Machine Morphisms and Simulation

Jānis Buls

Abstract

This paper examines the concept of simulation from a modelling viewpoint. How can one Mealy machine simulate the other one? We create formalism for simulation of Mealy machines. The injective s-morphism of the machine semigroups induces the simulation of machines [1]. We present the example of s-morphism such that it is not a homomorphism of semigroups. The story for the surjective s-morphisms is quite different. These are homomorphisms of semigroups but there exists the surjective s-morphism such that it does not induce the simulation.

Keywords-Mealy machine, simulation, machine semigroup, injective s-morphism, surjective s-morphisms.

I. Introduction

WE recall the classical approach to the representation of finite machines by semigroups (see, e.g., [4]). Let $V=$ $\langle Q, A, B, \circ, *\rangle$ be a Mealy machine, where Q, A, B are finite, non-empty sets; $Q \times A \xrightarrow{\circ} Q$ is a function and $Q \times A \xrightarrow{*} B$ is a surjective function. Let $T(Q)$ denotes the semigroup of all transformations on the set Q and let $\operatorname{Fun}(Q, B)$ denotes the set of all maps from Q to B. On the set $S(Q, B)=$ $T(Q) \times \operatorname{Fun}(Q, B) \quad$ define the multiplication by

$$
\begin{array}{ll}
\left(g_{1}, \psi_{1}\right)\left(g_{2}, \psi_{2}\right)= & \left(g_{1} g_{2}, g_{1} \psi_{2}\right) \\
g_{1}, g_{2} \in T(Q), & \psi_{1}, \psi_{2} \in \operatorname{Fun}(Q, B)
\end{array}
$$

Under this operation $S(Q, B)$ is easily seen to be a semigroup. Let $Q=\left\{q_{1}, q_{2}, \ldots, q_{k}\right\}, A=\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}$, $B=\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$. Define two mappings $A \xrightarrow{\alpha} T(Q)$ and $A \xrightarrow{\beta} \operatorname{Fun}(Q, B)$ as follows. For each $a_{i} \in A$ define $\alpha\left(a_{i}\right) \in T(Q)$ and $\beta\left(a_{i}\right) \in \operatorname{Fun}(Q, B)$ by

$$
\begin{aligned}
\alpha\left(a_{i}\right) & =\left(\begin{array}{llll}
q_{1} & q_{2} & \ldots & q_{k} \\
q_{1}^{\prime} & q_{2}^{\prime} & \ldots & q_{k}^{\prime}
\end{array}\right) \\
\beta\left(a_{i}\right) & =\left(\begin{array}{cccc}
q_{1} & q_{2} & \ldots & q_{k} \\
b_{1}^{\prime} & b_{2}^{\prime} & \ldots & b_{k}^{\prime}
\end{array}\right)
\end{aligned}
$$

where $\forall s\left(q_{s}^{\prime}=q_{s} \circ a_{i} \wedge b_{s}^{\prime}=q_{s} * a_{i}\right)$. Now the representation $A \xrightarrow{\eta} S(Q, B)$ is defined by setting $\eta\left(a_{i}\right)=\left(\alpha\left(a_{i}\right), \beta\left(a_{i}\right)\right)$. The semigroup $\langle V\rangle$ generated by $\eta(A)$ is called the machine V semigroup.

Simulation was first discussed by Hartmanis [2] more than forty years ago. This concept describes the possibility on abstract level in which one machine could be replaced by another one in applications, for example, cryptography, especially, cryptanalysis of cryptographic devices. If we like to treat as it is done till now the machines by semigroups and develop the theory not only as self-sufficient discipline the connections between simulation and semigroups should be considered from every point of view too. Thus we say

[^0]that a transition from machines to semigroups through some representation is successful if it adequately characterizes the simulation.

