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Abstract—In this paper, LDPC Codes based on defected fullerene
graphs have been generated. And it is found that the codes generated
are fast in encoding and better in terms of error performance on
AWGN Channel.
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I. INTRODUCTION

LOW density parity-check (LDPC) codes are the Linear
Block Codes which perform close to the Shannon limit.

It was proved in [1] that LDPC codes with column weight
(number of 1’s in code matrix column) j ≥ 3 have a minimum
distance that grows linearly with the block length (number
of columns) n for given j and row-weight (number of 1’s
in matrix row) k and that the minimum distance for codes
with j = 2 grows logarithmically with n. However, compared
with j ≥ 3 codes, codes with j = 2 are easier to implement
and require less storage making them best for low complexity
applications [2]. Column weight 2 codes can be generated
from regular graphs called cages. LDPC codes based on cages
were discussed in [3], and it was shown that the codes are
suitable for magnetic storage devices [4].

One of the limitations of the codes generated by cages have
limited code size which depends on the vertices and edges of
these cages. Large size cages are very complex to design. In
this paper we have used family of fullerene graphs to generate
LDPC codes. Fullerene graphs have a property that it can be
extended up to large number of vertices [5]. Another approach
is taken in this paper, to generate LDPC codes from defected
fullerene graphs. In this approach a defect has been created
in the fullerene graph by removing a node while its edges are
kept unaltered. We have analyzed the time taken in encoding
of LDPC Codes and its Bit Error Rate (BER) performance
over AWGN Channel. A typical configuration of the code
generated from defected fullerene graph has given better BER
performance and also took less time for encoding. We have
compared the results with existing LDPC codes based on other
known cages. The rest of the paper is organized as follows,
in section II a short introduction to LDPC Codes is giving, in
section III parity check matrix from defected fullerene graph
is generated. Performance evaluation is giving in section IV
followed by conclusion in section V.
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II. LDPC CODES

LDPC codes are the Linear Block Codes having low density
of 1′s in their parity check matrix H . For a typical LDPC Code
of size m×n, if Wc and Wr are the column and row weights
respectively then Wc << n and Wr << m. LDPC codes are
said to be Regular if Wc and Wr are constant throughout the
columns and rows. Otherwise it is said to be Irregular.

For encoding, we have to generate the generator matrix
G. To generate the G matrix, H matrix should be converted
into systematic form [Pm×k In−k]. This can be done by
first converting H matrix into reduced row echelon form
(rref) and then with some column permutations it is converted
into systematic form. Generator matrix then can be easily
generated as [Ik PT ]. Another way to convert H matrix from
unsystematic form [A B] to systematic form is multiplication
by B−1, i.e. B−1[A B] = [B−1A I]. But if B is singular
matrix then we have to go for the previous one. In term of
complexity, the main step is the conversion of H into rref
which takes maximum time in encoding of the codes. An
efficient encoding method was developed by Richardson and
Urbanke [6]. But this method still requires some rows and
columns permutation which is further a time taking task.

For decoding there are several methods namely, Believe
Propagation (BP), Sum-Product (SP), and Message Passing
(MP). In this paper Log-domain Sum-Product algorithm [7]
was used for decoding.

III. DESIGN OF PARITY CHECK MATRIX FROM
FULLERENE GRAPHS

The role of Parity Check Matrix is very important in the
performance analysis of LDPC Codes. After the design of
parity check matrix its respective generator matrix can be
constructed. In this section the parity check matrix of the
LDPC codes is generated with the help of fullerene graphs.
A Fullerene graph is a cubic planar graph with all faces 5-
cycles or 6-cycles. If the number of 5-cycles (pentagons) in
a given Fullerene is p and number of 6-cycles (hexagons) is
h. And if v be the number of vertices, and e be the number
of edges then for Fullerene graph p = 12, v = 2h + 20 and
e = 3h+30. Hence the size of the fullerene graph depends on
the number of hexagons h. The extension of fullerene graphs
were explained in [5].

Once fullerene graph is constructed its incidence matrix
can be use as parity check matrix. After this corrosponding
generator matrix has to be generated. Here an approach is
taken to generate code with the help of defected fullerene
graph. The defect is created in fullerene graph by removing
a node while its edges are kept unaltered. The graph looks
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Fig. 1: Fullerene graph before and after removing node (show-
ing defect)

similar to a hole formation in a semiconductor and for a
typical graph this situation is shown in Fig. 1. The incidence
matrix of the modified graph has been taken as parity check
matrix for LDPC Codes. This type of configuration has an
advantage that a typical column permutation of its H matrix
make the B matrix non-singular and hence can be easily
converted into systematic form without converting into rref
form and hence saves time. Since the number of rows of the
incidence matrix is reduces 1 due to a node removed and the
number of columns remains same the code is strictly irregular
and there is a slight change in code rate but for large code
lengths it remains approximately 1/3. The fullerene graph and
the defected fullerene graph used in simulation are of form
h = 3 + 6k; where k = 0, 1, 2, 3, .... [5].

