
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:8, 2011

803

Abstract Software testing is important stage of software

development cycle. Current testing process involves tester and
electronic documents with test case scenarios. In this paper we focus
on new approach to testing process using automated test case
generation and tester guidance through the system based on the
model of the system. Test case generation and model-based testing
is not possible without proper system model. We aim on providing
better feedback from the testing process thus eliminating the
unnecessary paperwork.

Keywords model based testing, test automation, test

generating, tester support.

I. INTRODUCTION

N development of web application, success or profit is often
significantly influenced on error rate of the application.

Random errors occurring in non-deterministic time intervals
make the target audience of the application to dislike it. So
the success of the system depends on how reliable it is and
how fast can be the errors eliminated and fixed. If the errors
are detected in the early stages of the development process the
cost of fixing them is low.

Errors can be detected using intensive testing of the whole
system. If the test coverage of the system is very high, the
probability of hidden error is very low. However it impossible
to manually create and execute tests for the whole system and
reach 100% test coverage. Although the tests can be
automatically generated and executed, there are still some
parts of the system that cannot be tested using this approach.
It is problematic to create automatic tests or test case
scenarios for end-to-end testing or for user interface testing.

In our proposal we will focus on two areas - testing of the
parts of the system that require more attention than the parts
testable with unit tests and on automated generation of such
test cases. In most cases tester follows test case instructions

is with Department of Computer Science and Engineering, Faculty

of Electrical Engineering, Czech Technical University, Prague, Czech Republic
(e-mail: frajtak@fel.cvut.cz).

M. B Department of Computer Science and Engineering, Faculty
of Electrical Engineering, Czech Technical University, Prague, Czech Republic
(e-mail: buresm@fel.cvut.cz).

Department of Computer Science and Engineering, Faculty
of Electrical Engineering, Czech Technical University, Prague, Czech Republic
(e-mail: jelinek@fel.cvut.cz).

written in the electronic document. Tester carries out every
single step he had been instructed to and writes down his
feedback. In our solution we are going to eliminate this
paperwork. During the testing, tester will be instructed what
to test by an interactive guideline application, instead of
performing manual test cases defined in a text form. This
application will lead the tester through the test case; it will
make him to fulfill the defined conditions. Model of the
application is the key to finding the point-cuts for the guide
and for defining test case conditions.

II. MODEL FOR AUTOMATED TEST CASE GENERATION AND
RELATED WORK

For our intention, a model describing the system is required.
For our purpose, this model will describe the
- domain entities, their properties and relations between

the entities test case constraints or conditions will be
defined using properties of the domain model entities, for
example Customer, Order, etc.

- entities not in domain i.e. entities that are not part of
the problem domain but can be used to define test case
constraint/condition, for example system configuration
entities

- domain methods model will contain signatures of
domain methods that can be used in use cases

- metadata definition of non-model requirements
- use cases description of system processes using the

domain entities, not-in-domain entities, domain methods,
use case model can be extended using
constraints/conditions

Model of the system under test is expressed as labeled

transition systems in [1]. The model based testing starts with
a model that is presumed correct and valid. When designers
do not make models, or system uses legacy or third party
components, test-based modeling aims at generating models
from observations made during testing using kind of black-
box reverse engineering.

Very common approach is to use UML model for test case
generation, for example [2]. Another example of possible
approach is described in [3]. Here, test scenarios are
synthetized using UML activity diagrams. UML activity

Manual testing of web software systems supported
by direct guidance of the tester based on design

model
 and Ivan Jel

I

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:8, 2011

804

diagrams are used by developers to describe all possible flows
of controls commonly known as scenarios of use cases.

Although UML diagrams can express many aspects of the
application class diagram describes system classes and their
relations, sequence diagram is used for describing interaction
between system components, component diagram is suitable
for describing deployment of the system components on
system machines or nodes some aspects of the application
require more subtle description. Expressiveness of UML
diagrams is limited and for example it is not possible to use
UML diagrams to model complexity of web application the
relationships between web pages, their input and action
elements i.e. to design navigation schema of the
application.

Another possibility is to use web modeling language
WebML [4] to model the application. WebML is a graphical
notation like UML extended with means of defining how to
separate data model (the content of the web pages), hypertext
model (structure of the system and navigation between web
pages) and presentation model (user interface).

Use cases are used to document system requirements, UML
state machine diagrams describe the behavior of a system and
serve as a basis to automate test case generation. Automated
support for the transition from use cases to state machines
would provide significant, practical help for testing system
requirements. Additionally, traceability could be established
through, which could then be used for instance to link
requirements to design decisions and test cases, and assess the
impact of requirements changes as described in [5].

Mathematical model defined in [6] is trying to capture
portion of real specification languages provided by high-level
tools for web application specification, such as WebML. The
model captures the interaction of an external user with the

generates a choice of inputs for the user querying the database
or the application state, the user chooses or inputs at most one
tuple among the options provider and then a state transition
occurs. Actions are taken and the next web page is
determined according to the specification.

