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Mathematical Modeling and Analysis of Forced
Vibrations in Micro-Scale Microstretch
Thermoelastic Simply Supported Beam

Geeta Partap, Nitika Chugh

Abstract—The present paper deals with the flexural vibrations
of homogeneous, isotropic, generalized micropolar microstretch
thermoelastic thin Euler-Bernoulli beam resonators, due to
Exponential time varying load. Both the axial ends of the
beam are assumed to be at simply supported conditions. The
governing equations have been solved analytically by using Laplace
transforms technique twice with respect to time and space variables
respectively. The inversion of Laplace transform in time domain
has been performed by using the calculus of residues to obtain
deflection.The analytical results have been numerically analyzed with
the help of MATLAB software for magnesium like material. The
graphical representations and interpretations have been discussed
for Deflection of beam under Simply Supported boundary condition
and for distinct considered values of time and space as well. The
obtained results are easy to implement for engineering analysis and
designs of resonators (sensors), modulators, actuators.

Keywords—Microstretch, deflection, exponential load, Laplace
transforms, Residue theorem, simply supported.

I. INTRODUCTION

ERINGEN [1] first, who proposed the theory of

micropolar continua and discussed in detail the behaviour

of materials possessing microstructure. This theory has

been extended to include thermal effects by Eringen

[2] and Nowacki [3], who also developed theory of

thermo-microstretch elastic solids. Eringen [4] studied micro

structural expansions and contractions due to thermal effects

in microstretch elastic solids.

Micro-electro-mechanical system (MEMS) have been

widely used as resonators for sensing, electrical filtering

and communication application. Their light weight, small

size, low-energy consumption, large deflection capacity

and stability etc. made micro-electro-mechanical system

components even more commercialization attractive. Micro

beams have been widely studied by the MEMS community

due to their application. For MEMS designers, it is

important to understand the mechanical properties of flexible

micro-components in order to predict the amount of deflection

from an applied load and also to prevent cracking, improve

performance and to increase the lifetime of MEMS devices.

Zener [5], many decays ago, derived an analytical solution

which relate the energy dissipation and the material properties

of a thin beam structure by assuming some mathematical and

physical simplifications. Lifshitz and Roukes [6] improved

upon Zener’s work by developing exact and equivalent
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close-form expression for thermoelastic damping using the

quasi 1D theory as their basic. Sun et al. [7] presented 2D

analysis of frequency shifts by considering heat conduction

along the beam thickness and beam span by taking sinusoidal

temperature gradients across the thickness of the beam.

Prabhakar and Vengallatore [8] developed a two dimensional

theory for thermoelastic damping in Euler-Bernoulli beam

resonators. Guo et al. [9] evaluated the effect of geometry

on thermoelastic damping in micro beam resonators by using

finite element method. Grover D [10]-[12] studied transverse

vibrations in viscothermoelastic beam with fixed and linearly

varying thickness and circular plate, respectively. Sharma

and Grover D. [13] studied the thermoelastic damping and

frequency shift in MEMS/NEMS transverse vibrations of a

homogenous isotropic, thermoelastic thin beam with voids,

based on Euler Bernoulli theory. Yanping and Yilong analyzed

[14] the static deflections of micro-cantilever elastic beams

under transverse loading by applying the neutral network

method. Most of the previous researchers studied thermoelastic

damping and frequency shifts instead of deflection variation

during flexural vibrations.

The objective of this paper is to study deflection variation

due to stretch forces and thermal variations in homogeneous

isotropic, micropolar microstretch thermoelastic type micro

beam resonator in the context of Lord and Shulman [15]

model.

