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Machine Morphisms and Simulation
Jānis Buls

Abstract—This paper examines the concept of simulation from
a modelling viewpoint. How can one Mealy machine simulate the
other one? We create formalism for simulation of Mealy machines.
The injective s–morphism of the machine semigroups induces the
simulation of machines [1]. We present the example of s–morphism
such that it is not a homomorphism of semigroups. The story for the
surjective s–morphisms is quite different. These are homomorphisms
of semigroups but there exists the surjective s–morphism such that
it does not induce the simulation.
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jective s–morphism, surjective s–morphisms.

I. INTRODUCTION

WE recall the classical approach to the representation of
finite machines by semigroups (see, e.g., [4]). Let V =

〈Q,A, B, ◦, ∗〉 be a Mealy machine, where Q,A,B are finite,
non-empty sets; Q×A

◦−→ Q is a function and Q×A
∗−→ B

is a surjective function. Let T (Q) denotes the semigroup of
all transformations on the set Q and let Fun(Q,B) denotes
the set of all maps from Q to B. On the set S(Q,B) =
T (Q) × Fun(Q, B) define the multiplication by

(g1, ψ1)(g2, ψ2) = (g1g2, g1ψ2);
g1, g2 ∈ T (Q), ψ1, ψ2 ∈ Fun(Q,B).

Under this operation S(Q,B) is easily seen to be a semi-
group. Let Q = {q1, q2, . . . , qk}, A = {a1, a2, . . . , am},
B = {b1, b2, . . . , bn}. Define two mappings A

α−→ T (Q)
and A

β−→ Fun(Q,B) as follows. For each ai ∈ A define
α(ai) ∈ T (Q) and β(ai) ∈ Fun(Q,B) by

α(ai) =
(

q1 q2 . . . qk

q′1 q′2 . . . q′k

)
,

β(ai) =
(

q1 q2 . . . qk

b′1 b′2 . . . b′k

)
,

where ∀s(q′s = qs ◦ ai ∧ b′s = qs ∗ ai). Now the representation
A

η−→ S(Q,B) is defined by setting η(ai) = (α(ai), β(ai)).
The semigroup 〈V 〉 generated by η(A) is called the machine
V semigroup.

Simulation was first discussed by Hartmanis [2] more
than forty years ago. This concept describes the possibility
on abstract level in which one machine could be replaced
by another one in applications, for example, cryptography,
especially, cryptanalysis of cryptographic devices. If we like
to treat as it is done till now the machines by semigroups
and develop the theory not only as self-sufficient discipline
the connections between simulation and semigroups should
be considered from every point of view too. Thus we say
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that a transition from machines to semigroups through some
representation is successful if it adequately characterizes the
simulation.

II. SIMULATION

In this section we introduce some of the notation and
terminology needed in the subsequent section. If C and ′C
are alphabets any mapping C

h−→ ′C can be extended in the
usual way to a morphism denoted by h too from C∗ to ′C∗.
Thus if V = 〈Q,A, B, ◦, ∗〉 we may extend the mappings ◦
and ∗ to Q × A∗ by defining

q ◦ λ = q, q ◦ (ux) = (q ◦ u) ◦ x ,
q ∗ λ = λ, q ∗ (ux) = (q ∗ u)((q ◦ u) ∗ x) ,

for all q ∈ Q, (u, x) ∈ A∗×A, and where λ is the empty word.
Henceforth, we shall omit parentheses if there is no danger of
confusion. So, for example, we will write q ◦ u ∗ x instead of
(q ◦ u) ∗ x.

Definition 1: Let V = 〈Q, A,B〉, ′V = 〈′Q, ′A, ′B〉 be
machines. We say that ′V simulates V by

Q
h1−→ ′Q, A

h2−→ ′A, ′B h3−→ B

if the diagram

Q × A∗ ∗−→ B∗

h1 ↓ ↓ h2 ↑ h3
′Q × ′A∗ ∗−→ ′B∗

commutes. That is, if

q ∗ u = h3(h1(q) ∗ h2(u)) for all (q, u) ∈ Q × A∗.

This concept corresponds to scheme E—′V—D (see Fig. 1)
where E — an encoder, ′V — a device represents the machine
′V , D — a decoder; V — a device represents the machine V .

this scheme (Fig. 1) enables to extend the notion of simu-
lation [5].

Definition 2: Let V = 〈Q, A,B〉, ′V = 〈′Q, ′A, ′B〉 be
machines. We say that ′V simulates V by

Q
h1−→ ′Q, A

h2−→ ′A∗, ′B∗ h3−→ B if

q ◦ u ∗ a = h3(h1(q) ◦ h2(u) ∗ h2(a)) for all
(q, u, a) ∈ Q × A∗ × A.