According to [6] a data-driven web application has
following components

- a database
- a set of state relations
- a set of web page schemas (web pages), of which one is

- each schema defines how the query on the database and

state is defined by the set of current input values
The model is formalized by temporal language a variant

of linear-time and branching time temporal logic for
specifying properties of web application. Authors are focusing
on verification of web applications the run is called error
free if an error page is not reached and web application is
called error free when it generates error-free runs only.

A. Model driven approach
Model driven engineering (MDE) advocates usage of

models and transformations to support all tasks of the
software development from analysis to testing. Modern MDE
technologies use various models to represent different
perspectives of the system at a different level of abstraction.
The paper [7] presents a model transformation framework for
forward engineering stream that goes from computation
independent model (CIM) to application code and the testing
stream going from computation independent test (CIT)
specification to executable test script. In [7] authors are
describing vertical transformation for composing the two
streams and horizontal mapping for reflecting changes made
in the modeling framework.

Authors concentrates on the chain of transformations for
producing tests and it defines metamodels for representing
test cases for web applications at different levels of
abstraction and on supporting of automatic alignment of the
platform independent test (PIT) specification after changes
made to PIM. Different modeling languages are used in
different levels Business Process Modeling Notation
(BPMN) for CIM and WebML for Platform Independent
Model (PIM). The WebML model enriches the BPMN
process scheme with operational details

In our proposal we will reuse the differentiation of
abstraction levels and targeting platform specific/independent
model/test for the modeled application. Synchronization
mechanism between application model and test keeps ensures
that changes made to application model will be reflected in
generated test cases.

B. Covering decisions and conditions
In [8] there is proposed new criterion for software testing.

The requirements for testing logical structure of program are
specified using control flow criteria. The aim of these criteria
is testing decisions (a program point at which the control flow
can divide into various paths) and conditions (atomic
predicates which form component parts of decisions) in
program. A decision coverage criterion states that every
decision in the program has taken all possible outcomes at
least once. Multiple condition coverage criterion requires 2n
test case for decisions consisting of n conditions. Modified
Condition/Decision Coverage (MC/DC) criterion reduces the
number of necessary test cases. It requires testing of every
independent condition in decision.

The definition of MC/DC criterion is the following: Every
point of entry and exit in the program has been invoked at
least once, every condition in a decision in the program has
taken on all possible outcomes at least once, every decision in
the program has taken all possible outcomes at least once, and
each condition in a decision has been shown to independently

n to

condition while holding fixed all other possible conditions.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:8, 2011

805

MC/DC has some shortcomings, for example the
independency of the conditions in decision. Reinforced
Condition/Decision Coverage (RC/DC) criterion proposed in
[8] is focusing on eliminating of the shortcomings of MC/DC
criterion. Further details can be found in [8].

Our proposal focuses on testing those parts of application
that cannot be easily unit tested and involve tester interaction.
We will focus on covering of the code handling user
interaction with test cases. So MC/DC can be used for our
needs modifying its definition - every point of handling user
interaction (a method handling button click event, menu click
event etc.) and exit in this handler has been invoked at least
once.

We will use this approach for generating test cases
automatically from the application model. We would like to
generate limited number of test case scenarios with the
highest test coverage of the system under test. It can be also
used for generating test cases using reverse engineering from
existing application test cases will be generated focusing on
covering code handling user interaction.

III. BASIC PRINCIPLES AND MODEL ARCHITECTURE

For our purposes described above, we decided to reuse and
adopt use certain parts of mathematical model from [6].
Model of the web application will be extended to include
specification of metadata. While [6] focuses on web
application schema verification and defines extensive
mathematical model, we focus on the tester involved in
testing of web application. Our target is to define test case
runs (runs defined in [6] and extended with new properties
and relations) and use them for defining test case scenarios.
Test case run properties and relations will be used for
defining metadata and run conditions to be satisfied for a
successful test case run. Tester will then follow the
requirements defined in each test case run and his task will be
to satisfy all the requirements and conditions.

After summarizing our model requirements and analyzing
related work, our model will be extension of the modified
model defined in [6] and

- it will describe data-driven web application (based on
model in [6])

- it will be used for defining test case runs (based on runs
in [6])

- it will be used for automated generating of test case runs
- it will extend the model with the metadata properties and

relations for defining test case runs
- include metadata properties for defining non-model

requirements
- the application will be described using WebML notation
Our model is describing the web application that includes

the domain and non-domain entities and their properties,
relations between entities and metadata expression non-model
requirements. The key concept for generating test case
scenarios is the use cases. Use case will be also described

using our model; therefore our model will describe the
domain methods too.

In our proposal a web application is a tuple D, S, I, A, W,
M, T , where:

- D, S, I, A are relational schemas called database, state,
input and action schemas

- W is a finite set of web schemas
- M is a finite set of business metadata,
- T is a finite set of technical (non-model) metadata.
Each step in test case scenario is an interaction between the

user/tester and the system/SUT including the database state,
 on a web page, inputs to the system and states of

the system. This can is be described by proposed test case
scenario run and its configuration defined as tuple Vi, Si, Ii,
Ai, Ri, TDi , where

- Vi, W is the web page schema in the i-th run,
- Si is an instance of S describing the state of the

application,
- Ii is an instance of I describing the input provided by the

user,
- Ai is an instance of AVi describing the action taken by the

user,
- Ri is a set constraints for data used in the test case

scenario step,
- TDi is set of testing data that must satisfy all constraints

in Ri.