II. Simulation

In this section we introduce some of the notation and terminology needed in the subsequent section. If C and ${ }^{\prime} C$ are alphabets any mapping $C \xrightarrow{h}{ }^{\prime} C$ can be extended in the usual way to a morphism denoted by h too from C^{*} to ${ }^{\prime} C^{*}$. Thus if $V=\langle Q, A, B, \circ, *\rangle$ we may extend the mappings \circ and $*$ to $Q \times A^{*}$ by defining

$$
\begin{array}{lr}
q \circ \lambda=q, & q \circ(u x)=(q \circ u) \circ x, \\
q * \lambda=\lambda, & q *(u x)=(q * u)((q \circ u) * x),
\end{array}
$$

for all $q \in Q,(u, x) \in A^{*} \times A$, and where λ is the empty word. Henceforth, we shall omit parentheses if there is no danger of confusion. So, for example, we will write $q \circ u * x$ instead of $(q \circ u) * x$.
Definition 1: Let $V=\langle Q, A, B\rangle,{ }^{\prime} V=\left\langle^{\prime} Q, ' A,{ }^{\prime} B\right\rangle$ be machines. We say that ${ }^{\prime} V$ simulates V by

$$
Q \xrightarrow{h_{1}}{ }^{\prime} Q, \quad A \xrightarrow{h_{2}} A, \quad{ }^{\prime} B \xrightarrow{h_{3}} B
$$

if the diagram

$$
\begin{array}{rcccc}
Q & \times & A^{*} & \xrightarrow{*} & B^{*} \\
h_{1} \downarrow & & \downarrow h_{2} & & \uparrow h_{3} \\
\prime Q & \times & A^{*} & \xrightarrow{*} & { }^{\prime} B^{*}
\end{array}
$$

commutes. That is, if
$q * u=h_{3}\left(h_{1}(q) * h_{2}(u)\right) \quad$ for all $\quad(q, u) \in Q \times A^{*}$.
This concept corresponds to scheme E-' $\mathfrak{V}-\mathrm{D}$ (see Fig. 1) where E - an encoder, ' \mathfrak{V} - a device represents the machine $' V, \mathrm{D}-\mathrm{a}$ decoder; \mathfrak{V} - a device represents the machine V. this scheme (Fig. 1) enables to extend the notion of simulation [5].
Definition 2: Let $V=\langle Q, A, B\rangle,{ }^{\prime} V=\left\langle^{\prime} Q, ' A, ' B\right\rangle$ be machines. We say that ${ }^{\prime} V$ simulates V by

$$
Q \xrightarrow{h_{1}} ' Q, \quad A \xrightarrow{h_{2}} A^{*}, \quad B^{*} \xrightarrow{h_{3}} B \quad \text { if }
$$

$q \circ u * a=h_{3}\left(h_{1}(q) \circ h_{2}(u) * h_{2}(a)\right) \quad$ for all $(q, u, a) \in Q \times A^{*} \times A$.

Obviously now the upper tie from encoder to decoder is necessary. Otherwise the decoder is not able to decode the word ' v adequately. We write ' $V \geq V\left(h_{1}, h_{2}, h_{3}\right)$ if ${ }^{\prime} V$ simulates V by h_{1}, h_{2}, h_{3}. We say ${ }^{\prime} V$ simulates V if there exist maps such that $' V \geq V\left(h_{1}, h_{2}, h_{3}\right)$. We write ' $V \geq V$ if ' V simulates V.
The two machines V and ' V are incomparable if $V \not{ }^{\prime} V$ and ' $V \nsupseteq V$. If, on the other hand, $V \geq^{\prime} V$ and ${ }^{\prime} V \geq V$ then we say that V mutually simulates ${ }^{\prime} V$ and we write $V \bowtie^{\prime} V$.

Fig. 1. Simulation.

Fig. 2. $\quad V_{1} \bowtie^{\prime} V_{1}$.

This definition has an interesting consequence.
Example 3: $\quad V_{1} \bowtie^{\prime} V_{1}$ (Fig. 2)

- $V_{1} \geq{ }^{\prime} V_{1}\left(h_{1}^{\prime}, h_{2}^{\prime}, h_{3}^{\prime}\right)$, where

$$
\begin{aligned}
& h_{1}^{\prime}: \\
& h_{2}^{\prime}: \\
& h_{3}^{\prime}: \\
&: a \mapsto 0 \mapsto 0,1 \mapsto 1 ; \\
& 0 \mapsto a^{2} ; \\
&
\end{aligned}
$$

- ' $V_{1} \geq V_{1}\left(h_{1}, h_{2}, h_{3}\right)$, where

$$
\begin{aligned}
h_{1} & : \\
h_{2} & : \\
h_{3} & : \\
: & 0 \mapsto 0 \mapsto
\end{aligned} 0 \mapsto 0,1 \mapsto a^{3} ; 1 \mapsto 1,010 \mapsto 2,101 \mapsto 3
$$

