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Abstract—The key role in phenomenological modelling of cyclic 

plasticity is good understanding of stress-strain behaviour of given 
material. There are many models describing behaviour of materials 
using numerous parameters and constants. Combination of individual 
parameters in those material models significantly determines whether 
observed and predicted results are in compliance. Parameter 
identification techniques such as random gradient, genetic algorithm 
and sensitivity analysis are used for identification of parameters using 
numerical modelling and simulation. In this paper genetic algorithm 
and sensitivity analysis are used to study effect of 4 parameters of 
modified AbdelKarim-Ohno cyclic plasticity model. Results 
predicted by Finite Element (FE) simulation are compared with 
experimental data from biaxial ratcheting test with semi-elliptical 
loading path.  

 
Keywords—Genetic algorithm, sensitivity analysis, inverse 

approach, finite element method, cyclic plasticity, ratcheting.  

I. INTRODUCTION 

XPERIMENTAL measurement of any kind always bears 
certain level of uncertainty. The more complex the 

measured phenomena is the higher level of uncertainty brings 
to the measured values. Huge number of experiments would 
have to be performed to obtain good knowledge and 
understanding how different material parameters and their 
combination affect final result. Numerical modelling and 
simulation could help to reduce number of those experiments 
and also could give us better insight into this problematic. 

In this paper, we focus on FE modelling of the phenomenon 
called ratcheting (cyclic creep). It can be described as the 
accumulation of plastic deformation in a component or 
specimen under cyclic loading. The ratcheting may occur in 
practice for instance in the rolling/sliding contact.  

One of the first plasticity models, which can qualitatively 
capture ratcheting in numerical calculations, is Chaboche 
model [1]. Cyclic plasticity models have been extensively 
developed over the past three decades. The most popular 
kinematic hardening rules introduced into new constitutive 
theories are Ohno-Wang model II [2] and AbdelKarim-Ohno 
model [3]. 

The main aim of this contribution is comparison of various 
approaches to cyclic plasticity model calibration with 
emphasize on ratcheting. Two algorithms have been applied 
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genetic algorithm and a sensitivity analysis to estimate 4 
parameters of modified AbdelKarim-Ohno model [4] using a 
fatigue test conducted under non-proportional loading. 

II. EXPERIMENTAL DATA 

To compare effectiveness of two different algorithms for 
material parameters estimation a multi-axial cyclic test was 
realized on reconstructed electro-servo-hydraulic system 
INOVA 100kN/1000Nm at the VSB-Technical University of 
Ostrava [5].  

The semi-elliptical loading path (Fig. 1) was gained by the 
symmetric tension/compression and simultaneous repeated 
torsion applied as harmonic function of time with 90 of phase 
shift. The frequency of loading was 0.1 Hz.  

The test was proposed by McDowell [6] and simulates the 
stress-strain history in a point on a semi-infinite elastic-plastic 
half plane loaded by repeated Herzian pressure with Coulomb 
friction assumption. The case with axial stress magnitude of 
625MPa and shear stress magnitude of 328 MPa was realized.  

For experiment a tubular specimen made of Class C wheel 
steel was produced. The outer diameter was 12.5mm, while 
the inner diameter was 10 millimetres.  

The shear strain and axial strain were measured 
simultaneously by extensometer EPSILON 3550 with the 
gauge length of 25 millimetres. 

The stress-strain hysteresis loops evaluated for 20 cycles are 
presented at Figs. 1 and 2. It could be mentioned from Figs. 1 
and 2 that the shear strain accumulation occurs cycle by cycle 
in the same direction as the torque is applied, because of a 
non-zero value of mean torque. 

 

 
Fig. 1 Axial stress-strain hysteresis loops from biaxial fatigue test [7] 
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Fig. 2 Torsional stress-strain hysteresis loops from biaxial fatigue test 

[7] 

III. MODEL DESCRIPTION 

To describe material behaviour in our numerical models 
modified nonlinear AbdelKarim-Ohno model was used. 
Plastic behaviour is characterized by von Mises plasticity 
condition and could be described by 

 

 ݂ ൌ  ටଷ

ଶ
ሺܛ െ ܛሻ: ሺ܉ െ ሻ܉ െ ܻ ൌ 0,     (1) 

 
where ܛ is the deviatoric part of stress tensor ࣌, ܽ is deviatoric 
part of kinematic tensor ࢻ and ܻ is the isotropic variable 
corresponding to the radius of yield surface 
 

 RY Y   , (2) 
 

where Y is the initial size of elastic region and R is the 
isotropic variable. 

As it is well known, it is necessary to consider kinematic 
hardening rule for description of Bauschinger effect [8].  