Above-mentioned model which basic concept we have

outlined will be cornerstone for our system for guiding tester
through test case scenarios. Architecture of the system is
described in following text.

IV. SYSTEM ARCHITECTURE

Based on the model described above, guideline application

Fig. 1: Architecture design

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:8, 2011

806

for tester will be designed and implemented.
In this application, tester will select test case scenario from

the list of available scenarios and it will be loaded into the
guideline application. All steps and requirements/conditions
will be displayed in the application in human readable form

application will not let the tester continue in testing the
scenario until he fulfills the required condition. This
application will be connected with system-under-test (SUT)
through messaging subsystem. One of our tasks is to specify
the point-cuts in SUT creating one end point of the messaging
channel.

In the implemented system server application will
maintain database of test case scenarios. We will generate test
case scenarios automatically using the model describing SUT.
Steps of the scenario and the constraints will be extracted
from the use cases described by our model.

Server side application will serve the scenarios to the tester

testing priority or others. The guideline application will not
offer tester a test case scenario for testing unavailable system
components or it will not force tester to test not accessible or
restricted system components.

Fig.1 depicts principle of the system: tester is interacting
with system under test (5) and guideline application (6) at the
same time (see Fig. 1). Test case scenario is loaded from the
database (7) by the test dispatcher (TD) from the server and

is passed to guideline application through extension points
(point-cuts) added to SUT (1). Each step is the passed to
server (2) and evaluated in expression engine (EE). EE
evaluates conditions/constraints defined for given test case
scenario step. Feedback is sent back and provided to the tester
in guideline application and to SUT (2).

Model of the SUT is used to generate test case scenarios (8)
and store them in the database. Scenarios can be created
manually by test designer (9). Metadata describing non-model
requirements can be applied to generated test cases (10).

V. CONCLUSION AND FUTURE WORK

We have presented an approach to support testing of web
applications. In order to use automatic generation of test case
scenarios and to support tester guidance through testing,
model for describing the system is proposed. This model
describes various parts of the system including domain and
non-domain entities and use cases. We have decided to use
model defined in [6] as a basis and adopt and extend this for
our purpose. We will use WebML to describe the structure of
the web application composition model to describe the
pages; navigation model to express how pages and content
units are linked to form the hypertext; and presentation model
to describe the appearance of pages. Metadata properties will
extend the model to describe non-model requirements.

Model of the application will be used to generate test case
scenarios that will be used in our guideline application to
support testing process. The guideline application will guide
tester through the loaded test case scenario. Tester will have
to go through the steps of the scenario and fulfill the defined
conditions/constraints. This process will provide better
feedback than forcing the tester to fill in test case description
documents. We have also proposed the architecture of our
system and discussed the way of tester interaction with the
system and SUT.

In the future work we will finish the implementation of
proposed system components guideline application, server
side application and communication subsystem. We will
verify our proposal on real software development projects and
evaluate the feedback. This feedback will be then used to
improve the model and implementation iteratively.

REFERENCES
[1] J. Tretmans Model-Based Testing and Some Steps towards Test-Based

Modelling Formal Methods for Eternal Networked Software Systems,
vol. 6659, Springer Berlin/Heidelberg, 2011, pp. 297-326.

[2] V. Sawant, K. Shah, "Construction of Test Cases from UML Models" in
Technology Systems and Management, vol. 145. Springer
Berlin/Heidelberg, 2011, pp. 61-68.

[3] A. Nayak, S. Debasis Synthesis of test scenarios using UML activity
diagrams Software and Systems Modeling, vol. 10, Springer
Berlin/Heidelberg, 2011, pp. 63-89.

[4] M. Brambilla, S. Comai, P. Fraternali, M. Matera. "Designing Web
Applications with WebML and WebRatio" in Web Engineering:
Modelling and Implementing Web Applications (Human-Computer
Interaction Series), G. Rossi, O. Pastor, D. Schwabe, L. Olsina (Eds.)..
Springer, October 2007.

[5] T. Yue, S. Ali, L. Briand, "Automated Transition from Use Cases to UML
State Machines to Support State-Based Testing" in Modelling
Foundations and Applications, vol. 6698, Springer Berlin/Heidelberg,
2011, pp. 115-131.

[6] A. Deutsch, L. Sui, V. Vianu, Specification and verification of data-
driven Web applications Journal of Computer and System Sciences -
JCSS, vol. 73, no. 3, Los Angeles, 2007, pp. 442-474.

[7] P. Fraternali, Multi-level Tests for Model Driven Web
Applications Web Engineering, Lecture Notes in Computer Science,
vol. 6189. Springer Berlin/Heidelberg, 2010, pp. 158-172.

[8] S. Vilkomir, J. Bowen, "Reinforced Condition/Decision Coverage
(RC/DC): A New Criterion for Software Testing" in ZB 2002:Formal
Specification and Development in Z and B, vol. 2272, Springer
Berlin/Heidelberg, 2002, pp. 229-239.