Obviously now the upper tie from encoder to decoder is
necessary. Otherwise the decoder is not able to decode
the word ′v adequately. We write ′V ≥ V (h1, h2, h3)
if ′V simulates V by h1, h2, h3. We say
′V simulates V if there exist maps such that
′V ≥ V (h1, h2, h3). We write ′V ≥ V if ′V simulates V .

The two machines V and ′V are incomparable if V ≥ ′V
and ′V ≥ V. If, on the other hand, V ≥ ′V and ′V ≥ V then
we say that V mutually simulates ′V and we write V �� ′V .
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Fig. 1. Simulation.
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Fig. 2. V1 �� ′V1.

This definition has an interesting consequence.
Example 3: V1 �� ′V1 (Fig. 2)

• V1 ≥ ′V1(h′
1, h

′
2, h

′
3), where

h′
1 : 0 �→ 0, 1 �→ 1;

h′
2 : a �→ a, b �→ a2;

h′
3 : 0 �→ 0, 1 �→ 1, 01 �→ 0, 10 �→ 1.

• ′V1 ≥ V1(h1, h2, h3), where

h1 : 0 �→ 0, 1 �→ 1;
h2 : a �→ a, b �→ a3;
h3 : 0 �→ 0, 1 �→ 1, 010 �→ 2, 101 �→ 3.

III. MORPHISMS

We generalize the concept of similar transformation semi-
groups (see, e.g., [3]) to machine semigroups as follows. Let
σ = (α, β) ∈ S(Q,B) then we define a vector function of the
machine

σ̄ : Q −→ Q × B : q �→ (α(q), β(q)).

The same denotation we use for a vector function ′Q −→
′Q × ′B.

Definition 4: Let V = 〈Q, A,B, ◦, ∗〉, ′V =
〈′Q, ′A, ′B, ◦́, ∗́〉 be machines. We say that 〈V 〉 ψ−→ 〈′V 〉 is
the s-morphism of machine semigroup 〈V 〉 to 〈′V 〉 if there

exist maps Q
g−→ ′Q, B

h−→ ′B such that the diagram

Q
σ̄−→ Q × B

g ↓ g ↓ ↓ h

′Q
ψ(σ)−→ ′Q × ′B

commutes for every σ ∈ 〈V 〉.
We adopt this notational convention henceforth.
If h is an injection the s-morphism is called the injective

s-morphism. If g is a surjection the s-morphism is called the
surjective s-morphism.

Theorem 5: [1] Let V = 〈Q,A, B, ◦, ∗〉, ′V =
〈′Q, ′A, ′B, ◦́, ∗́〉 be machines. If there exists the injective s-

morphism 〈V 〉 ψ−→ 〈′V 〉 then ′V simulates V .
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Fig. 3. ′V2 ≥ V2.

Example 6:
The direct calculations show (Fig. 3)

〈V2〉 = {η(a), η(b), η(a2), η(ab)},
where

η(a) =
((

0 1
1 0

)
,

(
0 1
0 1

))
,

η(b) =
((

0 1
0 1

)
,

(
0 1
0 0

))
;

〈′V2〉 = {η′(a), η′(b), η′(a2), η′(ab), η′(ba), η′(b2),
η′(aba), η′(ab2), η′(ba2),
η′(bab), η′(aba2), η′((ab)2)},

where

η′(a) =
((

0 1 2
1 0 2

)
,

(
0 1 2
0 1 0

))
,

η′(b) =
((

0 1 2
0 1 1

)
,

(
0 1 2
0 0 1

))
.
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Define ψ : 〈V2〉 −→ 〈′V2〉 by setting

η(a) �→ η′(a), η(b) �→ η′(b),

η(a2) �→ η′(a2), η(ab) �→ η′(ab).

If g : Q −→ Q and h : B −→ B are the identical maps then
ψ is an injective s–morphism of 〈V2〉 to 〈′V2〉. Nevertheless
ψ is not a homomorphism of semigroups because

ψ(η(ab)η(a)) = ψ(η(aba)) = ψ(η(a2)) = η′(a2)

but

ψ(η(ab))ψ(η(a)) = η′(ab)η′(a) = η′(aba) = η′(a2).

Thus we have
Corollary 7: There exists an injective s–morphism such

that it is not a homomorphism of semigroups.
The story for the surjective s–morphisms is quite different.
Lemma 8: If σ1, σ2 ∈ S(Q,B) then σ1 = σ2 iff σ̄1 = σ̄2.
Proof. Let σi = (αi, βi), i ∈ {1, 2}, then

∀q ∈ Q qσ̄i = (qαi, qβi).

