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Abstract—The objective of this work which is based on the 

approach of simultaneous engineering is to contribute to the 
development of a CIM tool for the synthesis of functional design 
dimensions expressed by average values and tolerance intervals. In 
this paper, the dispersions method known as the Δl method which 
proved reliable in the simulation of manufacturing dimensions is 
used to develop a methodology for the automation of the simulation. 
This methodology is constructed around three procedures. The first 
procedure executes the verification of the functional requirements by 
automatically extracting the functional dimension chains in the 
mechanical sub-assembly. Then a second procedure performs an 
optimization of the dispersions on the basis of unknown variables. 
The third procedure uses the optimized values of the dispersions to 
compute the optimized average values and tolerances of the 
functional dimensions in the chains. A statistical and cost based 
approach is integrated in the methodology in order to take account of 
the capabilities of the manufacturing processes and to distribute 
optimal values among the individual components of the chains. 
 

Keywords—functional tolerances, manufacturing dispersions, 
simulation, CIM.  

I. INTRODUCTION 
EW design processes of simultaneous engineering are 
under development.  They are the  concurrent  

engineering   processes  where all the engineering actors work  
simultaneously on a product.  In these processes, the fact of 
integrating upstream the manufacturing analysis in the design 
stage of a product, should make it possible to optimise the 
tolerances and a better quality assurance of the finished 
products.  This implies to  have tools for tolerance analysis 
and synthesis which must  integrate in their definition the 
functional aspects of  design and the stochastic aspects of 
manufacture and inspection at the same time. The functional 
dimensioning and tolerancing tool naturally federates the 
technical  data to ensure the functional requirements of the  
products.  It becomes obvious that its integration in 
CAD/CAM systems is  essential for the global definition of 
the product numerical model. Mastering the functional 
dimensioning and tolerancing tools with simultaneous 
engineering and co-operative  work eliminates any source of  
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incompatibility between the design activities upstream and 
manufacturing activities downstream. Thus, the use of such 
tools avoids any loss of information and minimizes scrap parts 
as a consequence. 

On the other hand, industrial experience shows that the 
tolerancing phase leads to significant choices which influence 
the manufacturing process and the cost of manufacturing the  
parts.  Indeed, the decisions taken during this phase induce  
almost 70% of the total cost of producing the parts [1].  For 
that reason it is necessary to optimise the manufacturing 
means and to produce according to the functional 
requirements by  checking the capabilities of the available 
means in the workshop.  The objective of the  optimisation of 
design tolerances is to minimize the total cost  of manufacture 
of all the tolerances during production.  Many researchers 
treat design tolerances [2] and manufacturing tolerances  [3] 
separately.  They often use  assembly simulation by the Monte 
Carlo method  which proved to be greedy in computing time.  
The  synthesis of the tolerances is a more complex problem 
than the  analysis of the tolerances.  It aims at finding the 
values of the  various tolerances taking part in the 
achievement of a functional  requirement, by optimising the 
total cost of the production.  The models used, are always 
empirical models that give only a rough idea of the production 
cost [4] — [5].  Some tolerance synthesis models integrate the 
capability parameters of the manufacturing processes in the 
optimisation problem in terms of statistical standard 
deviations [6].  But the majority of these models do not 
integrate these parameters in terms of machining dispersions 
and in any case do not permit the synthesis  of optimised 
average values of design dimensions.  The method of 
dispersions called  Δl method introduced by Bourdet [7]  
represents an effective method of integration of the capability 
parameters  in term of dispersions in the process plan 
simulation [8]—[9] for the synthesis and optimisation of 
manufacturing dimensions  and tolerances.  

In the first part, this paper presents a methodology for  the 
simulation of functional requirement conditions of a 
mechanical assembly and the synthesis of optimised design 
dimensions and tolerances by  the Δl method. In this work, the 
method  of dispersions is combined with the method of the 
minimum transfer  introduced by Duret [10] to automatically 
optimise the dispersions Δl. The optimisation of  dispersions is 
carried out starting from a matrix of unknown  dispersions [1] 
in place of the matrix of  minimal reference dispersions. The 
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optimised dispersions are then used to compute the 
manufacturing tolerances and finally the design tolerances. In 
the second part of the paper, a statistical and cost based 
optimization approach is proposed to replace the equal-values 
tolerance synthesis procedure previously used to explain the 
simulation.  

