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Mathematical Model of Dengue Disease with
the Incubation Period of Virus
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Abstract—Dengue virus is transmitted from person to person
through the biting of infected Aedes Aegypti mosquitoes. DEN-1,
DEN-2, DEN-3 and DEN-4 are four serotypes of this virus. Infection
with one of these four serotypes apparently produces permanent
immunity to it, but only temporary cross immunity to the others. The
length of time during incubation of dengue virus in human and
mosquito are considered in this study. The dengue patients are
classified into infected and infectious classes. The infectious human
can transmit dengue virus to susceptible mosquitoes but infected
human can not. The transmission model of this disease is formulated.
The human population is divided into susceptible, infected, infectious
and recovered classes. The mosquito population is separated into
susceptible, infected and infectious classes. Only infectious
mosquitoes can transmit dengue virus to the susceptible human. We
analyze this model by using dynamical analysis method. The
threshold condition is discussed to reduce the outbreak of this
disease.

Keywords—Transmission model, intrinsic incubation period,
extrinsic incubation period, basic reproductive number, equilibrium
states, local stability.

. INTRODUCTION

N recent years, dengue disease has become a major public

health concern [1]. This disease is found in tropical and
sub-tropical regions around the world. More than 100
countries in Africa, the Americas, the Eastern Mediterranean,
South-east Asia and the Western Pacific are affected due to
this disease. Only nine countries had experienced dengue
epidemics before 1970 but a number had increased more than
four-fold by 1995. In 2001, there were more than 609,000
patients due to dengue disease. This was greater than double
the number of dengue patients which were recorded in the
same region in 1995. Two-fifth of the world’s population is
now at risk from dengue disease. WHO currently estimates
there may be 50 million cases of dengue disease worldwide
per year. Attack rates among susceptible are 40-50% may be
reach 80-90% during epidemics of this disease. The person
who be infected with this disease are classified into 3 forms,
Dengue Fever (DF), Dengue hemorrhagic fever (DHF) and
Dengue shock syndrome (DSS). These three forms depend on
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the symptom of each patient. DHF and DSS are severe forms
of this disease. The transmission cycle of dengue virus by the
mosquito Aedes aegypti begins with a dengue infectious
person. Most of these people will have virus circulating in the
blood (viremia) that lasts for about four to seven days [2,3].
During this viremic period, an uninfected female Aedes
aegypti mosquito bites the person and ingests blood that
contains dengue virus. Although there is some evidence of
transovarial transmission of dengue virus in Aedes aegypti,
usually mosquitoes are only infected by biting a viremic
person. Then within the mosquito, the viruses replicate during
an extrinsic incubation period of eight to twelve days. After an
extrinsic incubation period of the mosquito, its salivary glands
become infected and the virus is transmitted when the
infectious mosquito bites and injects the salivary fluid into the
wound of the human. The mosquito can bite a susceptible
person and could transmit the virus to him or her, as well as to
every other susceptible persons, the mosquito bites for the rest
of its lifetime. The virus then replicates in the person during
an intrinsic incubation period [4].

The original model used by Esteva and Vargas [5] did not
include the intrinsic and extrinsic incubation periods of
dengue virus in human and vector populations. Their model
considered the transmission between the human and vector
populations. The human population is separated into
susceptible, infectious and recovered classes. The vector
population is divided into susceptible and infectious classes.
In our study, the length of time during the dengue virus
circulating in the blood of human and vector populations are
considered. The infected human and infected vector classes
are included into the model. There are the difference between
infected and infectious classes for the human and vector
populations. The infected classes can not transmit dengue
virus until they become to be infectious class.