II. GOVERNING EQUATIONS

Consider a homogeneous, isotropic, micropolar,

microstretch thermally conductive media in Cartesian

coordinate system oxyz initially undeformed and at uniform

temperature T0. The basic governing equations of motion are

given by

σji,j = ρ
∂2ui

∂t2
, (1)

where ρ is the density of medium, σij are components of

stress tensor, �u(x, y, z, t) = (u1, u2, u3) are components of

displacement vector and t is time. The Constitutive equations

and heat conduction equation for micropolar microstretch

generalized thermoelasticity (LS model) media in the absence

of body forces, stretch forces and heat sources are given by

[4]
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(λ+ 2μ+K)∇(∇ · �u)− (μ+K)∇×∇× �u+K ∇× �φ+ λ0∇φ∗ − β1∇T = ρ∂2�u
∂t2 (2)

(α+ β + γ)∇(∇ · �φ)− γ ∇× (∇× �φ) +K ∇× �u− 2K�φ = ρj
∂2�φ

∂t2
(3)

(α0∇2 − λ1)φ
∗ − λ0∇ · �u+ β2T =

ρj0
2

∂2φ∗

∂t2
(4)

K∗∇2T = ρCe(
∂T
∂t + t0

∂2T
∂t2 ) + β1T0(

∂
∂t + t0

∂2

∂t2 )∇ · �u+ β2T0(
∂
∂t + t0

∂2

∂t2 )φ
∗ (5)

and the constitutive relations are given below:

σij = (λ0φ
∗ + λuk,k)δij + μ(ui,j + uj,i) +K(uj,i − εijkφk)− β1Tδij (6)

mij = αφk,kδij + βφi,j + γφj, i+ b0εlji φ
∗
,l,

λ∗
i = α0φ

∗
,i + b0εijlφj,l (7)

Here K∗ is thermal conductivity, Ce is specific heat at constant

strain, T is the temperature change, t0 is thermal relaxation

time, β1 = (3λ + 2μ +K)αt1 and β2 = (3λ + 2μ +K)αt2 ;

αt1 , αt2 are coefficients of linear thermal expansion and

λ, μ, α, β, γ,K are material constants, α0, b0, λ0, λ1 are

microstretch constants, λ∗
i is the component of microstress,

j is microinertia, j0 is the microinertia of microelement,
�φ = (φ1, φ2, φ3) is the microrotation vector, φ∗ is the scalar

microstretch, mij is component of couple stress tensor, δij
is Kronecker delta, εijk is permutation tensor, the comma

notation denotes spatial derivatives and ∇2 = ∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2

is Laplacian operator.

III. FORMULATION OF THE PROBLEM

Now consider the flexural deflection of a homogeneous,

isotropic, micropolar microstretch thermally conducting thin

beam having dimensions of length L(0 ≤ x ≤ L), width

b(−b
2 ≤ y ≤ b

2 ) and thickness h(−h
2 ≤ z ≤ h

2 ). Here, we

define x − axis along the axis of the beam, y − axis and

z − axis correspond to the width and thickness direction of

the beam, respectively. In equilibrium, the beam is unstrained,

unstressed and also kept at uniform temperature T0.

In this study, the usual Euler-Bernoulli assumption is

adopted so that any plane cross section, initially perpendicular

to axis of the beam, remains plane and perpendicular to the

neutral surface during bending. Therefore, the displacements

vector, microrotation vector �φ, microstretch function φ∗ and

temperature distribution function T can be expressed as [20]

u1 = −z ∂w
∂x , u2 = 0 , u3(x, y, z, t) = w(x, t) , �φ = (0, φ2(x, z, t), 0) , φ∗ = φ∗(x, z, t) and T = T (x, z, t)

(8)

Now, substituting (8) into (2)-(5), the following system of

equations are simplified as follows

(λ+2μ+K)

(
−z

∂3w

∂x3

)
−K

∂φ2

∂z
+λ0

∂φ∗

∂x
−β1

∂T

∂x
= −ρz

∂3w

∂x∂t2

(9)

−(λ−K)
∂2w

∂x2
+K

∂φ2

∂x
+ λ0

∂φ∗

∂z
− β1

∂T

∂z
= ρ

∂2w

∂t2
(10)

γ

(
∂2φ2

∂x2
+

∂2φ2

∂z2

)
− 2Kφ2 − 2K

∂w

∂x
= ρj

∂2φ2

∂t2
(11)