II. SIMULATION OF ASSEMBLY FUNCTIONAL REQUIREMENTS 

A. Manufacturing Dispersions Model 
During machining the length L of a part in batch production 

under the same conditions and a given tool adjustment, it is 
always noticed a dimensional variation of the parts.  The 
scatter given by the successive values recorded for the batch 
of parts between the largest and the smallest dimensions is 
called total dispersion Δl and is given as : 

 
minmax LLl −=Δ  (1) 

 
The Δl model introduces the concept of simulation lengths 

Li which makes it possible to locate, in each  reference datum 
of the production, the reference surface and various  machined 
surfaces.  Δli is  the allowed dispersion of a simulation length 
Li representing the variation of the location of  surface i  in the 
fixed reference system of the  production machine tool.  
Relations are then established between the  machined 
dimensions and the simulation lengths.  Since the functional 
dimensions are obtained by the  machined dimensions of the 
finish operations, the simulation lengths are used to model the 
average dimension values where i and j are indices of the 
bound surfaces as follows: 
 
 

ijmoyij LLCf −=)(     with   j > i (2) 

 

 
Fig. 1 Sub-assembly sample example [10] 

 
In order to model the simulation of a mechanical assembly 

of  parts, we consider the simplified sub-assembly example of 
Fig. 1 [9].  This assembly is constructed as a matrix of 
dispersions assigned to surfaces of the parts.  After that, 
matrix algebra is carried out for each functional requirement 

of the assembly by the minimal transfer method [10]. 

B. Chain Extraction Procedure 
The assembly is constructed in the form of a matrix of  Is  

columns (surfaces) and Ip  lines (parts).  As the first table of 
Fig. 2 shows, element  AIs,Ip of the matrix contains a value of 
dispersion only when surface  Is  belongs to part Ip as a 
terminal or a contact surface, otherwise it is null. Then a 
verification procedure of  the design functional requirements 
is carried out using the minimal transfer method as outlined in 
Fig. 3. When the condition of minimal transfer is satisfied, the 
design functional dimensions participating in the design 
functional requirement are those bounded by surfaces having 
the two dispersions stationed on the same line (same part). 
Thus, all the functional dimensions in the dimension chain are 
obtained for every functional requirement. 

 

  
Fig. 2 Example of chain extraction for CC= k2,3 

 
Minimal transfer method  
As Fig. 2 and Fig. 3 illustrate,  the principle of the method 

is  to recognize first the two surfaces which delimit a 
functional requirement.  They are noted  l and  m.   The 
verification procedure is carried out for each functional 
requirement (CC) by successive elimination of the dispersions 
from single element columns and lines, except for columns l 
and m. The elimination process is repeated until the minimal 
transfer condition  given by zero or two  Δl  per column is 
reached. The functional dimensions of the parts participating 
in the chain are then extracted  from the surfaces (columns) 
containing  the dispersions present on the corresponding line 
of the  matrix. 

j   

k   

External shaft A thread 
for nut G to grip 

Internal shaft A thread
for nut G to grip 

Functional requirements

j= 4 ± 1 
  

k= 2 ± 0.5 

Design project in matrix format 
Surfaces  

1 2 3 4 5 
A Δl1

(A) Δl2
(A) 0 0 Δl5

(A) 
F Δl1

(F) 0 Δl3
(F) 0 0 

 
Parts 

G 0 0 Δl3
(G) Δl4

(G) 0 

Computation of functional requirement  k2,3  between  
surfaces l=2 and m=3 : 
1(1)- Set single element columns to zero except l and m : 