Il. MATHEMATICAL MODEL

Let S (¢) be the number of susceptible human population
at time t,
X1(f) be the number of infected human population at
time t,
In (t) be the number of infectious human population at

time t,
R (¢) be the number of recovered human population at

time t,
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§v(t) be the number of susceptible vector population at
time t,

X, (7) be the number of infected vector population at
timet,

fv(t) be the number of infectious vector population at

time t,
The dynamical system for human and vector populations
can be described by the following equations:
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with the conditions
Np=Sp+Xn+In+Rr and N, =S,+Xy+1y

where

N7y is the total number of human population,

A s the birth rate of the human population,

B, is the infectious rate of dengue virus from vector to
human population,

ay, is the rate at which the infected human change to be
infectious human population,

p, is the infectious rate of dengue virus from human to
vector population,

4y, is the death rate of human population,

r is the recovery rate of human population,

C s the constant recruitment rate of the vector population,
a, is the rate at which the infected vector change to be

infectious vector population,

M, is the death rate of vector population.

The total human and vector populations are constant, thus
the rate of change for both populations equal to zero. Then
d d
—N7y=0 and —Ny, =0. 2
T ALd (2

From (2), we obtain A = g, for human population and

Ny < for vector population.
Hy

Normalizing (1) by letting
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then the reduced equations become
ds
E:,uh_ﬂhSIv(C/,uv)_,uhS
dx
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%:ahX—rI—th (3)
dx
dtv =p,INr(1-X,-1)-a, X, —u,X,
dl,
?:ava_:uv]v

with the conditions S+ X+I[+R =1
and S, +X,+1,=1.

1. ANALYSIS OF THE MODEL

A. Analytical Results

Finding equilibrium states by setting right hand side of all
equations in (3) equal to zero, then we obtain two equilibrium
states:

i) Disease free equilibrium state: Vo= (4,0,0,0,0) %)
ii) Endemic equilibrium state:
V=" X1, X,.1)) (5)

2
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The local stability for each equilibrium state can be
determined by the sign of all eigenvalues. If all eigenvalues
have negative real part, then that equilibrium state is local
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stability. We find eigenvalues for each equilibrium state by
setting
det( -¢p)=0 (6)
where J is the Jacobian matrix of the right hand side of
(3) calculated at the equilibrium state.
For the equilibrium state ¥, , the characteristic equation is
4 3 2
(E+ )" +w3d™ +wpd™ +w& +wp) =0 @)
where
wy=a, +(M+N)u, +2u,
W = MNEE +2M+N)pipit, + 15 +6,(M+N)y +11,)
wy =y, (o, (MNuy + (M + N)u,)
+u, 2MNpy + (M + N) ) ®)
wo = MN/'II?/UV a- EO)(av + /uv)
There are five eigenvalues corresponding to (7). We denote

these five eigenvalues by &;,&p,&3,&4 and &. &1 =—uy,
has negative real part. The other four eigenvalues can be
obtained by solving
EY waE3 w2+ mE+wy =0.
These four eigenvalues have negative real part if they
satisfy the Routh-Hurwitz criteria [6,7] :

wg > 0 9)
wy > 0 (10)
wo >0 (11)
W wowg > w12 + w% wo (12)

It can be easily seen that coefficients w3, woand wy
satisfy (9), (10) and (11) when E <1. Evaluating
wiwaws —(wf +w§wp)
=M+ N)up(Mpy + p, ) ey, +Mpy + 1)
(Nup + py ey, + Nuy + o, )@, +24,)
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W Wywg — (wl2 + W32w0) is always positive. Therefore the
disease free equilibrium state is local stability for £q <1.
For the equilibrium state 171 , the characteristic equation is
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There are five eigenvalues corresponding to (13). We
denote these five eigenvalues by &,&0,&3,84 and &x.

These four eigenvalues have negative real parts if they satisfy
the Routh-Hurwitz criteria, that is [6,7]
u; >0; fori=1,234,5 (14)

Uoligliy —u% —uful >0 (15)

2 2 2 2
(g —ug) (ugugiy —uz —ugun) —ug(uguz —up)” —ugug >0 (16)

It can be easily seen that the coefficients u; fori=1, 2, 3,
4,5 are satisfied (14) for Eg> 1. From our evaluations, we
found that conditions (15) and (16) are satisfied for Eg>1

also.
Thus, the endemic equilibrium state is local stability for
EO >1.