α0

(
∂2φ∗

∂x2
+

∂2φ∗

∂z2

)
− λ1φ

∗ + λ0z
∂2w

∂x2
+ β2T =

1

2
ρj0

∂2φ∗

∂t2
(12)

K∗
(

∂2T
∂x2 + ∂2T

∂z2

)
= ρCe

(
∂T
∂t + t0

∂2T
∂t2

)
− β1T0

(
∂
∂t + t0

∂2

∂t2

)
z ∂2w

∂x2 + β2T0

(
∂
∂t + t0

∂2

∂t2

)
φ∗

(13)

and the expression for stress tensor σxx from (6) with the help

of (8) is given as follows

σxx = −(λ+ 2μ+K)

(
z
∂2w

∂x2

)
+ λ0φ

∗ − β1T (14)

Also, the flexural moment of the cross-section of the beam

is defined as follows [16]

M(x, t) = −
∫ h

2

−h
2

bσxxzdz = (λ+2μ+K)Iw,xx−λ0Mφ∗+β1MT

(15)

where I = bh3

12 is the moment of inertia of the cross-section

and Mφ∗ =
∫ h

2
−h
2

bφ∗zdz and MT =
∫ h

2
−h
2

bTzdz, are defined

as the moment of beam due to the presence of microstretch

and thermal effects, respectively.

Now, the equation of transverse motion of the beam is given

by
∂2M

∂x2
+ ρA

∂2w

∂t2
= qo(x, t) (16)

where A = bh is the area of cross section and qo(x, t)
represents the load acting on the beam along the thickness

direction.
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Therefore, by substituting (15) into (16), the following

equation of motion of the beam is obtained as

(λ+2μ+K)I
∂4w

∂x4
−λ0

∂2Mφ∗

∂x2
+β1

∂2MT

∂x2
+ ρA

∂2w

∂t2
= qo(x, t)

(17)

To simplify the system, the following non-dimensional

quantities are considered as

x′ =
x

L
, z′ =

z

h
, w′ =

w

h
, t′ =

c1
L
t , t′0 =

c1
L
t0 , T ′ =

T

T0
,

φ′
2 =

ρc21
β1T0

φ2 , φ∗′ =
ρc21
β1T0

φ∗
, M ′

φ∗ =
ρc21

β1T0Ah
Mφ∗ ,

M ′
T =

MT

T0Ah
, q′o =

A2
R

bρc21
qo (18)

Using the above non-dimensional quantities, (9)-(13) and (17)
can be rewritten as

− 1

A2
R

(
z
∂3w

∂x3

)
−p′β̄AR

∂φ2

∂z
+p0β̄

∂φ∗

∂x
− β̄

∂T

∂x
= − 1

A2
R

(
z

∂3w

∂x∂t2

)
(19)

− (1− 2δ2)

AR

∂2w

∂x2
+p′β̄

∂φ2

∂x
+p0β̄AR

∂φ∗

∂z
−β̄AR

∂T

∂z
=

1

AR

∂2w

∂t2
(20)

(
∂2φ2

∂x2
+A2

R
∂2φ2

∂z2

)
− 2δ∗1φ2 − 2δ∗1

β̄AR

∂w

∂x
=

1

δ21

∂2φ2

∂t2
(21)

(
∂2φ∗

∂x2
+ A

2
R

∂2φ∗

∂z2

)
− p1δ

∗
2φ

∗
+

p0δ∗
2

β̄A2
R

(
z
∂2w

∂x2

)
+ v̄δ

∗
2T =

1

δ2
2

∂2φ∗

∂t2
(22)

(
∂2T
∂x2 +A2

R
∂2T
∂z2

)
− c̄

(
∂T
∂t + t0

∂2T
∂t2

)
+ ε̄T

β̄A2
R

(
∂
∂t + t0

∂2

∂t2

)
z ∂2w

∂x2 − v̄ε̄T (
∂φ∗

∂t + t0
∂2φ∗

∂t2 ) = 0

(23)
1

12A2
R

∂4w

∂x4
− p0β̄

∂2Mφ∗

∂x2
+ β̄

∂2MT

∂x2
+

∂2w

∂t2
= qo (24)