Surfaces  
1 2 3 4 5 

A Δl1
(A) Δl2

(A) 0 0 0 
F Δl1

(F) 0 Δl3
(F) 0 0 

 
Parts 

G 0 0 Δl3
(G) 0 0 

1(2)- Set single element lines to zero: 
Surfaces  

1 2 3 4 5 
A Δl1

(A) Δl2
(A) 0 0 0 

F Δl1
(F) 0 Δl3

(F) 0 0 
 

Parts 
G 0 0 0 0 0 

Minimal transfer condition satisfied. 
Tolerance interval for functional requirement k12,13  is :   
Δk2,3  = ∑Δli = (Δl1

(A)+Δl2
(A)) + (Δl1

(F)+Δl3
(F)) 

Tolerance chain for  k2,3  is :   
IT k2,3 = IT Cf1,2

(A) + IT Cf1,3
(F)  

Functional requirement  k2,3  is verified by :  
IT k2,3  ≥ (Δl1

(A)+Δl2
(A)) + (Δl1

(F)+Δl3
(F))   
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Fig. 3 Minimal transfer flowchart 

 
Functional requirements verification based on standard 

minimal dispersions  
The verification of the functional requirements is carried 

out by checking the feasibility of the assembly design in 
regards to the capabilities of the available manufacturing 
processes in the workshop in terms of minimal dispersions 
[11]—[12]. This condition is fulfilled when the manufacturing 
means can produce the design set dimensions imposed by the 
design office. In technical terms this condition is satisfied 
when the tolerance interval (IT) of the functional requirement 
CC is greater or equals the manufacturing stack up tolerance 
due to the summation of all dispersions Δli  with reference 
minimal values [12] and given by (3). 

 
∑ Δ≥ ijCC lIT  (3)  

C. Dispersions Optimization Procedure 
Using the extracted tolerance chains, an optimization matrix 

of Ic lines and Id columns is built. Each line represents a 
functional requirement and each column represents a 
dispersion as shown in Fig. 4 for the sample example. It is 
well noticed that each line corresponds to a tolerance chain 
associated to a functional dimension chain. When a dispersion 
is present in a chain a variable x is affected to the 
corresponding position in the matrix. Otherwise the position 
takes the value zero [13]. 

 
Fig. 4 Optimization for the sample example 

 
Fig. 5 Optimization flowchart 

As the flowchart of Fig. 5 explains, the optimization process 
starts by computing a distribution coefficient  k’j for all the 
lines using (4); where w  is the number of known dispersions,   
p  the number of unknown dispersions and  j  the rank number.  

   

  
           

  

    

Start      

End 

    

  
                 

    

  
          

Next 
Rank 

      
 

 Rank 1        
    

No    

Yes       

  

Construction of the global optimization 
matrix B(Ic, Id) with unknown dispersions 

( )
p

lIT
kl

CC

ji

∑−
==Λ =

w

1i
i

opt.

Δ
'  

Processing of the line with the lowest k’j 

Increase 
Δli opt = k’j 

All ranks  
treated ? 

