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Abstract—Quantitative trait loci (QTL) experiments have yielded 
important biological and biochemical information necessary for 
understanding the relationship between genetic markers and 
quantitative traits. For many years, most QTL algorithms only 
allowed one observation per genotype. Recently, there has been an 
increasing demand for QTL algorithms that can accommodate more 
than one observation per genotypic distribution. The Bayesian 
hierarchical model is very flexible and can easily incorporate this 
information into the model. Herein a methodology is presented that 
uses a Bayesian hierarchical model to capture the complexity of the 
data. Furthermore, the Markov chain Monte Carlo model composition 
(MC3) algorithm is used to search and identify important markers. An 
extensive simulation study illustrates that the method captures the 
true QTL, even under nonnormal noise and up to 6 QTL.

I. INTRODUCTION

UANTITATIVE trait loci (QTL) experiments have 
yielded important biological and biochemical information 

necessary for understanding the relationship between genetic 
markers and quantitative traits [1]. There are many examples 
where the identification of QTL have made substantial impact 
in industry such as the genetic markers responsible for weight 
gain in pigs [2], pecking-related traits in chickens [3], and 
starch content and composition in maize [4].

Over the last 20 years, there has been an abundance of 
algorithms proposed for QTL mapping such as interval 
mapping strategies [5]-[8], composite interval mapping 
strategies [9]-[12], multiple interval mapping [13]-[20], 
Bayesian interval mapping [21]-[24], and  model selection 
strategies [25]-[27]. However, most algorithms allow only one 
observation per genotypic distribution.  In situations
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such as plant QTL experiments where there can be cloned 
plants, observations within lines are summarized into a single 
observation. By summarizing the cloned plants into one 
observation, important information about variation within each 
line is lost.  

In this paper, an MC3 model selection strategy is proposed 
in a flexible Bayesian hierarchical model that incorporates 
replicate information and thereby taking full advantage of 
variability within a (plant) line. The proposed method is 
validated through an extensive simulation study involving a 
variety of QLT scenarios.

II. METHODOLOGY

A. Bayesian Hierarchical Model
The measured trait in the QTL experiment is represented by

yij where i =1,….,L (L = number of lines) and j = 1,…, ni (ni =
the number of replicates within line i). We assume that the 
observed trait follows a normal distribution with mean i and 
variance or in other words

. (1)

Furthermore, the means are assumed to be influenced by the 
marker information matrix, which is denoted as X where X is 
M x L and M is the number of markers.  The mean of each line
is assumed to follow a normal distribution with mean Xi´ and 
variance 2 where Xi´ is the transpose of ith column of X or

(2)

Since no prior information is assumed to be known about 
which markers might be the QTL, we assign a normal 
distribution with mean 0 and a large variance of 100 on the 
coefficient for each marker ( ~N(0, 100)).

The prior distribution for the variance parameters and 2

are assigned Inverse- 2(1) which has an infinite mean and 
variance.

These assumptions yield an implicit full posterior 
distribution; however, the full conditional distributions have a 
nice parametric form. The full conditional posterior 
distributions are represented below as for random variable 

given all other quantities.  
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where,

.

The full conditional distributions are used in the Gibbs 
sampler to estimate the full posterior distribution, which will 
be denoted as p(D|M). Due to the highly complex nature of the 
model, the first 2000 samples are considered as the burn-in 
period and are discarded. An additional 50,000 samples are 
generated to estimate the posterior distribution.

B. Stochastic Search
The Markov chain Monte Carlo model composition strategy 

(MC3) [28] first randomly generates a model selection vector.  
The model selection vector is a binary vector of length M.
Along the model selection vector, locations with values of 1 
indicate that the marker is included in the current model and 
locations with a value of 0 indicate that the marker is not 
included in the model. The likelihood of the data, p(D|M),
under the initial model selection vector is calculated via the 
Gibbs sample as discussed in the previous section. A position 
along the model selection vector is randomly selected, and its 
value is switched such that if the original value is 1 then it 
becomes 0 and vice versa. Next the likelihood of the data 
under this new model is calculated. Denoting the likelihood of 
the models as p(D|M(i)) and p(D|M(j)) where i represents the 
original model and j represents the new model, the transitional 
probability from model i to model j is defined as:

The transitional probability ij defines the likelihood of the 
chain moving to the new model, j.  A Bernoulli random 
variable is generated with probability of success ij. If the 
generated Bernoulli random variable is 1, then the new model, 
j, becomes the current model. If, however, the generated 
Bernoulli random variable is 0, the current model, i, is 
maintained as the current model. The algorithm continues by 
randomly identifying a new position along the current model 
vector and switching its value.  The likelihood of this new 
model is calculated and a new transitional probability is 

computed. The Markov chain progresses in this manner until 
2,000 models have been visited. A multiplicity of chains is 
simultaneously generated in the fashion described above to 
protect against premature convergence caused by a local 
minimum. This work uses ten parallel chains with randomly 
generated initial model selection vectors.