B. Numerical Results

In this study, we are interested in the incubation period of
dengue virus in human and vector populations. After each
susceptible person is bitten by infectious vector, that person
can not transmit dengue virus immediately. We call this
person in this period as an infected human. Intrinsic
incubation period of dengue virus in human is about 5 days
[2]. When the susceptible vector bites the infectious person, it
will be infected vector before it become to be infectious
vector. Extrinsic incubation period of dengue virus in vector
population is about 10 days [2]. The susceptible person is the
person who has no immunity and not infected. The recovered
person is the person who has immunity after infected with
dengue virus. The parameters are determined by real life
observations. y, = 0.0000391 corresponds to the real life

expectancy of 70 years for human. 3, and 3, are arbitrarily
chosen. o, = 1/5 corresponds to the extrinsic incubation

period of 5 days.«,= 1/10 corresponds to the intrinsic

incubation period of 10 days. r = 1/14 corresponds to the
length of 14 days for illness. x, = 1/14 corresponds to the
mean life of 14 days for vector population. C is the constant
recruitment rate of vector population; this parameter is
arbitrarily chosen.
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Fig. 1 Time“s‘eries of susceptible hhman, infected human, infectious
human, infected vector and infectious vector proportions. The values
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Fig. 2 Time series of susceptible human, infected human, infectious
human, infected vector and infectious vector proportions. The values

of the parameters are 1z, =0.0000391, g, =0.00005, ¢, = 1
5
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Fig. 1 and Fig. 2 show time development of human and
vector classes. Fig. 1 shows numerical solutions for Ey< 1.
Fig. 2 shows numerical solutions for Ey> 1. The solutions

converge to the disease free equilibrium state as shown in Fig.
1. Fig. 2, the solutions oscillate to the endemic equilibrium
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state (0.104486, 0.000175039, 0.00048984, 0.00113983,
0.00159577).

IV. DiscussioN AND CONCLUSION

We formulate the transmission model of dengue disease by
considering the incubation period of dengue virus in human
and vector populations. The basic reproductive number is

E'=./Ey where

EO _ [vang (17)
(r+ 1) og, + ) 14, (0, + 14,)

E' represents the number of secondary cases that one case
can produce if introduced into a susceptible person. £, is the

threshold condition. The threshold condition and the stability
of the solutions are shown in Fig. 3.
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Fig. 3 Bifurcation diagrams of system (3), demonstrate the
equilibrium solutions of susceptible, infected, infectious human and
infected, infectious vector population respectively. — represents the

stable solutions and --- represents the unstable solutions. For £, <

1,V o will be stable. For E,>1, ¥, will be stable

The basic reproductive number for the endemic equilibrium
state will prevail if and only if the basic reproductive number
exceeds one. The disease free equilibrium state exists and is
local stability if the basic reproductive number is less than one
and become unstable when the basic reproductive number is
more than one. The numerical simulations are used to confirm

results in the previous section. The behavior of solutions can
be described in terms of the basic reproductive number; if this
number is less than or equal to one, thus an infective replace
itself with less than one new infective, the disease die out.
Furthermore, the susceptible fraction approaches one since
everyone is susceptible when the disease has vanished. If the
basic reproductive number is greater than one, the normalized
susceptible human decreases. The normalized infected human,
infectious human populations increase. These subsequent
behaviors occur because there are enough susceptible human
to be infected from infectious vector.

The basic reproductive numbers are used for controlling the
diseases [8, 9, 10,11]. The human population should protect
themselves from infected with dengue virus by using bed-nets
to reduce the infection rate of the vector population. This will
cause the basic reproductive number to decrease below one.
Consequently, we can reduce the outbreak of the disease.
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