(After dropping the superscript for conveniences)

where

AR =
L

h
, c21 =

λ+ 2μ+K

ρ
, c22 =

μ+K

ρ
, c23 =

γ

ρj
,

c24 =
2α0

ρj0
, δ∗1 =

KL2

γ
, δ∗2 =

ρc21L
2

α0
, δ2 =

c22
c21

,δ21 =
c23
c21

,

δ22 =
c24
c21

, p′ =
K

ρc21
, p0 =

λ0

ρc21
, p1 =

λ1

ρc21
, β̄ =

β1T0

ρc21
,

c̄ =
ρCec1L

K∗ , ε̄T =
β2
1T0L

ρc1K∗ ,εT =
ε̄T
c̄

, v̄ =
β2

β1
(25)

IV. INITIAL AND BOUNDARY CONDITIONS

In order to solve the problem, both the initial and boundary

conditions have been considered. The initial conditions of the

problem are as mentioned below:

w(x, 0) =
∂w(x, 0)

∂t
= 0 , T (x, z, 0) =

∂T (x, z, 0)

∂t
= 0

φ∗(x, z, 0) =
∂φ∗(x, z, 0)

∂t
= 0 , φ2(x, z, 0) =

∂φ2(x, z, 0)

∂t
= 0

(26)

It is assumed that both the axial ends x = 0 and x = 1 of

the beam are held at simply supported conditions. Therefore

we have following set of boundary condition [16].

For Simply Supported Beam (SS):

w(0, t) =
∂2w(0, t)

∂x2
= 0 and w(1, t) =

∂2w(1, t)

∂x2
= 0 (27)

Also, As there is no flow of heat, micropolar and microstretch

parameters across the upper and lower surfaces of the beam i.e.

∂T

∂z
(x, z, t) =

∂φ2

∂z
(x, z, t) =

∂φ∗

∂z
(x, z, t) = 0

at z = ±1

2
and t = 0. (28)

V. LAPLACE TRANSFORMS TECHNIQUE FOR TIME

DOMAIN

Now, the Laplace transforms with respect to time ’t’ is

defined as under [18]:

W (x, s) =
∫∞
0

e−stw(x, t)dt , Φ2(x, z, s) =
∫∞
0

e−stφ2(x, z, t)dt

(29)

Φ∗(x, z, s) =
∫∞
0

e−stφ∗(x, z, t)dt , Θ(x, z, s) =
∫∞
0

e−stT (x, z, t)dt

(30)

where s = LS
c1

is a non-dimensional complex variable having

positive real part. Here ’S’ is a dimensional Laplace transform

parameter with respect to time variable ’t’. Applying Laplace

transform (30) in system of equations (21)-(24) with initial

conditions (26), the following system of equations are obtained(
∂2Φ2

∂x2 +A2
R

∂2Φ2

∂z2

)
−
(
2δ∗1 + s2

δ21

)
Φ2 − 2δ∗1

β̄AR

∂W
∂x = 0

(31)

(
∂2Φ∗
∂x2 +A2

R
∂2Φ∗
∂z2

)
− (p1δ

∗
2 + s2

δ22
)Φ∗ + p0δ

∗
2

β̄A2
R

z ∂2W
∂x2 + v̄δ∗2Θ = 0

(32)

(
∂2Θ
∂x2 +A2

R
∂2Θ
∂z2

)
− sτ0c̄Θ+ ε̄T

β̄A2
R

sτ0z
∂2W
∂x2 − v̄ε̄T sτ0Φ

∗ = 0

(33)

