
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:9, 2017

1070

1

Abstract—Currently, database management systems have various
tools such as backup and maintenance, and also provide statistical
information such as resource usage and security. In terms of query
performance, this paper covers query optimization, views, indexed
tables, pre-computation materialized view, query performance
analysis in which query plan alternatives can be created and the least
costly one selected to optimize a query. Indexes and views can be
created for related table columns. The literature review of this study
showed that, in the course of time, despite the growing capabilities of
the database management system, only database administrators are
aware of the need for dealing with archival and transactional data
types differently. These data may be constantly changing data used in
everyday life, and also may be from the completed questionnaire
whose data input was completed. For both types of data, the database
uses its capabilities; but as shown in the findings section, instead of
repeating similar heavy calculations which are carrying out same
results with the same query over a survey results, using materialized
view results can be in a more simple way. In this study, this
performance difference was observed quantitatively considering the
cost of the query.

Keywords—Materialized view, pre-computation, query cost,
query performance.

I. INTRODUCTION

IME is precious and users do not like waiting, and as such
computer programs are expected to be faster; especially in

client/server-based programming, where this fact is even more
important. In the case of database overload, many users may
have to wait longer. The operations on very large data with
complex queries have various challenges.

Queries run very fast in database management systems.
Although many of them include sorting, calculating, and
merging operations, they complete the process in less than a
second. Various optimization techniques are applied to
improve the performance of constant and frequently used
queries over multiple tables. These query optimization
techniques are usually arranged to get the best query
performance. Optimized and frequently used queries can be
stored in databases as views. In addition, some queries that
require heavy and high capacity operations are pre-calculated.
In this way, obtained results are saved at specific time
intervals to the materialized view. Thus, query performance
and saving time are achieved.

II. CONCEPTUAL FRAMEWORK

A. Data Query Language

The users/applications interact with the database through
the data query language. The data query language is a special-

Yusuf Ziya Ayik is with the Atatürk University, Turkey (e-mail:

ziyaayik@atauni.edu.tr).

purpose programming language for database. The structure of
the database is dominant factor in determining the query
language, which is used to access data in the database [1].
SQL (Structured Query Language) is one of the most common
structured query languages that performs a number of
operations, such as read, update, add new data, delete data,
etc. in a database, and it has three components: Data
Definition Language (DDL), Data Manipulation Language
(DML), and Data Control Language (DCL) [2].

B. SQL Query Optimization

Despite the use of high speed servers supported by powerful
hardware, the response time is sometimes extended due to a
query. Query optimization is used to overcome this problem.
Query optimization is an important issue for SQL developers
and database administrators (DBAs). In query optimization,
the data access techniques must be well-defined. In addition,
determining proper rules, semantic transformation, and
choosing the optimal query techniques should be well-
understood [3]. Different techniques are used to optimize
queries. Generally, alternative query plans with the same
result are created and compared for query performance in
database systems. There are many rules for alternative query
formation. However, these rules always may not give good
results. Rules that give good results for some queries may not
give very good results for other queries [4].

C. Views

Views are a type of query which is used to form a virtual
table displaying the data from one or more tables. Although
data entry is possible, data cannot be recorded; that is why
they are called virtual tables. The desired columns of the real
tables are represented, so that they are advantageous in terms
of security as they allow users to access certain parts of the
tables [5].

D. Indexed Tables

Indexed tables allow access to the desired entry directly,
instead of scanning the entire table in order to access the
corresponding entry. An index table is created apart from the
data table. A created index of a table contains the relevant
table keys and the addresses on a disk [6]. Thus, queries over
indexed tables have less access time on the disk.

E. Pre-Computation

Pre-computation is the action of generating a result table to
avoid the same calculations being repeated by performing pre-
calculations before the queries are executed. It is usually used
for complex structured queries to compute results. A simple
example; instead of calculating the value of π in queries, the
pre-calculated value can be used. The materialized view term
is used for the process of keeping the pre-calculation results in

Materialized View Effect on Query Performance
Yusuf Ziya Ayık, Ferhat Kahveci

T

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:9, 2017

1071

database systems [7].

F. Materialized View

The difference between materialized view and the views is
the physical space occupancy. The materialized views hold the
query results at the moment that they were created. Whereas
the views are storing a SQL query, materialized views are
storing both the SQL query and the query results. Therefore,
the query results of the materialized views must be updated
periodically [8], [9] (Fig. 1).