Optimized dispersions Δli opt 

Dispersions data matrix for design project : 
N° CC Δl1

(A) Δl1
(F) Δl2

(A) Δl3
(F) Δl3

(G) Δl4
(G) Δl5

(A) IT 

1 k2,3 x x x x 0 0 0 1 

2 j4,5 x x 0 x x x x 2 

Determine distribution order for rank 1 
N° CC Δl1

(A) Δl1
(F) Δl2

(A) Δl3
(F) Δl3

(G) Δl4
(G) Δl5

(A) IT k’1 

1 k2,3 x x x x 0 0 0 1 0.25 

2 j4,5 x x 0 x x x x 2 0.333 

Processing of line 1 
N° CC Δl1

(A) Δl1
(F) Δl2

(A) Δl3
(F) Δl3

(G) Δl4
(G) Δl5

(A) IT k’1 

1 k2,3 0.25 0.25 0.25 0.25 0 0 0 1 0.25 

Save dispersions and determine  distribution order for rank 2 
N° CC Δl1

(A) Δl1
(F) Δl2

(A) Δl13
(F) Δl3

(G) Δl4
(G) Δl5

(A) IT k’1 k’2 

1 k2,3 0.25 0.25 0.25 0.25 0 0 0 1 0.25 - 

2 j4,5 0.25 0.25 0 0.25 x x x 2 0.3333 0.4166 

Processing of line 2 
N° CC Δl1

(A) Δl1
(F) Δl2

(A) Δl3
(F) Δl3

(G) Δl4
(G) Δl5

(A) IT k’2 

2 j4,5 0.25 0.25 0 0.25 0.416 0.4166 0.4166 2 0.4166 

Final matrix with optimized dispersions 
N° CC Δl1

(A) Δl1
(F) Δl2

(A) Δl3
(F) Δl3

(G) Δl4
(G) Δl5

(A) IT 

1 k2,3 0.25 0.25 0.25 0.25 0 0 0 1 

2 j4,5 0.25 0.25 0 0.25 0.4166 0.4166 0.4166 2 

  Start       
    
    

  
functional requirements   

    
                
    
    

    
                

    
    

    
        

      
    
    

identify surfaces l and m               
    
    

   
  
 

    
    

    
 
 

    
    
    

        

No   

Yes       
  

    
    

 

Matrix A(Ip,Is) of assembly 

Choose a condition  CC 

Elimination of single Δl element columns 
except for columns l and m 

Elimination of single Δl element lines 

Is 
tolerance transfer 

minimal ( 0 or 2 Δl ) 
per column except 

for l and m 

Matrix in minimal transfer for 
the chosen requirement condition 

End 
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( )
p

lIT
kl

CC

ji

∑
=

−
==Δ

w

1i
i

opt.

Δ
'   (4) 

 
Fig. 4 explains the optimization process for the sample 

example which is carried out by equal distribution for the line 
with the lowest k’j. The computed dispersions of the line are 
then introduced in all the columns where they appear. The 
process is repeated for the remaining lines using the new Δli 
values. 

D. ISO Dimensions and Tolerances Synthesis Procedure 
The designer generally determines, through classical design 

computations (material strength, weight,…), the limit values 
for design dimensions not to be exceeded. The dispersions 
method can be used to simulate and  determine the optimal 
values of the functional dimensions which fulfil the  
functional requirements. Based on the fundamental model 
developed by Bourdet [7] and on the matrix format of the 
mechanical assembly, the average lengths Li limited by two Δli 
can then be calculated. For each part, the origin of basic 
average lengths are taken on the leftmost surface (surface 1, 
L1=0). Using the functional requirements (CC) and the 
standard dimensions (CS) a system of equations is built to 
determine the basic average lengths Li using (5) and (6) as 
follows : 

 
ijmoyij LLCC −=)(      (5) 

 
ijmoyij LLCS −=)(   (6) 

 
The CS dimensions are selected to supplement the system 

among  the functional dimensions of standard parts.  In the 
case of unbounded dimensions, CCmoy and CSmoy  are  
calculated by using the optimized dispersions by the  
following relations : 
 

( )( )
2

.optminmin
moy

∑ Δ++
= ilCCCC

CC   (7) 

 
( )( )

2
.optminmin

moy
∑ Δ++

= ilCSCS
CS   (8)  

 
Equations (5) to (8) give a system of n equations and n 

unknown Li. When the simulation lengths Li are computed, the 
ISO average functional dimensions are calculated using (2). 
This procedure is automated as the flowchart of Fig. 6 shows.  
For the sample example there are five surfaces so four 
functional requirements are needed.  The two functional 
conditions k and j are completed with two conditions as 
minimal dimensions in the dispersions matrix. These are given 
by  the standard parts in the assembly. In the sample example, 
these are given by the nut G (CS3,4

(G)  = 10 mini) and the disc 

F (CS1,3
(F) = 4 mini). 

 
Fig. 6 Simulation flowchart 

III. STATISTICAL APPROACH 

A. Statistical Model 
In the previous simulation, the tolerance synthesis 

procedure was based on an arithmetic equal increase of the 
dispersions values given by (3). However in reality, this 
distribution should take into account parameters such as the 
stochastic aspects of the machining dispersions as well as the 
complexity and the cost of the dimensions to be processed.  
To satisfy this objective, the arithmetic model (3) for the 
tolerance chain is reformulated into a statistical model which 
will assign the biggest tolerance to the most difficult 
dimension to machine. Assuming that all the components 
making up the dimension chain are independent and normally 
distributed, the statistical model (9) is obtained by applying 
the statistical parameter variance (σ²)  to the dimension chain 
(functional requirement CCj and functional dimensions Cfi). 

