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Abstract—Micro-electromechanical system (MEMS) 

accelerometers and gyroscopes are suitable for the inertial navigation 
system (INS) of many applications due to low price, small 
dimensions and light weight. The main disadvantage in a comparison 
with classic sensors is a worse long term stability. The estimation 
accuracy is mostly affected by the time-dependent growth of inertial 
sensor errors, especially the stochastic errors. In order to eliminate 
negative effects of these random errors, they must be accurately 
modeled. In this paper, the Allan variance technique will be used in 
modeling the stochastic errors of the inertial sensors. By performing 
a simple operation on the entire length of data, a characteristic curve 
is obtained whose inspection provides a systematic characterization 
of various random errors contained in the inertial-sensor output data.  

 
Keywords—Allan variance, accelerometer, gyroscope, stochastic 

errors. 

I. INTRODUCTION 

ICROMACHINING and micro-electromechanical 
system (MEMS) technologies can be used to produce 

complex structures, devices and systems on the scale of 
micrometers. Many unique MEMS-specific micromachining 
processes are being developed, where can be used to convert 
real-world signals from one form of energy to another 
(physical signals into electrical signals and vice versa) [4]. 

Advances in the Micro-Electromechanical Systems 
(MEMS) technology combined with the miniaturization of 
electronics, have made possible to introduce light-weight, 
low-cost and low-power chip based inertial sensors for use in 
measuring of angular velocity and acceleration [2], as a 
substitute for more expensive conventional INS sensors. 

MEME based Inertial sensors have several applications in 
low-cost navigation and control systems. Common 
disadvantages of these sensors are the significant errors which 
accompany the corresponding measurements. These errors 
consist of deterministic and stochastic parts. The deterministic 
part includes constant biases, scale factors, axis 
nonorthogonality, axis misalignment and so on, which are 
removed from row measurements by the corresponding 
calibration techniques. The stochastic part contains random 
errors which cannot be removed from the measurements and 
should be modeled as stochastic processes [4]. 
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The requirements for accurate estimation of navigation 
information require modeling of the sensors, noise 
components. In order to improve the performance of the 
inertial sensors, must know more details about the noise 
components for a better modeling of the stochastic part to 
improve the navigation solution [1]. Several methods have 
been devised for stochastic modeling of inertial sensors noise 
(adaptive Kalman filtering, power spectral density, 
autocorrelation function). Variance techniques are basically 
very similar, and primarily differ only in that various signal 
processing, by way of weighting functions, window functions, 
etc. 

II. ALLAN VARIANCE 

David Allan proposed a simple variance analysis method 
for the study of oscillator stability that is the Allan variance 
method, it's representing the root means square (RMS) 
random drift error as a function of averaging time. It is simple 
to compute and relatively simple to interpret and understand. 
The Allan variance method can be used to determine the 
characteristics of the underlying random processes that give 
rise to the data noise. This technique can be used to 
characterize various types of error terms in the inertial-sensor 
data by performing certain operations on the entire length of 
data [6]. 

A characteristic curve is obtained whose inspection 
provides a systematic characterization of various random 
errors contained in the inertial-sensor output data. Being a 
directly measurable quantity, the Allan variance can provide 
information on the types and magnitude of the various error 
terms. 

III. METHODOLOGY 

Assume there are N consecutive data points, each having a 
sample time of t0. Forming a group of n consecutive data 
points (with n<N/2), each member of the group is a cluster, as 
shown in Fig. 1. 

 

 

Fig. 1 Scheme of data structure used in Allan variance algorithm 
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Associated with each Cluster is a time, T, which is equal to 
nt0. If the instantaneous output rate of inertial sensor is Ω(t), 
the cluster average is defined as [6]: 
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where   represents the cluster average of the output rate 
for a cluster which starts from the kth data point and contains n 
data points. The definition of the subsequent cluster average is 
[6]: 
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where tk+1=tk + T 

Consequently, the Allan variance of length T is defined as 
[5] 
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Clearly, for any finite number of data points N, a finite 

number of Clusters of a fixed length T can be formed. Hence, 
Equation represents an estimation of the quantity  T2  

whose quality of estimate depends on the number of 
independent clusters of a fixed length that can be formed [3].  

The Allan variance can also be defined in terms of the 
output angle or velocity as  

 

     
t

dttt     (4) 

 
The lower integration limit is not specified, as only angle or 

velocity differences are employed in the definitions. 
Angle or Velocity measurements are made at discrete times 

given by t = kt0, k = 1,2,3,…, N. Accordingly, the notation is 
simplified by writing  0ktk    [3] 
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Allan variance is estimated as [6]:  
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The Allan variance is a measure of the stability of sensor 

output. As such it must be related to the statistical properties 
of the intrinsic random processes, which affect the sensor 
performance. 