1
12A2

R

∂4W
∂x4 − p0β̄

∂2MΦ∗
∂x2 + β̄ ∂2MΘ

∂x2 + s2W = qo(x, s)
(34)

where

MΦ∗ =

∫ 1
2

−1
2

Φ∗(x, z, s)zdz , MΘ =

∫ 1
2

−1
2

Θ(x, z, s)zdz , τ0 = 1 + st0

(35)
Because there is no flow of heat, micropolar and

microstretch parameters on the upper and lower surfaces of
the beam and to evaluate approximate solution under some
assumptions and uncoupled system(v̄ = 0) of above equations
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(32), (33), then the trial solution of resulting system of
equations are given as follows

Θ(x, z, s) =
εT

β̄A2
R

(
z −

sinpz

pcos(
p
2
)

)
d2W

dx2

Φ
∗
(x, z, s) =

p0δ∗
2

β̄A2
R

(p1δ∗
2

+ s2

δ2
2

)

(
z −

sinqz

qcos(
q
2
)

)
d2W

dx2
(36)

It is mentioned here that the values of p and q are still

subjected to modifications.

Now, differentiating solution (36) w.r.t z twice and then

substituting for ∂2Φ∗
∂z2 and ∂2Θ

∂z2 in (32), (33), one can obtain

d2Φ∗
dx2 = −

⎡
⎣ p0δ

∗
2q

∗

β̄

(
p1δ∗2+

s2

δ2
2

) sinqz
qcos( q

2 )
+

v̄δ∗2εT
β̄A2

R

(
z − sinpz

pcos( p
2 )

)⎤⎦ d2W
dx2

d2Θ
dx2 =

⎡
⎣− εT p∗

β̄
sinpz

pcos( p
2 )

+ v̄ε̄T sτ0
β̄A2

R

⎛
⎝ p0δ

∗
2(

p1δ∗2+
s2

δ2
2

)
⎞
⎠(z − sinqz

qcos( q
2 )

)⎤⎦ d2W
dx2

(37)

where

p∗ = p2 +
sτ0c̄

A2
R

, q∗ = q2 +

(
p1δ

∗
2 + s2

δ22

)
A2

R

Now from (35)

MΦ∗ =

∫ 1
2

−1
2

Φ∗zdz and MΘ =

∫ 1
2

−1
2

Θzdz

with the help of (37),

d2MΦ∗
dx2 =

∫ 1
2
−1
2

d2Φ∗
dx2 zdz =

⎡
⎣ p0δ

∗
2q

∗

12β̄

(
p1δ∗2+

s2

δ2
2

)g(q)− v̄δ∗2εT
12β̄A2

R

(1 + f(p))

⎤
⎦ d2W

dx2

d2MΘ

dx2 =
∫ 1

2
−1
2

d2Θ
dx2 zdz =

[
εT p∗

12β̄
f(p) + v̄ε̄T sτ0

12β̄A2
R

(
p0δ

∗
2

(p1δ∗2+
s2

δ2
2

)

)
(1 + g(q))

]
d2W
dx2

(38)

where

f(p) =
24

p3

(p
2
− tan

p

2

)
, g(q) =

24

q3

(q
2
− tan

q

2

)
(39)

Now, by substituting (38) into (34), the following equation

is obtained as

1

12A2
R

d4W

dx4
+

1

12A2
R

[F (p, q) + p0G(p, q)]
d2W

dx2
+ s2W = qo(x, s)

(40)

where the coefficients F (p, q) and G(p, q) are given by

F (p, q) = εT p
∗A2

Rf(p) + v̄ε̄T sτ0

⎛
⎝ p0δ

∗
2

(p1δ∗2 + s2

δ22
)

⎞
⎠ (1 + g(q))

G(p, q) = v̄δ∗2εT (1 + f(p))−
⎛
⎝ p0δ

∗
2q

∗A2
R

(p1δ∗2 + s2

δ22
)

⎞
⎠ g(q) (41)

On the other hand, by substituting (36) in (35), the following

equations are obtained as

d2MΦ∗

dx2
=

⎛
⎝ p0δ

∗
2

12β̄A2
R(p1δ

∗
2 + s2

δ22
)