Fig. 1 Updating materialized view results

G. Query Performance Analysis

Database management systems have specific query
performance analysis tools. In this study, the most used tools
of database management systems were researched. The top
three database systems were Oracle, MySQL and Microsoft
SQL Server based on the Db-Engines Web site monthly
database popularity ranking on October 2016 [10].

Oracle, Microsoft SQL Server and MySQL use Cost-Based
Optimizer (CBO). The query optimization component of the
database system forms query execution plans. In this way,
each alternative query plan returns cost information based on
input/output, processor, memory, and resource consumption,
also the number of rows, and the size of the initial dataset
(Fig. 2). At the end, the least costly query plan is chosen by
the optimizer [11]-[13].

Fig. 2 The operation of the database optimization component [14]

III. METHOD

A. Purpose of Research

The purpose of this research is to point out concepts about
query performance and experimentally observe the cost of the
SQL query that gives the same result in cases of optimized,
index, views, and materialized view usage.

B. Research Model

In the research, most frequently used basic concepts that
speed up the queries in database management systems were
researched and defined. These are query optimization,
indexing, use of views and materialized views in general.
Query cost differences were evaluated based on the "cost"
variant of Oracle database management system`s cost-based
optimization [15].

C. Data Collection

The cost data obtained by the PL/SQL Developer program's
Explain Plan Window was saved according to the cases in
which the SQL query optimizing, index, views, and
materialized view usage. These data were arranged in tabular
form to create a graphic and the cost of the questionnaire was
evaluated in different cases.

D. Findings

Tested queries in the study were given in this section
together with screen outputs and results. The test query that
finds the average of the first question within the survey results
was called "original".

Original: select avg(value) from test_survey having
question_no=1 group by question_no

When the query was checked, it was seen that "having" was
used. "Having" filters the results after all records were
scanned in the table. For this reason, the use of "having" in
"select" queries should be avoided [3]. In Fig. 3, the cost value
of the "original" query was calculated in the "cost" column of
the Explain Plan Window of the PL / SQL Developer
program. For the "optimized" query, only related rows were
scanned by using "where" instead of "having". In this case the
optimized original query is as follows:

Optimized: select avg(value) from test_survey where
question_no=1 group by question_no

Fig. 3 Cost value in the query Explain Plan Window

Firstly, in the case of without view; non-indexed and
indexed, and then in the case of with view; non-indexed,
indexed and materialized costs of the original query and
optimized query were recorded (Table I).

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:9, 2017

1072

TABLE I
THE COSTS OF QUERIES IN DIFFERENT CASES

 Without View With View Materialized View

 Non-indexed Indexed Non-indexed Indexed

Original 341 147 341 147 2

Optimized 334 48 334 48 2

The index, named as "index_test_survey" has been created

for the cost calculation of the indexed table case. The index
operation was performed on the "question_no" and "value"
columns of the "test_survey" table, because the original query
computes the average value of a given question. The query for
this operation is as follows:
Query 1. "create index index_test_survey on
TEST_SURVEY (question_no, value);"

In case of using the view for cost calculation,
"view_test_survey" view was created with the following
query.
Query 2. "create view view_test_survey as (select * from
test_survey);"

In case of using materialized view for cost calculation,
"mt_test_survey" was created with the following query.
Query 3. "create materialized view mt_test_survey as "select
avg(value) from test_survey having question_no=1 group by
question_no;"

The materialized view "mt_test_survey" keeps both the
original query sequence and the result, and also update
parameters can be assigned. As seen in Query 4, just the
materialized view table was queried to obtain the result of the
original query. Instead of performing any heavy calculations
through the query, the pre-calculated result was listed, which
significantly reduced the query cost.
Query 4. "select * from mt_test_survey;"

IV. CONCLUSION AND DISCUSSION

Table I shows the values of query costs in different cases.
There were 10 different costing cases for original and
optimized queries: Without view/non-indexed, without
view/indexed, with view/non-indexed, with view/indexed and
materialized view cases. These cost values were graphically
shown in Fig. 4.

Fig. 4 The cost of query according to different cases

The cost of the original query was higher than the cost of
the optimized query in all cases except the materialized view.