Upon completion of all chains, 20,000 models would have 
been explored and their likelihoods computed. The posterior 
model probability for the 20,000 models are calculated using 
Bayes theorem defined as:

. (3)

No prior model information is assumed, so equation (3) 
simplifies to:

. (4)

Using this quantity, the activation probability for each marker 
is then calculated as:

where p( j|M(k),D) =1 if marker j is in the model and 0 if 
marker j is not in the model.

III. SIMULATIONS
In order to validate the current methodology, 60 simulations 

were performed on responses generated from a marker matrix 
from a Bay-O x Shahdara population with 38 markers and 165 
lines [29].  The use of this X matrix incorporates the 
complexity and correlation structure evident in observed QTL 
experiments.  The genetic map of the Bay-O x Shahdara is 
shown in Fig. 1.  

Fig. 1 Genetic map for the Bay-O x Shahdara recombinant inbred line [29]

This X matrix was used to generate quantitative traits by the 
following formula

where aj is the effect of the jth marker, xij is the value of the jth

marker of the ith line, and ij is the random noise. The 
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algorithm defined in Section II was developed under the 
assumption of normal noise, but error distributions are 
generally unknown. In this simulation study, it was of interest 
to determine if this algorithm was robust to the assumption of 
normality, and therefore, the error distribution simulated in 
this work was generated from a gamma distribution.  

The gamma distribution is a two-parameter, continuous 
probability distribution controlled by its shape, , and scale, ,
parameters.  We used two different gamma distributions in 
this study.  The first gamma distribution had a shape 
parameter of 0.5 and a scale parameter of 1, giving an 
expectation for the variance within each line of 0.5, i.e. a tight 
variance.  The second gamma distribution had a shape 
parameter of 1 and a scale parameter of 3 giving an expected 
variance of 3 within each line, i.e. a larger variance for the 
random noise.  To further stress the system, effect sizes, aj,
were selected that ranged from 1 to 9 where an effect size of 1 
is very small, effect size of 5 is moderate, and effect size of 9 
is large.  In order to adequately evaluate the system for 
complex QTL marker identification the generated data
included one QTL up to six QTLs. This simulation study 
investigated 60 different QTL scenarios.

From the simulation study, the stochastic search identified 
only the QTL with no false positives for every simulation 
from 1 to 6 QTL and all effect sizes. Table I illustrates the 
effectiveness of the proposed approach to find the marker 
across multiple chromosomes without getting stuck in local 
troughs of nearby markers. 

TABLE I
SUMMARY RESULTS

Ground Truth Effect 
Size

Gamma
Noise

Proposed
Results

C1M2 1 0.5,1 C1M2
1,3 C1M2

C1M2 9 0.5,1 C1M2
1,3 C1M2

C1M5, 
C2M15 2,4 0.5,1 C1M5, C2M15

1,3 C1M5, C2M15
C1M5, 
C2M15 6,8 0.5,1 C1M5, C2M15

1,3 C1M5, C2M15

C1M6, 
C2M15, 
C3M21

2,4,8
0.5,1 C1M6, C2M15, 

C3M21

1,3 C1M6, C2M15, 
C3M21

C1M2, C1M9, 
C2M15, 
C5M31

1,3,5,9
0.5,1 C1M2, C1M9, 

C2M15, C5M31

1,3 C1M2, C1M9, 
C2M15, C5M31

C1M2, C1M5, 
C1M9, 
C2M15, 
C4M27, 
C5M33

1,2,5,7,8,9

0.5,1
C1M2, C1M5, 

C1M9, C2M15, 
C4M27, C5M33

1,3
C1M2, C1M5, 

C1M9, C2M15, 
C4M27, C5M33

A full disclosure of all experimental results is not possible 
due to the number of experiments conducted and the page 
constraints.  However the interested reader may contact the 
lead author for the detailed results.

IV. CONCLUSION

The identification of QTL leads to discoveries that can 
impact society, e.g. identifying drought resistance for a plant 
or mass marker for cattle that can be used to breed meatier 
cattle over the use of steroids or bio-feed. Data obtained 
through QTL experiments are complex and methodologies 
need to be able to handle the complexities in a robust manner; 
hence, this research presented an approach based on Bayesian 
hierarchical model that tolerates complexity well. The 
Bayesian hierarchical model has shown that it is a flexible 
model that can incorporate multi-levels of information, e.g. 
trait values for recombinant plant lines or environmental 
information or laboratory information, in an experiment.  The 
proposed approach was able to correctly identify every QTL 
for each of the 60 experiments conducted.  The algorithm 
appears to be robust to the assumption of normality, although
further investigations might be needed.

Future work will investigate the use of this method to model 
epistasis among markers and environmental factors.
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