III. MORPHISMS

We generalize the concept of similar transformation semigroups (see, e.g., [3]) to machine semigroups as follows. Let $\sigma=(\alpha, \beta) \in S(Q, B)$ then we define a vector function of the machine

$$
\bar{\sigma}: Q \longrightarrow Q \times B: q \mapsto(\alpha(q), \beta(q)) .
$$

The same denotation we use for a vector function ' $Q \longrightarrow$ ' $Q \times{ }^{\prime} B$.
Definition 4: Let $V=\langle Q, A, B, \circ, *\rangle,{ }^{\prime} V=$ $\left\langle^{\prime} Q,{ }^{\prime} A,{ }^{\prime} B,{ }^{\prime},{ }^{\prime}{ }^{\prime}\right\rangle$ be machines. We say that $\langle V\rangle \xrightarrow{\psi}\left\langle{ }^{\prime} V\right\rangle$ is the s-morphism of machine semigroup $\langle V\rangle$ to $\left\langle{ }^{\prime} V\right\rangle$ if there exist maps $Q \xrightarrow{g}{ }^{\prime} Q, B \xrightarrow{h}{ }^{\prime} B$ such that the diagram

$$
\begin{array}{rlllll}
& Q & \xrightarrow[\bar{\sigma}]{ } & Q & \times & B \\
g & \downarrow & & g & \downarrow & \\
& \downarrow h \\
& & & \overrightarrow{\psi(\sigma)} & & \\
& & & \times & { }^{\prime} B
\end{array}
$$

commutes for every $\sigma \in\langle V\rangle$.
We adopt this notational convention henceforth.
If h is an injection the s-morphism is called the injective s-morphism. If g is a surjection the s-morphism is called the surjective s-morphism.

Theorem 5: [1] Let $V=\langle Q, A, B, \circ, *\rangle,{ }^{\prime} V=$ $\left\langle^{\prime} Q, ' A,{ }^{\prime} B, \sigma^{\prime},{ }^{\prime}\right\rangle$ be machines. If there exists the injective smorphism $\langle V\rangle \xrightarrow{\psi}\left\langle{ }^{\prime} V\right\rangle$ then ${ }^{\prime} V$ simulates V.
V_{2}

${ }^{\prime} V_{2}$

Fig. 3. ${ }^{\prime} V_{2} \geq V_{2}$.

Example 6:

The direct calculations show (Fig. 3)

$$
\left\langle V_{2}\right\rangle=\left\{\eta(a), \eta(b), \eta\left(a^{2}\right), \eta(a b)\right\}
$$

where

$$
\begin{gathered}
\eta(a)=\left(\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right),\left(\begin{array}{cc}
0 & 1 \\
0 & 1
\end{array}\right)\right) \\
\eta(b)=\left(\left(\begin{array}{cc}
0 & 1 \\
0 & 1
\end{array}\right),\left(\begin{array}{cc}
0 & 1 \\
0 & 0
\end{array}\right)\right) \\
\left\langle^{\prime} V_{2}\right\rangle=\left\{\eta^{\prime}(a), \eta^{\prime}(b), \eta^{\prime}\left(a^{2}\right), \eta^{\prime}(a b), \eta^{\prime}(b a), \eta^{\prime}\left(b^{2}\right),\right. \\
\eta^{\prime}(a b a), \eta^{\prime}\left(a b^{2}\right), \eta^{\prime}\left(b a^{2}\right) \\
\left.\eta^{\prime}(b a b), \eta^{\prime}\left(a b a^{2}\right), \eta^{\prime}\left((a b)^{2}\right)\right\}
\end{gathered}
$$

where

$$
\begin{aligned}
\eta^{\prime}(a) & =\left(\left(\begin{array}{lll}
0 & 1 & 2 \\
1 & 0 & 2
\end{array}\right),\left(\begin{array}{lll}
0 & 1 & 2 \\
0 & 1 & 0
\end{array}\right)\right) \\
\eta^{\prime}(b) & =\left(\left(\begin{array}{lll}
0 & 1 & 2 \\
0 & 1 & 1
\end{array}\right),\left(\begin{array}{lll}
0 & 1 & 2 \\
0 & 0 & 1
\end{array}\right)\right)
\end{aligned}
$$