The Allan variance obtained by performing the described 
operations, is related to the power spectral density PSD of the 

noise terms in the original data. The relationship between 
Allan variance and the two-sided PSD,  fS

 is given by [3]: 
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where  fS  is the power spectral density of the random 
process  T . 

For non-stationary processes, such as flicker noise, the time 
average power spectral density should be used. 

The power spectral density of any physically meaningful 
random process can be substituted in the integral, and an 
expression for the Allan variance  T2  as a function of cluster 

length is identified. 
A log-log plot of the square root of the Allan variance, 

 T  versus T provides a means of identifying and 

quantifying various noise terms that exist in the inertial sensor 
data. 

IV.REPRESENTATION OF NOISE TERMS IN ALLAN VARIANCE 

The key attribute of the method is that it allows for a finer, 
easier characterization and identification of error sources and 
their contribution to the overall noise statistics The five basic 
noise terms are angle random walk, rate random walk, bias 
instability, quantization noise, and drift rate ramp. In addition, 
the sinusoidal noise and exponentially correlated (Markov) 
noise can also be identified through the Allan variance 
method. 

In general, any number of random noise components may 
be present in the data depending on the type of device and the 
environment in which the data is obtained. If the noise sources 
are statically independent, then the computed Allan variance 
is sum of the squares of each error type [6]. 

A. Quantization Noise 

Quantization noise is one of the types of error introduced 
into an analog signal that results from encoding it in digital 
form. Quantization noise is caused by the small differences 
between the actual amplitudes of the points being sampled and 
the bit resolution of the analog-to-digital converter. 

For a gyro output, for example, the angle PSD for such a 
process, as given in [6], is: 

 

	 		    (9) 

 
where  is the quantization-noise coefficient and TS is the 
sample interval. 

The theoretical limit for  is equal to √12⁄ , where S is 
the gyro scaling coefficient for the tests with fixed and 
uniform sampling times. The gyro rate PSD, on the other 
hand, is related to the angle PSD through the following 
relationship: 
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	 sin 2 ,   (11)  
 
Substituting (11) into (8) and performing the integration 

yields 
 

	 	   (12) 
 
then  

√     (13) 
 
This indicates that the quantization noise is represented by 

a slope of -1 in a log-log plot of σ(T) versus T, as shown in 
Fig. 2. The magnitude of this noise can be read off the slope 
line at √3 [3].  

 

 

Fig. 2 σ(T) Plot for quantization noise 
 
It should be noted that there are other noise terms with 

different spectral characteristics, such as flicker angle noise 
and white angle noise, that lead to the same Allan variance T 
dependence [6]. 

B. Angle (velocity) Random Walk 

The high frequency noise term that have correlation time 
much shorter than the sample time can contribute to the gyro 
angle (or accelerometer velocity) random walk. These noise 
terms are all characterized by a white-noise spectrum on the 
gyro (or accelerometer) output rate. The associated rate noise 
PSD is represented by [7]: 

 

     (14) 
 
where N is the angle (velocity) random walk coefficient. 

Substitution of (14) in (8) and performing the integration 
yields: 
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Then 
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    (16) 

 
Equation (16) indicated a log-log plot of σ(T) versus T has a 

slope of -1/2, As shown in Fig. 3. Furthermore, the numerical 
valued of N can be obtained directly by reading the slope at 
T=1. 

 

Fig. 3 σ(T) Plot for angle (velocity) random walk 

C. Bias Instability 

Bias Instability is also known as “flicker noise”. This is a 
low frequency bias fluctuation in the measured rate data. The 
origin of this noise is the electronics, or other components 
susceptible to random flickering [5]. Because of its low-
frequency nature it shows as the bias fluctuations in the data. 
The rate PSD associated with this noise is [6]: 
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where B is the bias instability coefficient and f0 is the cutoff 
frequency. 

Substitution of (17) in (8) and performing the integration 
yields: 

 

	 ln 2 sin 4 cos 2 4 (18) 
 

where x is πf0T and Ci( ) is the cosine-integral function [3].  
Refer to (18), it is shown 
 

⇒ 0	 	 ≪ 	  (19) 

 
and 

≅ 0.664 	 	 ≫   (20) 

 

 

Fig. 4 σ(T) Plot for bias instability (for f0 = 1)  
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Fig. 4 represents a log-log plot that shows the Allan 
variance for bias instability. Coefficient B can be determined 
from the region with zero slope. 

D. Rate Random Walk 

This is a random process of uncertain origin, possibly a 
limiting case of an exponentially correlated noise with a very 
long correlation time. The rate PSD associated with this noise 
is [3]: 
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where K is the rate random walk coefficient. 

Substitution of (21) in (8) and performing the integration 
yields: 
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Then 

    (23) 

 

 

Fig. 5 σ(T) Plot for rate random walk 
 
This indicates that the random walk is represented by a 

slope of +1/2 on a log-log plot of σ(T) versus T, as shown in 
Fig. 5. The magnitude of this noise, K, can be read off the 
slope at T=3 [3]. 