IV. PERFORMANCE EVALUATION

The LDPC Codes generated from fullerene graphs and
defected fullerene graphs has been simulated in MATLAB
for BPSK modulated signals passed through AWGN channel
for different SNR. The LDPC encoder and decoder objects,
modulator and demodulator objects, and the channel have
been generated by inbuilt standard MATLAB commands. The
variance (σ2) of additive noise can be calculated from the
expression [8] of SNR given by:

SNR(dB) = 10 log10
a2

2Rσ2
(1)

The codes based on fullerene and defected fullerene graphs
have been generated and compared with the existing similar
codes i.e. codes generated from cubic cages (cages having
vertex degree 3). Some cage graphs result in too small codes
for practical use. An expansion method [3] is therefore needed
to get larger codes. Our main focus is on time elapsed during
encoding and the BER performance on AWGN Channel.

We have simulated different codes having message code-
lengths in the range of ≈ 125 and ≈ 250. Table I gives the
comparison of time elapsed during encoding process between
different codes. [×N ] in Table I shows the N th extension
[3] so as to approximate the length of the codes. Figure 2
shows the BER performance on AWGN Channel. From the
Table I, it is clear that the codes based on defected fullerene
graphs takes less time for encoding. Codes based on other
graphs in range of message length ≈ 125 takes approximately
3 − 6 seconds for encoding while codes based on defected
fullerene graphs takes only 0.05 sec. Similarly, they take only
0.06 sec in comparison with the other codes in the range of
message length ≈ 250 which take about 15 − 25 seconds

for encoding. The reason behind it is that these codes are not
required to be converted to rref form conversion during the
process of conversion of H matrix into systematic form. We
have also calculated encoding time for some higher message
length codes. The parameters are shown in Table I.

We have simulated these codes for AWGN Channel and the
BER performance were shown in Figures 2a & 2b for message
lengths of ≈ 125 & ≈ 250 respectively. We can see from
both the figures that as the size of graph increases the BER
performance of the codes generated from that graph degrades
but a revolutionary inprovement in BER performance occur
when a defect is introduced. The codes which are generated
from defected fullerene graphs gives BER under acceptable
range for Eb/N0 in between 2− 2.5 dB and 1.5− 2 dB for
message lengths of ≈ 125 & ≈ 250 respectively. Hence it is
clear that the codes generated from defected fullerene graphs
outperforms from the codes generated from other similar
graphs having similar message lengths.

V. CONCLUSION

In this paper we have generated the codes based on fullerene
and defected fullerene graphs and the BER performance and
encoding time is compared with the codes based on other
cubic cages. We have simulated these codes to calculate the
encoding time and its performance on AWGN Channel. The
codes based on defected fullerene graphs shows less encoding
time and hence having low encoding complexity. Also from
the BER performance curves it has been seen that as the size
of graph increases, the performance of the codes generated
from that graph degrades but a revolutionary increment in
performance occur when a defect is introduced. From both the
graphs it is clear that the codes from defected fullerene graphs
outperforms from the codes generated from other graphs and
having similar message lengths. Hence it is clear that due
to its low encoding complexity and good performance these
codes can be used in applications where low complexity, high
performance codes are required.
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TABLE I: Time elapsed in encoding of different codes generated from Cubic Cages

Codes generated from Cubic Cages Code Rate Size of H matrix Required rref
conversion

Time elapsed (sec) in
Encoding

Petersen Graph (girth=5) [×12] 1/3 120× 180 yes 4.074901

Heawood Graph (girth=6) [×10] 1/3 130× 210 yes 5.482909

McGee (girth=7) [×5] 1/3 120× 180 yes 4.067087

Levi Graph (girth=8) [×4] ≈ 1/3 116× 180 yes 4.063403

Balaban-10 Graph (girth=10) [×2] ≈ 1/3 138× 210 yes 5.785651

Harries Graph (girth=10) [×2] ≈ 1/3 138× 210 yes 5.832270

Harries-Wong Graph (girth=10) [×2] ≈ 1/3 138× 208 yes 5.656878

Balaban-11 Graph (girth=11) [×1] 1/3 112× 168 yes 3.926893

Tutte-12 Graph (girth=11) [×1] ≈ 1/3 125× 189 yes 4.888213

Fullerene Graph (girth=5) [×1] 1/3 122× 183 yes 4.338537

Defected Fullerene Graph (girth=5) [×1] ≈ 1/3 121× 183 no 0.054425

Balaban-10 Graph (girth=10) [×4] ≈ 1/3 276× 420 yes 24.479025

Harries Graph (girth=10) [×4] ≈ 1/3 276× 420 yes 24.670780

Harries-Wong Graph (girth=10) [×4] ≈ 1/3 276× 216 yes 24.166946

Balaban-11 Graph (girth=11) [×2] 1/3 224× 336 yes 16.407000

Tutte-12 Graph (girth=11) [×2] ≈ 1/3 250× 378 yes 20.362313

Fullerene Graph (girth=5) [×1] 1/3 242× 363 yes 18.403568

Defected Fullerene Graph (girth=5) [×1] ≈ 1/3 241× 363 no 0.064095

Defected Fullerene Graph (girth=5) ≈ 1/3 1225× 1839 no 0.179094

(Higher Configurations) [×1] ≈ 1/3 6025× 6039 no 1.828735

≈ 1/3 12025× 18039 no 6.072098
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Fig. 2: Performance of codes based on Cubic Cages on AWGN Channel, (a) with message length ≈ 125, (b) with message
length ≈ 250