Define $\psi:\left\langle V_{2}\right\rangle \longrightarrow\left\langle{ }^{\prime} V_{2}\right\rangle$ by setting

$$
\begin{gathered}
\eta(a) \mapsto \eta^{\prime}(a), \eta(b) \mapsto \eta^{\prime}(b), \\
\eta\left(a^{2}\right) \mapsto \eta^{\prime}\left(a^{2}\right), \eta(a b) \mapsto \eta^{\prime}(a b) .
\end{gathered}
$$

If $g: Q \longrightarrow Q$ and $h: B \longrightarrow B$ are the identical maps then ψ is an injective s-morphism of $\left\langle V_{2}\right\rangle$ to $\left\langle^{\prime} V_{2}\right\rangle$. Nevertheless ψ is not a homomorphism of semigroups because

$$
\psi(\eta(a b) \eta(a))=\psi(\eta(a b a))=\psi\left(\eta\left(a^{2}\right)\right)=\eta^{\prime}\left(a^{2}\right)
$$

but

$$
\psi(\eta(a b)) \psi(\eta(a))=\eta^{\prime}(a b) \eta^{\prime}(a)=\eta^{\prime}(a b a) \neq \eta^{\prime}\left(a^{2}\right) .
$$

Thus we have

Corollary 7: There exists an injective s-morphism such that it is not a homomorphism of semigroups.
The story for the surjective s-morphisms is quite different.
Lemma 8: If $\sigma_{1}, \sigma_{2} \in S(Q, B)$ then $\sigma_{1}=\sigma_{2}$ iff $\bar{\sigma}_{1}=\bar{\sigma}_{2}$.
Proof. Let $\sigma_{i}=\left(\alpha_{i}, \beta_{i}\right), i \in\{1,2\}$, then

$$
\forall q \in Q \quad q \bar{\sigma}_{i}=\left(q \alpha_{i}, q \beta_{i}\right) .
$$

\Rightarrow Assume $\sigma_{1}=\sigma_{2}$ then $\left(\alpha_{1}, \beta_{1}\right)=\sigma_{1}=\sigma_{2}=\left(\alpha_{2}, \beta_{2}\right)$.
Hence $\alpha_{1}=\alpha_{2}$ and $\beta_{1}=\beta_{2}$. Thus $q \alpha_{1}=q \alpha_{2}$ and $q \beta_{1}=q \beta_{2}$ for all $q \in Q$. Therefore $\bar{\sigma}_{1}=\bar{\sigma}_{2}$.
\Leftarrow Assume $\bar{\sigma}_{1}=\bar{\sigma}_{2}$ then

$$
\forall q \in Q \quad\left(q \alpha_{1}, q \beta_{1}\right)=q \bar{\sigma}_{1}=q \bar{\sigma}_{2}=\left(q \alpha_{2}, q \beta_{2}\right) .
$$

Hence

$$
\sigma_{1}=\left(\alpha_{1}, \beta_{1}\right)=\left(\alpha_{2}, \beta_{2}\right)=\sigma_{2} .
$$

Theorem 9: Every sirjective s-morphism $\psi:\langle V\rangle \longrightarrow\left\langle{ }^{\prime} V\right\rangle$ is a homomorphism of semigroups.
Proof. We take into consideration the previous lemma. Hence, we may prove

$$
\left.\overline{\psi\left(\sigma_{1} \sigma_{2}\right.}\right)=\overline{\psi\left(\sigma_{1}\right) \psi\left(\sigma_{2}\right)}
$$

for every $\sigma_{1}, \sigma_{2} \in\langle V\rangle$.
Let $\sigma_{i}=\left(\alpha_{i}, \beta_{i}\right)$ and $\psi\left(\sigma_{i}\right)=\left(\dot{\alpha}_{i}, \hat{\beta}_{i}\right), i \in\{1,2\}$, then

$$
\forall \dot{q} \in ' Q \quad \bar{q} \overline{\psi\left(\sigma_{1}\right) \psi\left(\sigma_{2}\right)}=\left(\dot{q} \dot{\alpha}_{1} \dot{\alpha}_{2}, \dot{q}^{\prime} \dot{\alpha}_{1} \dot{\beta}_{2}\right) .
$$