⎞
⎠ [1 + g(q)]

d2

dx2

(
d2W

dx2

)

d2MΘ

dx2
=

εT
12β̄A2

R

[1 + f(p)]
d2

dx2

(
d2W

dx2

)
(42)

Now, on comparing both equations of (38) to both equations

of (42), one can obtain

F (p, q) � εT [1 + f(p)]
d2

dx2

G(p, q) � −
⎛
⎝ p0δ

∗
2

(p1δ∗2 + s2

δ22
)

⎞
⎠ [1 + g(q)]

d2

dx2
(43)

Therefore, by substituting (43) in (40), one can obtain

Ds
d4W

dx4
+ s2W = qo(x, s) (44)

where

Ds =
1

12A2
R

[1 + εT (1 + f(p))− εφ(1 + g(q))] and

εT =
β2
1T0

ρ2Cec21
and εφ =

⎛
⎝ p20δ

∗
2

p1δ∗2 + s2

δ22

⎞
⎠ (45)

Here εT and εφ are the thermo-mechanical and

elasto-stretch coupling constants of the beam respectively. As

the thermal gradient and the gradient of microstretch element

are negligible small along perpendicular to the thickness

direction of the beam. Therefore, under these assumptions,

we have

p2 =
−sτ0c̄

A2
R

⎡
⎣1− v̄p0δ

∗
2

p1δ∗2 + s2

δ22

⎤
⎦

q2 = −
(p1δ

∗
2 + s2

δ22
)

A2
R

[
1 +

v̄εT
p0

]
(46)

Thus the solution given by (36) now represent the solution

of coupled equations (32), (33) with modified values of p and

q given by (46).

VI. SOLUTION OF THE PROBLEM

Now consider Exponential decaying time varying load

acting vertically downward along the thickness direction of

the beam. Therefore

qo(x, t) = −q∗(1− exp(−Ωt)) (47)

where q∗ and Ω are the magnitude and excitation frequency

of the applied load, respectively.

Now, by applying Laplace Transform w.r.t ’t’ on (47), we

get

qo(x, s) = −q∗(
Ω

s(s+Ω)
) (48)

Therefore, (44) can be rewritten as follows[
d4

dx4
− η4

]
W =

−q∗

Ds
(

Ω

s(s+Ω)
) where η4 = − s2

Ds
(49)
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Now, we again employ Laplace transforms with respect to

’x’ as defined by

W̄ (ξ, s) =

∫ ∞

0

e−ξxW (x, s)dx (50)

where ξ = Lξ′ is a non dimensional Laplace transform

parameter which may be real or complex. Here ’ξ′’ is a

dimensional Laplace parameter with respect to space variable

’x’.

Applying Laplace transform (50) in (49), the following

equation is obtained

[ξ4W̄ (ξ, s)− ξ3W (0, s)− ξ2W ′(0, s)− ξW ′′(0, s)−W ′′′(0, s)]− η4W̄ (ξ, s) = − q∗

Ds
( Ω
s(s+Ω) )

1
ξ

(51)

Now, by applying boundary condition (27), one can obtain

W̄ (ξ, s) = c1(
ξ2

ξ4 − η4
) + c2(

1

ξ4 − η4
)− q∗

Ds
(

Ω

s(s+Ω)
)(

1

ξ(ξ4 − η4)
)

(52)

where c1 = W ′(0, s) = ∂W (0,s)
∂x and c2 = W ′′′(0, s) =

∂3W (0,s)
∂3x .

Now, by Taking Inverse Laplace transform of equations (52)

with respect to x, the following equation is derived as follows

W (x, s) =
c1

2η
S̃(ηx)+

c2

2η3
S(ηx)− q∗

2η4Ds
(

Ω

s(s+Ω)
)(C̃(ηx)−2) (53)

where C̃(ηx) = coshηx+ cosηx, S(ηx) = sinhηx− sinηx,

S̃(ηx) = sinhηx+ sinηx.