E. Drift Rate Ramp 

This error belongs to deterministic errors. It is slow 
monotonic change of output over a long time period [3]. It can 
be described as: 

 
     (24) 

 
where R is the drift-rate-ramp coefficient. 

By forming and operating on the cluster of data containing 
an input given by (24), we obtain: 
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This indicates that the rate ramp noise has a slope of +1 in 
the log-log plot of σ(T) versus T, as shown in Fig. 6. The 
magnitude of drift rate ramp R can be obtained from the slope 
line at √2. 

 

 

Fig. 6 σ(T) Plot for drift rate ramp 

V. COMBINED EFFECTS OF ALL PROCESSES 

In general, any number of random processes discussed 
above (as well as others) can be present in the data. Thus, a 
typical Allan variance plot looks like the one shown in Fig. 7. 
Experience shows that in most cases, different terms appear in 
different regions of T. This allows easy identification of 
various random processes that exist in the data. If it can be 
assumed that the existing random processes are all statistically 
independent then it can be shown that the Allan variance at 
any given T is the sum of Allan variances due to the 
individual random processes at the same T [3]. 

 

 

Fig. 7 σ(T) Sample plot of square root of Allan variance analysis 
results 

VI. MEASUREMENT DESCRIPTION 

The proposed Allan variance method was applied to the 
real data collected from Sparkfun 9DOF Razor IMU sensor. 
This IMU sensor is shown in Fig. 8 which includes IvenSense 
ITG-3200 triple-axis digital output gyroscope, Analog 
Devices ADXL345 triple-axis accelerometer and HMC5883L 
triple-axis digital magnetometer. This IMU has ATmega328 
processor on board to process the outputs [8]. The IMU was 
placed on a flat surface stationary for 8 hours without external 
environmental disturbance to the system, at stable room 
temperature. Sensor outputs are recorded to file at sampling 
rate of 50Hz, then the outputs is processed in Matlab, the 
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Allan Variance method was implemented to determine Angle 
/ Velocity Random Walk, Bias Instability, Quantization noise, 
Drift Rate Ramp and Rate Random Walk errors.  

 

 

Fig. 8 Sparkfun 9DOF Razor IMU 

VII. RESULTS 

The data is collected in 8 hours from fixed position IMU at 
room temperature. By applying the Allan-variance method to 
the whole data set, a log–log plot of the Allan standard 
deviation versus the cluster time is shown in Fig. 9 for the 
Gyroscope data and Fig. 10 for the accelerometer data. 

 

 

Fig. 9 Gyroscope Allan-variance results 
 

 

Fig. 10 Accelerometer Allan-variance results 
 
Estimated parameters for gyroscope are in Table I and 

accelerometer in Table II. 
 
 
 
 

TABLE I 
GYROSCOPE PARAMETERS SPECIFICATION 

Gyro
Quantization

Angle (velocity) 
Random Walk 

Bias 
instability 

Rate 
Random 

Walk 

Drift Rate 
Ramp 

Deg  Deg/(h0.5)  Deg/S  Deg/S2  Deg/h  

X N/A 0.4055 0.0072 4.4027e-04 0.0141

Y N/A 0.3387 0.0030 3.2020e-04 0.0104 

Z N/A 0.3830 0.0029 4.0484e-04 0.0183 

 
TABLE II 

ACCELEROMETER PARAMETERS SPECIFICATION 

Acc. 
Quantization

Angle (velocity) 
Random Walk 

Bias 
instability 

Rate 
Random 

Walk 

Drift Rate 
Ramp 

m/S m/S/(h0.5) m/S2 m/S/S2 m/S/h 

X N/A 0.0311 2.6556e-04 4.9391e-05 0.0021

Y 
N/A

0.0319 2.0224e-04 2.8535e-05 
9.6527e-

04
Z N/A 0.0409 3.6100e-04 5.1015e-05 0.0015

VIII. CONCLUSION 

The Allan Variance is a simple and efficient method for 
identifying and characterizing different stochastic processes 
and their coefficients. Through some simple operations on the 
sensors output, a characteristic curve of the Allan deviation 
can be obtained, which can be further used to determine the 
types and magnitudes of errors residing in the data.  

From the experiment results, There isn’t a slope of -1 on 
plot of Allan Variance, Consequently the quantization errors 
are much less than other errors and can be ignored. This 
because the sensors output is 16-bit digital data measured 
using on-chip ADCs, as the number of bits increases the 
quantization error decreases. 

The results clearly indicate that the random walk is the 
dominant error term in the short cluster time, whereas the bias 
instability and rate random walk are the dominant errors in the 
long cluster time. 

 This paper clearly shows that the Allan variance analysis is 
a powerful technique to investigate the sensor error behaviors 
on different time scales; this analysis is an effective method 
for error modeling and parameter estimation.  
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