New kinematic hardening rule introduced specially for 
ratcheting with steady state was published by AbdelKarim and 
Ohno [3] 

 

ࢻ ൌ ∑ ௜,ெࢻ
௜ୀଵ ௜ࢻ܌    ൌ ଶ

ଷ
௣ࢿ܌௜ܥ െ ݌௜݀ࢻ௜ߛ௜ߤ െ ሺܪ௜ߛ ௜݂ሻߣ݀ۃ௜ࢻۄ௜, (3) 

 
where ܥ௜, ሺܪ ,௜ are material parametersߤ ௜ andߛ ௜݂ሻ marks 
Heavisides step function (ܪሺ ௜݂ሻ ൌ 1, if ௜݂ ൌ 0 and ܪሺ ௜݂ሻ ൌ 0 if 

௜݂ ൏ 0) whereas the function ௜݂ is defined by 
 

 ௜݂ ൌ
ଷ

ଶ
:௜ࢻ ௜ࢻ െ  ቀ

஼೔

ఊ೔
ቁ

ଶ
 (4) 

 
and  
௜ߣ݀  ൌ ௣ࢿ܌ : 

೔ࢻ

஼೔/ఊ೔
െ 0    ,݌௜݀ߤ ൑ ௜ߤ ൑ 1. (5) 

 
The symbol ۄݔۃ marks Macaulay's bracket (ۄݔۃ ൌ 0, if 

ݔ ൏ 0 and ۄݔۃ ൌ ݔ if ,ݔ ൐ 0). Parameters ߤ௜ have a great 
meaning in the model. On the other hand, if ߤ௜ ൌ 0 for all ݅, 
AbdelKarim-Ohno model corresponds to Ohno-Wang I model, 
which always predicts plastic shakedown (no ratcheting) under 
uniaxial loading [2]. Thus, parameters ߤ௜ influence ratcheting 

strain rate. The only one parameter ߤ ൌ  ௜ is usually used forߤ
all ݅ because of simplification. 

AbdelKarim-Ohno cyclic plasticity model has some 
disadvantages too. It gives noncorrect results for multiaxial 
ratcheting when it is calibrated from uniaxial ratcheting test 
and vice versa. The second handicap is the possibility of 
simulations of ratcheting with steady state only if the 
parameter ߤ is constant during loading.  

The transient effect in initial cycles, which occurred for 
some materials, can be described by evolution of parameter  ߤ 
using  

 
ߤ݀  ൌ ߱ሺߤஶ െ  (6) ,݌ሻ݀ߤ

 
where ߤஶ is the target value of ߤ, ߱ is the evolution 
coefficient and the initial value of ߤ is ߤ଴. Next proposed 
modification of AbdelKarim-Ohno model is idea to express 
the parameters ߤ௜ in following form 
 
௜ߤ  ൌ ߤ :݊ۃ ೔ࢻ

ఈഢതതത
 ఞ, (7)ۄ

 
where  

పഥߙ  ൌ  ටଷ

ଶ
:௜ࢻ ݊   ,௜ࢻ ൌ

೛ࢿ܌

ௗ௣
. (8) 

 
The term in Macaulay's bracket is always less than 1 under 

nonproportional loading and equal to 1 under proportional 
loading (tension-compression, torsion and so on). Now it is 
clear, that choice of multiaxial parameter ߯ influence only 
ratcheting under nonproportional loading. Sometimes it is 
useful to introduce the evolution rule for multiaxial parameter 
too 

 
 ݀߯ ൌ ߱ሺ߯ஶ െ ߯ሻ݀(9) .݌ 

 

For simplicity we consider zero value of the parameter .In 
this contribution, we introduce also cyclic hardening term in 
kinematic hardening rule by  

 
௜ߛ  ൌ పഥߛ · ߮ሺ݌ሻ, (10) 

 
where  
 ߮ሺ݌ሻ ൌ ߮ஶ ൅ ሺ1 െ ߮ஶሻ݁ିఠക௣. (11) 

 
Certain materials show additional hardening due to non-

proportional loading. In such cases it is useful to use also a 
nonproportional parameter 

 

ܣ  ൌ 1 െ
ሺ܉:܉ሶ ሻమ

ሺ܉:܉ሻሺ܉ሶ ሶ܉: ሻ
 (12) 

 
in the nonlinear isotropic hardening rule 
 
 ሶܴ ൌ ܾሺܳ െ ܴሻ݌ሶ ,   ሶܳ ൌ ݀ ڄ ܣ ڄ ሺܳ஺ௌሺܣሻ െ ܳሻ݌ሶ , (13) 
 ܳ஺ௌሺܣሻ ൌ  

௚஺ொಮ

௚஺ାሺଵି஺ሻ
. (14) 

 
The described modified AbdelKarim-Ohno model had to be 

coded into the FE software ANSYS as a user material 
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subroutine. We use 5 backstress parts in the model (M=5). All 
material parameters fixed in the analysis are stated in the 
Table I.  

