSION
We obtain the threshold parameter for the model as 

2 3 1 1 4 2
0

1 1 2

B
M

                         (25) 

2 2
v hh hh v T v hl hl v T

2 2 2 2
v T h v T h

b N A b N A
(N m) ( r) (N m) ( r)

Analysis of this model reveals the existence of two 
equilibrium points. One is the disease free equilibrium and it 
is locally asymptotically stable if and only if 0B 1 . The 
another one equilibrium point is the endemic equilibrium 
point. This equilibrium point will be a locally asymptotically 
stable endemic point if and only if 0B 1.

Let 2 3 1 1 4 2
0

1 1 2

B
M

 is the threshold parameter. The 

quantity 0 0B B is called the basic reproductive number of 
the disease, since it represents the average number of 
secondary cases that one case can produce if introduced into a 
susceptible population. We consider the time series of human 
and vector populations when the transmission probability 
from vector to human (in high epidemic season) and the 
transmission probability from human to vector (in low 
epidemic season) are difference. We show in Fig. 6.  

                               6a)                                       6b) 
Fig. 6 Numerical solutions of (7)-(10) demonstrate the equilibrium 
solution of hS , hhI hlI  and vI respectively, for 0B 1
       (6a) with h 1/(365 65) day-1, v (1/14)  day-1,
A 10,000 , TN 100,000,b 1/3, r 1/ 3,m 0, v hh0.5 1,

v hl hh v hl v0.4, 0.7, 0.4 .

      (6b) with h 1/(365 65) day-1, v (1/14)  day-1,

A 10,000 , TN 100,000, b 1/ 3, r 1/ 3,m 0, v hh 0.7,

v hl hh v hl v0 0.5, 0.7, 0.4 .

The basic reproductive number of the disease   for   Fig. 4  
and Fig. 5 equal to 2.06061 and 2.91415 ,  respectively. 
Periods of  the  oscillations   as   the   simulations   approach  
the  endemic  equilibrium point are estimated by means of the 
solutions of the  linearized system,  obtain 6.07  years  for 
Fig. 4 and 3.99 years for Fig. 5. 
   Moreover, we  compare  the  transmission of dengue disease 
for  the different transmission probability from vector to 
human (in high epidemic season)and the transmission 
probability from vector to human (in low epidemic season).  
    We  can  see  from  the value of 0B , if  the  transmission  of 
dengue disease for the different transmission probability from 
vector to human (in high epidemic season) is higher, this 
means that the infectious human proportion in high epidemic 
and infectious vector proportion are high. For the transmission 
probability from vector to human (in low epidemic season) is 
high, the infectious human proportion in low endemic interval 
is high too.
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