This difference became clearer by using indexed tables.
Optimization of the query improved the query performance,
because cost reduction was achieved through optimization of
original query.

Regarding the use of indexes, there was a decrease in query
cost relative to the non-indexed case both for optimized and
the original query. The decline in the indexed use of the
optimized query was more than the indexed use of the original
query. In other words, both optimizing query and indexing
table significantly reduced the cost.

Regarding the costs associated with the use of the view, the
indexed/non-indexed costs were same both for with view and
without view cases. For this reason, there was no effect of
using the view on the query performance. As noted at “Views”
subtitle of the article, views provide some advantages, such as
security and ease of use, because they just keep the pre-
defined query sequence.

Finally, regarding the cost of the materialized view in Fig.
4, it was obvious that there was a cost difference relative to
other cases. Given the materialized view, it had very little cost
for both the original query and the optimized query. This small
amount of cost indicates the best performance through very
little consumption of memory, processor and input/output
units. In terms of the materialized view principles, use of
optimized query will affect the performance only during the
update process of the results.

Many techniques and tools for query optimization and
indexing are generally used to improve query performance.
Besides, today's database management systems have the
ability to improve query performance through the query
optimizer tool. Furthermore, the query can be slightly
improved by the user through optimizing or indexing efforts.
However, the performance improvement provided by the
materialized view performance is farther than those
achievements. For this reason, the materialized view is a
concept which should not be ignored during query
performance improvement. It is predicted that the use of the
materialized view, for tables those data entries are in certain
periods or data entry is completed instead of tables with the
transactional data, will provide a high performance
improvement in terms of the general aspect of the database
management system.

REFERENCES
[1] MEB, Veritabanında Sorgular, Ankara, Turquia: Ministry of Education,

2012.
[2] IEEE, SWEBOK version 3.0, Piscataway, New Jersey, USA: IEEE

Computer Society Products and Services, 2014.
[3] N. Kumari, "SQL server query optimization techniques," International

Journal of Scientific and Research Publications, vol. 2, no. 6, pp. 1-4,
2012.

[4] A. Ö. Uysal, "Veritabanı sistemlerinde sorgu optimizasyonlarının veri
analiz teknikleriyle geliştirilmesi," Yıldız Technical University,
Graduate School of Natural and Applied Sciences, 2011.

[5] MEB, Veritabanı Yönetimsel Fonksiyonları, Ankara, Turquia: Ministry
of Education, 2013.

[6] Y. Özkan, Veri madenciliği yöntemleri, Istanbul, Turquia: Papatya
Yayıncılık Eğitim, 2013.

[7] J. Han, M. Kamber and J. Pei, Data Mining Concepts and Techniques
3rd Edition, Waltham, Massachusetts, USA: Elsevier Inc., 2012.

[8] C. J. Date, The Relational Database Dictionary: A Comprehensive

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:9, 2017

1073

Glossary of Relational Terms and Concepts, with Illustrative Examples,
Sebastopol, California, USA: O'Reilly Media, 2006.

[9] L. Ergüder, "Materialized View," 25 06 2013. (Online). Available:
http://www.injavawetrust.com/oracle-ders-40-views-05-materialized-
view/. (Accessed 11 10 2016).

[10] DB-Engines, "DB-Engines Ranking of Relational DBMS," 2016.
(Online). Available: http://db-engines.com/en/ranking/relational+dbms.
(Accessed 14 10 2016).

[11] Oracle, "Optimizer Statistics Concepts," 2016. (Online). Available:
https://docs.oracle.com/database/121/TGSQL/tgsql_statscon.htm#TGSQ
L351. (Accessed 14 10 2016).

[12] M. Pilecki, "Optimizing SQL Server Query Performance," TechNet
Magazine, 2007.

[13] MySQL, "Understanding the Query Execution Plan," 2016. (Online).
Available: http://dev.mysql.com/doc/refman/5.7/en/execution-plan-
information.html. (Accessed 14 10 2016).

[14] Oracle, "Query Optimizer Concepts," 2016. (Online). Available:
https://docs.oracle.com/database/121/TGSQL/tgsql_optcncpt.htm#TGS
QL192. (Accessed 14 10 2016).

[15] K. Yagoub and P. Gongloor, "SQL Performance Analyzer," Oracle
Corporation, Redwood Shores, California, USA, 2007.

