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Abstract—Leading topic of this article is description of Lorentz 

forces in the container with cuboid and cylindrical shape. Inside of 

the container is an electrically conductive melt. This melt is driven by 

rotating magnetic field. Input data for comparing Lorentz forces in 

the container with cuboid shape were obtained from the computing 

program NS-FEM3D, which uses DDS method of computing. Values 

of Lorentz forces for container with cylindrical shape were obtained 

from inferred analytical formula. 
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magnetic field, computing program NS-FEM3D  

I. INTRODUCTION 

AGNETOHYDRODYNAMICS (MHD for short) is a theory of 

interaction between magnetic field and moving, 

conducting fluids [1]. First mentions regarding MHD appeared 

in relation to astrophysics and geophysics. In the fifties the 

interest in MHD focused especially to plasma physics and 

thermonuclear fusion control. The interest in MHD was 

extended to industry later.  

Using of the rotating magnetic field (RMF) is mostly 

surveyed in recent years. In a few papers were compared static 

and rotating magnetic fields [2]. The rotating magnetic field 

was turned out like better usable. In next papers the flow 

stability and formation instabilities were monitored [3]. In the 

work of Dold a Benze [2] the experimental reduction of the 

temperature fluctuations in the case of crystal growth was 

described. RMF is testing for using gallium and for different 

metallographic technics (Float Zone, Czochralski, Bringman 

nebo Travelling Heater Method) [4, etc]. Production of 

semiconductors is another possibility of using magnetic field 

[5], [6]. Magnetic field is exploited also in magnetic damping, 

levitation melting etc. [7], [1]. 

The subject of this work is a description of the melt flow 

inside of the container. The flow of the melt is driven by 

rotating magnetic field. In Navier-Stokes equations for flow 

calculations there are occurred the external forces. In the flow 

of melt driven by a rotating magnetic field these forces are the 

Lorentz forces. Theme of first part this article is short 

determination of analytical formula of cylindrical container  
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Lorentz forces (for more details see to my earlier works [8], 

[9]). The second part of this article is comparing Lorentz 

forces contours of cylindrical container (analytical formula) 

with Lorentz forces in the container with cuboid shape. Data of 

Lorentz forces in cuboid container are obtained from the 

computing program NS-FEM3D [10], which uses DDS 

method of computing. From this computing program are 

obtained database of value Lorentz forces for different Taylor 

numbers.  

II. LORENTZ FORCES IN THE CONTAINER IN CYLINDRICAL SHAPE 

A. Determination of analytical formula of Lorentz forces  

The container is considered with electrically isolated walls, 

the melt inside the container is conductive with densityρ, 

kinematic viscosity ν and electric conductivityσ. Flow of the 

melt is driven by rotating magnetic field with magnetic 

induction B (noted in the cylindrical coordinates): 

ϕϖϕϖϕ ee ⋅⋅−⋅+⋅⋅−⋅= )cos()sin( 00 tBtBB r  (1) 

In this formula (1) 
re and ϕe  are unit vectors in radial and 

azimuthal direction and ϖ is the constant angular frequency of 

the field.  

Magnetic induction has only components Br a Bϕ because is 

assumed that vertical size of bipolar inductor is bigger than the 

height of the melt in the container. Vector potential A was 

determined with AAB rot=×∇= ,  

thus: zeA ⋅⋅−⋅⋅−= )cos(0 trB ϖϕ .        (2) 

The electric field intensity could be computed by this vector 

potential (2):  
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thus 
zeE ⋅⋅−⋅⋅⋅+Φ−∇= )sin(0 trBrot ϖϕϖ   (3)  

Equation (1) is valid for inductor without material inside. If 

some material with high electric conductivity (powerful to 

affect the magnetic field) is inserted inside the inductor, this 

magnetic field will be changed by skin–effect. For that reason 

non-dimensional frequency K is monitored.  
2RK ⋅⋅⋅= ϖσµ                 (4) 

where µ  is magnetic permeability, σ  is electric conductivity 

and ϖ  is magnetic field angular velocity. If non-dimensional 

frequency 1K << , magnetic field (1) penetrates by whole 

volume of the melt without change and rotating variables 

rotating with the same frequency. In this case of 1<<K  the 

scalar potential ),,,( tzrrot ϕΦ  is possible to separate to two 

parts [11], 
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Current density j is determined with )( BvEj ×+= σ    (6) 

Because of low-induction and low-frequency it is possible to 

use some simplification for calculation current density j. The 

magnetic field affects that the melt moves. But the melt does 

not affect magnetic field by return (or very small). The cross 

product term of the flow velocity and the magnetic induction 

could be neglected (flow angular velocity is much lower than 

magnetic field angular velocity) and reduced Ohm´s law is:  
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where σ is the melt electric conductivity. 

Using of equation 0==⋅∇ jj div is possible to get equation:  
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Solution of (8) is difficult because  scalar potential 1Φ is 

bivariant function (r,z). Solution of 
2Φ is after some 

computing zero. This equation (8) could be solved by the 

Fourier method of a variable separation and then solving two 

separate differential equations. The part which has the 

dependence only on the variable r is converted to the shape of 

Bessel differential equations and then solved by Bessel 

functions. The second part which has the dependence only on 

the variable z is differential equation of the second order with 

constant coefficient and this equation is solved by the 

characteristic equation (for more details see to my earlier 

works [8], [9]). 