⇒ Assume σ1 = σ2 then (α1, β1) = σ1 = σ2 = (α2, β2).
Hence α1 = α2 and β1 = β2. Thus qα1 = qα2 and qβ1 = qβ2

for all q ∈ Q. Therefore σ̄1 = σ̄2.
⇐ Assume σ̄1 = σ̄2 then

∀q ∈ Q (qα1, qβ1) = qσ̄1 = qσ̄2 = (qα2, qβ2).

Hence
σ1 = (α1, β1) = (α2, β2) = σ2. �

Theorem 9: Every sirjective s–morphism ψ : 〈V 〉 −→ 〈′V 〉
is a homomorphism of semigroups.

Proof. We take into consideration the previous lemma.
Hence, we may prove

ψ(σ1σ2) = ψ(σ1)ψ(σ2)

for every σ1, σ2 ∈ 〈V 〉.
Let σi = (αi, βi) and ψ(σi) = (άi, β́i), i ∈ {1, 2}, then

∀q́ ∈ ′Q q́ψ(σ1)ψ(σ2) = (q́ά1ά2, q́ά1β́2).

Let
ψ(σ1σ2) = (ά3, β́3)

then
q́ψ(σ1σ2) = (q́ά3, q́β́3).

Since
g : Q −→ ′Q is surjective then ∃q ∈ Q qg = q́.
Hence, we must prove

(qgά3, qgβ́3) = (qgά1ά2, qgά1β́2). (1)

Since diagram commutes (see Definition 4) then for every
i ∈ {1, 2}
(qgάi, qgβ́i) = ((qg)άi, (qg)β́i) = qgψ(σi) = (qαig, qβih).

Hence

(qgά1ά2, qgά1β́2) = ((qgά1)ά2, (qgά1)β́2)
= ((qα1g)ά2, (qα1g)β́2)
= ((qα1)gά2, (qα1)gβ́2) (2)

= ((qα1)α2g, (qα1)β2h)
= (qα1α2g, qα1β2h)

We have σ1σ2 = (α1α2, α1β2), therefore

(qgά3, qgβ́3) = qgψ(σ1σ2)
= (q(α1α2)g, q(α1β2)h) (3)

= (qα1α2g, qα1β2h)

Now (2) and (3) yield (1). �

Example 10:
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Fig. 4. Machines ′V3 and V3 are incomparable.

The direct calculations show (Fig. 4)

〈V3〉 = {η(a), η(b), η(a2), η(b2), η(a3), η(b3)},
where

η(a) =
((

0 1 2
1 2 2

)
,

(
0 1 2
0 1 0

))
,

η(b) =
((

0 1 2
0 2 2

)
,

(
0 1 2
2 3 2

))
;

〈′V3〉 = {η′(a), η′(b), η′(a2), η′(b2), η′(a3)},
where η′(a) = η(a),

η′(b) =
((

0 1 2
0 2 2

)
,

(
0 1 2
0 1 1

))
.

Define ψ : 〈V3〉 −→ 〈′V3〉 by setting

η(a) �→ η′(a), η(a2) �→ η′(a2), η(a3) �→ η′(a3),
η(b) �→ η′(a), η(b2) �→ η′(a2), η(b3) �→ η′(a3).

If g : {0, 1, 2} −→ {0, 1, 2} is the identical map and

h : {0, 1, 2, 3} −→ {0, 1} : 0 �→ 0, 1 �→ 1; 2 �→ 0, 3 �→ 1

then ψ is a surjective s–morphism of 〈V3〉 to 〈′V3〉.
Nevertheless ′V3 cannot simulate the machine V3. Suppose

that ′V3 ≥ V3(h1, h2, h3) then h2(a) = h2(b). Hence whether
h2(a) = a or h2(b) = a.
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(i) Suppose w = h2(a) = a and observe (see Definition 2)

0 ∗ a = h3(h1(0)∗́w) = 0,

0 ◦ a ∗ a = h3(h1(0)◦́w∗́w) = 1,

0 ◦ a2 ∗ a = h3(h1(0)◦́w2∗́w) = 0,

0 ◦ a3 ∗ a = h3(h1(0)◦́w3∗́w) = 0.

Hence h1(0), h1(0)◦́w, h1(0)◦́w2 are distinct states. There-
fore, there is only one possibility, namely, h1 : 0 �→ 0 and

h1(0)◦́w = 1, h1(0)◦́w2 = 2.

So we are forced: w = b. Now we have

h1(0)◦́w∗́w = 1∗́b = 1 = 2∗́b = h1(0)◦́w2∗́w.

Contradiction.
(ii) The same happens if we suppose w = h2(b) = a.
Thus we have
Corollary 11: There exists the surjective s–morphism such

that it does not induce the simulation.
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