Let

$$
\psi\left(\sigma_{1} \sigma_{2}\right)=\left(\dot{\alpha}_{3}, \dot{\beta}_{3}\right)
$$

then

$$
\dot{q} \overline{\psi\left(\sigma_{1} \sigma_{2}\right)}=\left(\dot{q} \dot{\alpha}_{3}, \dot{q} \hat{\beta}_{3}\right)
$$

Since
$g: Q \longrightarrow{ }^{\prime} Q$ is surjective then $\exists q \in Q q g=q$. Hence, we must prove

$$
\begin{equation*}
\left(q g \dot{\alpha}_{3}, q g \dot{\beta}_{3}\right)=\left(q g \dot{\alpha}_{1} \dot{\alpha}_{2}, q g \dot{\alpha}_{1} \dot{\beta}_{2}\right) . \tag{1}
\end{equation*}
$$

Since diagram commutes (see Definition 4) then for every $i \in\{1,2\}$
$\left.\left(q g \dot{\alpha}_{i}, q g \dot{\beta}_{i}\right)=\left((q g) \dot{\alpha}_{i},(q g) \dot{\beta}_{i}\right)=q g \overline{\psi\left(\sigma_{i}\right.}\right)=\left(q \alpha_{i} g, q \beta_{i} h\right)$.

Hence

$$
\begin{align*}
\left(q g \dot{\alpha}_{1} \dot{\alpha}_{2}, q g \dot{\alpha}_{1} \dot{\beta}_{2}\right) & =\left(\left(q g \dot{\alpha}_{1}\right) \dot{\alpha}_{2},\left(q g \dot{\alpha}_{1}\right) \dot{\beta}_{2}\right) \\
& =\left(\left(q \alpha_{1} g\right) \dot{\alpha}_{2},\left(q \alpha_{1} g\right) \dot{\beta}_{2}\right) \\
& =\left(\left(q \alpha_{1}\right) g \dot{\alpha}_{2},\left(q \alpha_{1}\right) g \dot{\beta}_{2}\right) \tag{2}\\
& =\left(\left(q \alpha_{1}\right) \alpha_{2} g,\left(q \alpha_{1}\right) \beta_{2} h\right) \\
& =\left(q \alpha_{1} \alpha_{2} g, q \alpha_{1} \beta_{2} h\right)
\end{align*}
$$

Now (2) and (3) yield (1).
Example 10:

Fig. 4. Machines ${ }^{\prime} V_{3}$ and V_{3} are incomparable.
The direct calculations show (Fig. 4)

$$
\left\langle V_{3}\right\rangle=\left\{\eta(a), \eta(b), \eta\left(a^{2}\right), \eta\left(b^{2}\right), \eta\left(a^{3}\right), \eta\left(b^{3}\right)\right\},
$$

where

$$
\begin{aligned}
& \eta(a)=\left(\left(\begin{array}{lll}
0 & 1 & 2 \\
1 & 2 & 2
\end{array}\right),\left(\begin{array}{lll}
0 & 1 & 2 \\
0 & 1 & 0
\end{array}\right)\right), \\
& \eta(b)=\left(\left(\begin{array}{lll}
0 & 1 & 2 \\
0 & 2 & 2
\end{array}\right),\left(\begin{array}{lll}
0 & 1 & 2 \\
2 & 3 & 2
\end{array}\right)\right) ;
\end{aligned}
$$

$$
\left\langle^{\prime} V_{3}\right\rangle=\left\{\eta^{\prime}(a), \eta^{\prime}(b), \eta^{\prime}\left(a^{2}\right), \eta^{\prime}\left(b^{2}\right), \eta^{\prime}\left(a^{3}\right)\right\},
$$

where $\quad \eta^{\prime}(a)=\eta(a)$,

$$
\eta^{\prime}(b)=\left(\left(\begin{array}{lll}
0 & 1 & 2 \\
0 & 2 & 2
\end{array}\right),\left(\begin{array}{lll}
0 & 1 & 2 \\
0 & 1 & 1
\end{array}\right)\right) .
$$