Now, by Applying Boundary condition (27) at the axial end

x = 1 of the beam, we obtain a non-homogeneous system of

linear algebraic equations in unknowns c′is (i = 1, 2). This

system of equations have infinite many solution if rank of the

matrix is less than number of unknown’s i.e. determinant of

the coefficients of unknown’s is equal to zero. Therefore, the

following characteristic equations of the beam are obtained as

follows

sinη sinhη = 0 (54)

The corresponding characteristic roots of equations are

given by [16]

η1 = 3.1416, η2 = 6.2832 and ηk = kπ, for k ≥ 3 and k ∈ I
(55)

Therefore, Deflection W (x, s) can be obtained as

W (x, s) = −q∗Ω
4s3(s+Ω)G1(η)

[A1S̃(ηx) +B1S(ηx)− 2G1(η)(C̃(ηx)− 2)]

(56)

where

G1(η) = sinηsinhη , A1(η) = sinη(coshη − 1)+

sinhη(cosη−1) , B1(η) = sinη(coshη−1)−sinhη(cosη−1)

Using Laplace Inversion formula with respect to time ’t’ as

under [18]

w(x, t) =
1

2πi

∫ γ+i∞

γ−i∞
estW (x, s)ds (57)

Now by using (56), the above (57) can be rewritten as:

w(x, t) =
1

2πi

∫ γ+i∞

γ−i∞

−q∗ΩestH1(η, x)

4s3(s+Ω)G1(η)
ds, (58)

where H1(η, x) = A1S̃(ηx)+B1S(ηx)−2G1(η)(C̃(ηx)−2).
Now, by using Cauchy Residues theorem [18], [19] we get

that

w(x, t) =
∑

Residues at the poles of estW (x, s) (59)

A. For Simply Supported Beam

In this case, Singular points of estW (x, s) are given poles

of order one at [19]

s = 0, − Ω and G1(η) = 0 (60)

Therefore, Residue of estW (x, s) at singular points s =
0,−Ω are given by

Res[estW (x, s), at s = 0] = −q∗

2 A2
Rx(x

3 − 2x2 + 1)[1 + εφ1(1 + g(q1))]

(61)

where

εφ1
=

p20
p1

, g(q1) =
−12

q21
+

24

q31
tanh(

q1
2
),

q1 =

√
p1δ∗2

(
1 + v̄εT

p0

)
AR

Residue at s = −Ω, is given by

Res[estW (x, s), at s = −Ω] = q∗e−Ωt

4Ω2

H1(η̂,x)
G1(η̂)

(62)
where

η̂ =
4
√
3(1 + i)

√
ΩAR

[
1− εT

4
(1 + f(p̂)) +

ε̂φ
4
(1 + g(q̂))

]
,

ε̂φ =
p20δ

∗
2

p1δ∗2 + Ω2

δ2
2

,p̂ =
1

AR

√√√√c̄Ω(1− Ωt0)

(
1− v̄p0δ∗2

p1δ∗2 + Ω2

δ2
2

)
,

q̂ =
i

AR

√(
p1δ∗2 +

Ω2

δ22

)
(1 +

v̄εT
p0

)

Now, the roots of equation G1(η) = 0 are given in (55). Also,

the relation η4 = −s2

Ds
which gives us

sn = iη2n
√
Ds = is0

[
1 +

εT
2
(1 + f(ˆ̂p))−

ˆ̂εφ
2
(1 + g(ˆ̂q))

]
(63)

where

s0 =
η2n

2
√
3AR

, ˆ̂p =
1

AR

√√√√√c̄s0(1 + t0s0)