 

∑=
i

CfCC ij

22 σσ    (9) 

 
Introducing K representing the probability of having a 

dimension within the tolerance interval T, the following 
relation where σ is the standard deviation can be written: 

 

jjj CCCCCC KT σ⋅=   ;  
iii CfCfCf KT σ⋅=    (10) 

 
Replacing the standard deviations from (10) into (9) gives 

the following model for the design tolerance chain:   

 

  

System resolution
[A]{L}= b  

 

Computation of 
(Cfi,j)moy = L j - Li  

    
    

 

 

  
Dispersions optimization 

procedure 
 

Optimized dispersions 
Δli opt

Chains extraction procedure

Linear system formation
L j - Li = (CCi,j)moy  
L j – Li = (CSi,j)moy

Identifies functional dimensions 
ad iiCf −  

)()()( 1)1(11 )( Ip
iiCf
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Ip
aidiad

CfITll −→≡Δ+Δ
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n
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iiCf
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Input of 
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dimensions 
CS 

Computation of tolerances  

( ) ( )
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i
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Dimension and tolerance synthesis procedure 
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⎝
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i
j

j

j

Cf

Cf
n

iCC

CC

K
T

K

T
  (11) 

 
In manufacturing practice K is equal to 6 [6]—[14] which 

will give from (11) the following root sum squares (RSS) 
statistical model:   

 

∑
=

=
j

ij

n

i
CfCC TT

1

22   (12) 

B. Manufacturing Cost Based Tolerance Synthesis Model 
Based on the cost-tolerance data in the literature [6]—[15], 

an approach which adequately describes the relationship 
between tolerance and associated cost is used [16]. This 
approach was previously developed for the optimization of 
manufacturing tolerances [17] and is now adapted for the 
synthesis of optimal design tolerances.  

 
 

Ci0 

Cost 

1 

2 

k 
Cik‐1 

i
Cik 

(Tolerance) 2
Xik 

2
ikCfT  2

1−ikCfT  2
0iCfT  

li 

 
Fig. 7 Cost-tolerance model 

 
As shown in Fig. 7, the cost curve for each dimension is 

approximated by a set of small linear segments. The objective 
function which is the sum of concave functions leads to the 
formulation of a linear programming problem. The tolerance 
and corresponding cost for design functional dimension Cfi 
are given by (13) and (14). 

 

∑
=

+=
i

ii

l

k
ikCfCf XTT

1

22
0

  ;  ∀ i  (13) 

 

∑
=

⋅+=
il

k
ikikii XVCC

1
0    ;  ∀ i  (14) 

 
Tthe slopes Vik are computed as in                                      

22
1

1−
−
−

= −

ikik CfCf

ikik
ik TT

CCV     ;   ∀ i,k.  (15) 

 
The application of  (13) and (14) to all the  design 

functional dimensions affecting a functional requirement 
condition CC i.e. a design dimension chain, gives the 
following tolerance synthesis model for a dimension chain j:   

minimize     

( ) ∑∑∑
= ==

⋅=−=
j ij

j

n

i

l

k
ikik

n

i
iiCC XVCCC

1 11
0  

subject to   

∑∑∑
== =

−≤
j

ij

j i n

i
CfCC

n

i

l

k
ik TTX

1

22

1 1
0

  

22
1

0
−

−≤≤
ikik CfCfik TTX    ;  ∀ i,k 

This optimization model represents a linear programming 
problem which is solved for the unit tolerance variables Xik 
using the simplex technique [18].  The model can be 
separately applied to each tolerance chains j within the 
mechanical sub-assembly.  However a number of these 
tolerances are common to several tolerance chains that the 
simulation module must take into account during the tolerance 
synthesis.  If there are w dimension chains within the sub-
assembly,  each dimension chain j can have nj dimensions 
where mj dimensions are common to the other chains. This 
will result in the following: 