 
TABLE I 

MATERIAL PARAMETERS OF MAKOC MODEL 
ܧ ൌ ;ܽܲܯ205000 ߤ ൌ തଵିହݕ ;0.3 ൌ 2222,690,215,103,67; 

ଵିହܥ ൌ   ;ܽܲܯ 190234,86250,22463,7478,13810
݀ ൌ 1; ܾ ൌ 10; ݃ ൌ 0.2; ௜ߤ ൌ  ݅ ݈݈ܽ ݎ݋݂    0.12

 
We consider only these parameters for the optimization 

procedures: 
C1 = ,Y  

C2 = ߮ஶ, 
C3 = ߱ఝ, 
C4 = ܳஶ . 

IV. METHODS DESCRIPTION  

Several techniques for parameter identification such as 
random gradient, genetic algorithm, and sensitivity analysis 
are popular among researchers [9] [10]. In this paper genetics 
algorithm and sensitivity analysis are used and results from FE 
analysis are compared with experimental measurements. 

Genetic algorithms are widely popular among researchers. 
Their advantage is that for well-defined problem number of 
iteration needed to reach global minimum could be quite low. 
How the genetic algorithm works could be briefly described 
by following steps: 

In the first step a basic Group is created. Group is 
represented by the fixed number of Individuals where number 
of Individuals should be greater or at least equal than number 
of genes (number of parameters). Individuals in the Group are 
sorted by their Condition (estimated error). For each gene 
correlation based on the Condition in the Group is established.  

In the next step new Individual is created. Property of 
Individual could be either random or could be results of 
crossbreeding. In the case of crossbreeding, properties of new 
Individual are based on properties of its parents.  

First parent is randomly chosen from 3 best Individuals in 
the Group. Second parent is randomly selected from the rest of 
the Group. Properties (genes) of the new Individual are 
defined by properties (genes) of the parents.  

Random properties are generated from values of the genes 
of best Individual in the Group. In this case higher scattering 
of values is used to overcome local minimum. 

When new Individual is introduced to the Group, Individual 
with poorest quality of genes is removed from the Group.  

This process is repeated until global minimum is found. In 
our case global minimum is defined as difference between 
measured and calculated values. 

On the other hand sensitivity analysis due to high number of 
possible combinations, especially when large number of 
parameters and values of those parameters is used, could be 
seen as a brute force solution.  

Number of all possible combinations for N number of 
parameters, and P values for each parameter could be 
calculated as  

 ேܸ
௉ ൌ ܰ௉. (15) 

 
In our case when we have 4 parameters, and 5 values for 

each parameter number of all possible combinations is  
 

 ହܸ
ସ ൌ 5ସ= 625. (16) 

 
The seeming disadvantage of this method i.e. high number 

of simulations could be surpassed by better understanding on 
how final results depends on input parameters and their 
combinations. Disadvantage of high number of simulations 
needed could be overcome by using supercomputers when 
many simulations could be run simultaneously and for large 
problems each simulation could be run in parallel. 

V. NUMERICAL EXPERIMENTS 

To carry out numerical experiments FE package ANSYS 
was used. Numerical model reproducing experimental set-up 
was created using only one axisymmetric structural shell 
element (SHELL 51). Since its axisymmetric element it has 
only two nodes with four degrees of freedom at each node: 
translations in the nodal x, y, and z directions and a rotation 
about the nodal z-axis. The element has plasticity, creep, 
swelling, stress stiffening, large deflection, and torsion 
capability. Shell element was modelled in such way that radial 
direction is coincident with x-axis of Cartesian coordinate 
system, axial direction with y-axis and tangential direction 
corresponds to the z-axis of Cartesian coordinate system. 

As boundary conditions symmetry in axial direction i.e. 
displacements in y and z direction and rotational degree of 
freedom were set to zero. Nodal forces were applied according 
to experiment i.e. forces in y-direction and z-direction. 

Material model used for numerical experiment is described 
in previous section. For sensitivity analysis values of 
parameters C1, C2, C3 and C4 are listed in Table II. 

 
TABLE II  

VALUES OF PARAMETERS FOR SENSITIVITY ANALYSIS 

C1 450 475 500 525 550 

C2 0.2 0.3 0.4 0.5 0.6 

C3 10 30 50 70 90 

C4 20 45 70 95 120 

 
Since we could assume that simulation time for one 

calculation will be the same for both genetic algorithm and 
sensitivity analysis we use number of calculation need to find 
satisfactory results as a criterion for comparison of efficiency. 
Satisfactory results will be results for which difference 
between measured and calculated results is less than 1%  

For genetics algorithm 670 number of iterations were 
needed to obtain combination of parameters which leads to 
solution satisfying our criteria described above. Fig. 3 shows 
comparison between numerical solution and experimental 
results. Maximal error is 0.73% and optimal values for input 
parameters are listed in Table III. 

Sensitivity analysis needed 625 iterations as explained in 
previous chapter to test all possible combinations of the 
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