Define $\psi:\left\langle V_{3}\right\rangle \longrightarrow\left\langle{ }^{\prime} V_{3}\right\rangle$ by setting

$$
\begin{array}{llll}
\eta(a) \mapsto \eta^{\prime}(a), & \eta\left(a^{2}\right) \mapsto \eta^{\prime}\left(a^{2}\right), & \eta\left(a^{3}\right) \mapsto \eta^{\prime}\left(a^{3}\right), \\
\eta(b) \mapsto \eta^{\prime}(a), & \eta\left(b^{2}\right) \mapsto \eta^{\prime}\left(a^{2}\right), & \eta\left(b^{3}\right) \mapsto \eta^{\prime}\left(a^{3}\right) .
\end{array}
$$

If $g:\{0,1,2\} \longrightarrow\{0,1,2\}$ is the identical map and
$h:\{0,1,2,3\} \longrightarrow\{0,1\} \quad: \quad 0 \mapsto 0,1 \mapsto 1 ; 2 \mapsto 0,3 \mapsto 1$
then ψ is a surjective s-morphism of $\left\langle V_{3}\right\rangle$ to $\left\langle{ }^{\prime} V_{3}\right\rangle$.
Nevertheless ' V_{3} cannot simulate the machine V_{3}. Suppose that ' $V_{3} \geq V_{3}\left(h_{1}, h_{2}, h_{3}\right)$ then $h_{2}(a) \neq h_{2}(b)$. Hence whether $h_{2}(a) \neq a$ or $h_{2}(b) \neq a$.
(i) Suppose $w=h_{2}(a) \neq a$ and observe (see Definition 2)

$$
\begin{aligned}
0 * a & =h_{3}\left(h_{1}(0) * w\right)=0, \\
0 \circ a * a & =h_{3}\left(h_{1}(0) \text { ó } w * w\right)=1, \\
0 \circ a^{2} * a & =h_{3}\left(h_{1}(0) \text { ó } w^{2} \dot{*} w\right)=0, \\
0 \circ a^{3} * a & =h_{3}\left(h_{1}(0) \circ{ }^{2} w^{3} * w\right)=0 .
\end{aligned}
$$

Hence $h_{1}(0), h_{1}(0)$ ó $w, h_{1}(0)$ ó w^{2} are distinct states. Therefore, there is only one possibility, namely, $h_{1}: 0 \mapsto 0$ and

$$
h_{1}(0) o ́ w=1, \quad h_{1}(0) o ́ w w^{2}=2 .
$$

So we are forced: $w=b$. Now we have

$$
h_{1}(0) o ́ w \dot{*} w=1 \dot{*} b=1=2 \dot{*} b=h_{1}(0) o ́ w^{2} \dot{*} w \text {. }
$$

Contradiction.
(ii) The same happens if we suppose $w=h_{2}(b) \neq a$.

Thus we have
Corollary 11: There exists the surjective s-morphism such that it does not induce the simulation.

Acknowledgment

This work was supported by the European Social Fund within the project

Nr. 2009/0223/1DP/1.1.1.2.0/09/APIA/VIAA/008.

References

[1] J.Buls, I.Zandere. Injective Morphisms of the Machine Semigroups. Contributions to General Algebra 14, Proceedings of the Olomouc Conference 2002 (AAA64) and the Potsdam Conference 2003 (AAA65). Verlag Johannes Heyn, Klagenfurt, P. 15-19, 2004.
[2] Hartmanis J. On the State Assignment Problem for Sequential Machines I. IRE Transactions on Electronic Computers. Vol. EC-10, No.2(June), pp.157-165, 1961.
[3] Lallement G. Semigroups and Combinatorial Applications. John Wlley \& Sons, New York, Chichester, Brisbane, Toronto, 1979.
[4] Plotkin B. I., Greenglaz I. Ja., Gvaramija A. A. Algebraic Structures in Automata and Databases Theory. World Scientific, Singapore, New Jersey, London, Hong Kong, 1992.
[5] Я.А. Булс. Оиенка длинь слова при моделировании конечных детерминированных автоматов. Теория алгоритмов и программ. Рига: ЛГУ им. П. Стучки, С. 50-63, 1986. (Russian)

[^0]: Jānis Buls is with Department of Mathematics, University of Latvia, Raiņa bulvāris 19, Rīga, LV-1586 Latvia; e-mail: buls@fmf.lu.lv; web site: http://home.lanet.lv/rbuls