 

w tolerance chains 

⎢
⎢
⎢
⎢
⎢

⎣

⎡

→

→

→

wCfCfCf

CfCfCf

CfCfCf

mTTT

mTTT
mTTT

wwnww

n

n

21

222221

111211

2

1

 

 
In the process plan there will be m  manufacturing 

dimensions common to two or more manufacturing chains; m 
is  given then by:  
  

wmmmm ∩∩∩= ...21   (16) 
 

Taking into account the fact of common functional 
dimensions to several dimension chains and in order to 
perform the optimization procedure to the whole mechanical 
sub-assembly, the final tolerance synthesis model to be 
integrated in the pre-project assembly simulation is 
reformulated as follows: 
 

minimize    
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1
0
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jikjik CfCfjik TTX    ;   ∀ j,i,k 

22
1

0
−

−≤≤
tktk CfCftk TTX       ; ∀ t,k 

This tolerance synthesis model is built as a linear 
programming based optimization model [18]. The 
optimization process computes the unit tolerance variables Xjik 
and Xtk. The computed unit variables Xjik are then used to 
determine the individual tolerances for the functional 
dimensions i in  each dimension chain  j in the sub-assembly. 
On the other hand, the computed unit variables Xtk are used to 
determine the tolerances of the manufacturing dimensions 
common to two or more dimension chains in the sub-
assembly. 

  
 

Cost database 
 

C=f (T2) 
 

for each process 

Manufacturing 
process 

Element 1 
Element 2 
……….. 
 

 Element m 

Element 1 : ( )2
11 ii TfC =  

 

Element 2 : ( )2
22 ii TfC =  

…………………………… 
  

Element m : ( )2
mimi TfC =  

Δl  Method 

Automated 
identification 
of tolerances 

Variables TCf 
for objective 

function 

Automated 
extraction of 
dimension 

chains 

Constraints 
Statistical 
synthesis 

model 

Optimization of Tolerances 

 
Fig. 8 Statistical optimization procedure 

IV. MODEL APPLICATION AND TESTS 
The developed statistical tolerance synthesis model has 

been programmed into the tolerance optimization procedure of 
the simulation module as illustrated in Fig. 8. This figure 
clearly shows that the model functional constraints are given 

from the automatically extracted tolerance chains. The tasks of 
chain extraction and tolerance identification are performed 
using the Δl method during the verification procedure of the 
simulation module. Fig. 9 and Fig. 10 show the screen results 
for the applied simulation to the sample example of  Fig. 1.   
 

 
Fig. 9 Simulation data and Δl optimization results 

V.  CONCLUSION 
The objective of this work which is based on the approach 

of simultaneous engineering is to contribute to the 
development of a CAD/CAM tool for the simulation and 
synthesis of functional design dimensions expressed by their 
average values and their tolerance intervals.  The dispersions 
method known as the Δl method which proved to be reliable 
in the simulation of manufacturing dimensions was used to 
develop a methodology for the automation of the simulation. 
It also permits to express the design tolerances as function of 
the manufacturing tolerances represented by the dispersions. 
This methodology was constructed and tested manually step 
by step using a simplified example of a mechanical assembly. 
Afterwards, it was automated by the realization of a computer 
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program.  The program was tested thereafter on the simpler 
example as well as on complex assemblies which are difficult 
or impossible to treat manually. The automatic treatment gave 
results agreeing with the manual processing for the illustrative 
example and showed the effectiveness of the automated 
simulation by solving the complicated examples. In addition, a 
statistical and cost based approach has been developed and 
integrated in the simulation module. This approach can be 
used for statistical tolerance synthesis.  

 

 
 

Fig. 10 Simplex data and statistical synthesis results 
 
  The final program can thus be used at will in order to 

simulate the functional requirements of design projects and to 

make it possible to choose adequate and optimal average 
values and tolerance intervals for the functional dimensions 
among several possible solutions.   
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