⎛
⎝1− v̄p0δ∗2

p1δ∗2 +
s2
0

δ2
2

⎞
⎠,

ˆ̂q =
1

AR

√(
p1δ∗2 +

s20
δ22

)
(1 +

v̄εT

p0
),f(ˆ̂p) =

−12

ˆ̂p2
+

24

ˆ̂p3
tanh

(
ˆ̂p

2

)
,

g(ˆ̂q) =
−12

ˆ̂q2
+

24

ˆ̂q3
tanh

(
ˆ̂q

2

)
,ˆ̂εφ =

p20δ
∗
2

p1δ∗2 +
s2
0

δ2
2

Therefore Residues at s = sn are given by

Res[estW (x, s), at s = sn] =
−q∗Ωesnt

4s3n(sn +Ω)

H1(ηn, x)
dG1

ds |s=sn

(64)
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Therefore Deflection for Simply Supported Beam as

mentioned in (59), by using (61), (62) and (64) can be written

as

w(x, t) = −q∗

2 [x(x3 − 2x2 + 1)A2
R[1 + εφ1

(1 + g(q1))]− e−Ωt

2Ω2

H1(η̂,x)
G1(η̂)

+

esntΩ

2s3n(sn +Ω)

H1(ηn, x)
dG1

ds |s=sn

] (65)

VII. NUMERICAL ILLUSTRATIONS AND GRAPHICAL

INTERPRETATIONS

Here, Consider magnesium like material beam (microstretch

thermoelastic solid). The physical parameters are given as

follows [2], [17]

ρ = 1.74× 103Kg/m3, λ = 9.4× 1010N/m2, μ = 4.0
×1010N/m2, K = 1.0×1010N/m2, j0 = 0.185×10−19m2,

T0 = 298oK, β1 = 2.68 × 106N/m2deg, β2 =
2.0× 106N/m2 ,

K∗ = 1.7× 106J/m sec deg, Ce = 1.04× 103J/Kg deg

and the value of relevant stretch parameters are given as

λ0 = 0.5 × 1010N/m2, λ1 = 0.5 × 1010N/m2, α0 =
0.779× 10−9N

Here dimension of the beam are taken as length L = 60μm,

width b = 3μm and thickness h = 1μm. The magnitude (q∗)
of the load is 2× 10−7 and frequency (Ω) is 0.1076 Hz. The

non-dimensional values of the characteristic times in case of

Simply Supported boundary condition are obtained from the

relation t0 = s−1
0 . Therefore value of relaxation time are given

as t0 = 21.05, 5.26 for first and second mode respectively.

Non-dimensional deflection has been computed in (65).

Fig. 1 Deflection (w) in Simply Supported Microstretch Thermoelastic
Beam with length (x) for first mode at different considered times

Fig. 2 Deflection (w) in Simply Supported Microstretch Thermoelastic
Beam with length (x) for second mode at different considered times

Fig. 3 Deflection (w) in Simply Supported Microstretch Thermoelastic
Beam with time (t) for first mode at different considered lengths

Here Figs. 1 and 2 represent the variation of deflection

for microstretch thermoelastic beam under exponential time

varying load, for simply supported beam, versus length (x)

for first and second modes respectively at different considered

values of time (t). From Figs. 1 and 2, it is observed that

deflection profiles are symmetrical about the mid point of

the beam. Also, it is observed that magnitude of deflection

decreases as mode increases from first to second. In Fig. 2,

it is observed that magnitude of deflection increases as time

increases.

Fig. 3 represents the variation of deflection for microstretch

thermoelastic beam under exponential time varying load, for

simply supported beam, versus time (t) for first mode at

different considered values of length (x). From Fig. 3, it is

observed that magnitude of deflection is maximum at the mid

point of the beam and decreases as it moves away from this

point on either side of the beam.

VIII. CONCLUSION

The flexural vibrations of homogeneous, isotropic,

micropolar microstretch generalized thermoelastic thin beam

resonators due to exponential time varying load have been

investigated under Euler-Bernoulli hypothesis by using

Laplace transforms technique twice. It is concluded that

deflection profiles are symmetrical about the mid point of the

beam in case of SS beam. It is observed that deflection has

larger value in first mode as compare to second mode. The

deflection for first two modes for microstretch thermoelastic

beam represent significant results.
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