After some mathematical manipulations and solving boundary 

conditions the final analytical formula of  scalar potential: 
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where m are roots of  the equation J1´ (m) = 0, z is non-

dimensional height of the container , r is non-dimensional 

radius of the container, H is non – dimensional total height of 

the container and J1 is Bessel function of the first kind. This 

equation corresponds to the published results of other authors 

see [12]. 

Lorentz forces are solved by formula: rotrotrot Bjf ×= .

 (10) After that result are the Lorentz forces time-averaged 

over one period (2ϖ).  
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The final formula of time – averaged Lorentz forces in 

azimuthal direction is in this form: 
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This equation corresponds to the published results of other 

authors as well, see [12]. Forces in the radial and axial 

direction are zero in this simplification. 

Fig. 1 Contours of time – averaged Lorentz forces in azimuthal 

direction for cylindrical container 

B. Contours of Lorentz forces 

Fig. 1 shows contours of time – averaged Lorentz forces in 

azimuthal direction. In horizontal axis non-dimensional radius 

of the cylinder (container) r´(-) is used. That means radius r(m) 

was divided by magnitude of container radius R. In vertical 

axis non-dimensional height of the cylinder (container) z´(-) is 

used. It means height z(m) was divided by magnitude of 

container radius R(m). Because of symmetry only half of the 

container section is displayed. Axis of symmetry is situated on 

the left of fig. 1. Contours of Lorentz forces are non-

dimensional – normalized by maximum value of Lorentz 

forces. The range of Lorentz forces values is from zero to one.  

Maxima of Lorentz forces in azimuthal direction are 

displayed by red colour, minima by blue colour. Maxima of 

these forces are occurred on the outer walls of cylinder in the 

half of container high. On the contrary minima of magnetic 

forces are in the axis of cylinder and on upper and lower base 

(based on boundary conditions). 

III. LORENTZ FORCES IN THE CONTAINER IN CUBOID SHAPE 

Input data for comparing Lorentz forces in the container 

with cuboid shape were obtained from the computing program 

NS-FEM3D which uses DDS method of computing. The 
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Delayed Detached Eddy Simulation model has been applied as 

a turbulent approach. This approach was implemented for 

higher Taylor number. Without any turbulent approach study 

of unsteady flows driven by magnetic field was limited only 

for lower Taylor number. Complete summary of applied 

mathematical model and validations see in [13]. 

The size of cuboid edge was chosen 2L = 0,03 m. Database 

from this computing code were created by data matrix – 

coordinates of grid node points, values of Lorentz forces 

component (or more precisely form of accelerations) in the 

Cartesian coordinate system. And then this database was 

processed in software MathCad (version 15). In MathCad was 

created program for transformation forces in cylindrical 

coordinates. Only Lorentz forces in azimuthal direction was 

monitored. This part of Lorentz forces (azimuthal) is 

dominant. The grid of container was unstructured. Whole grid 

has over 2 200 000 elements.  

Contours of Lorentz forces are displayed in central plane (it 

goes through vertical axis and it is perpendicular to lateral side 

of cuboid container. Because of unstructured grid weighting 

function was chosen. Lorentz force value in this central plane 

was determined by weighting function of four real grid points 

(the nearest point has the biggest weight, the most distant grid 

point has the lowest weight). For more details about this 

weighting function you can see to my earlier work [14]. 

Lorentz forces were divided by maximum value of the 

Lorentz forces before displaying in the central plane, so that 

contours of Lorentz forces are non-dimensional – normalized. 

The range of Lorentz forces values is from zero to one. The 

reason of normalizing forces is comparison Lorentz forces in 

cylindrical container and cuboid container. 

A. Contours of Lorentz forces 

Fig. 2 Contours of time – averaged Lorentz forces in azimuthal 

direction for cuboid container 

 

Fig. 2 shows contours of time – averaged Lorentz forces in 

azimuthal direction in the cuboid container. In horizontal axis 

non-dimensional cuboid edge size r´(-) is used. That means 

cuboid edge size r(m) was divided by magnitude of container 

edge size L(m). In vertical axis non-dimensional height of the 

container z´(-) is used. That means height z(m) was divided by 

magnitude of container edge size L(m). Because of symmetry 

only half of the container section is displayed. Axis of 

symmetry is situated on the left of fig. 2.   

IV. COMPARING LORENTZ FORCES IN CYLINDRICAL AND 

CUBOID CONTAINER 

It is possible to compare Lorentz forces only based in fig. 1 

and fig. 2. Maxima and minima are displayed in the same 

places, but values of Lorentz forces in the cuboid container are 

bigger than Lorentz forces in the cylindrical container. The 

shape of contours forces in cuboid container is flatter than 

contours in cylindrical container. Better comparing is 

displayed in fig. 3. In fig. 3 there are differences in values 

normalized Lorentz forces in cuboid container and cylindrical 

container.  

 

Fig. 3 Difference between Lorentz forces in cuboid and cylindrical 

container 

 

In horizontal axis non-dimensional cuboid edge size r´(-) is 

used as well. In vertical axis non-dimensional height of the 

container z´(-) is used. Because of symmetry only half of the 

container section is displayed. Axis of symmetry is situated on 

the left of fig. 3. 

Maxima of differences in values normalized Lorentz forces 

in cuboid container and cylindrical container are displayed by 

red colour, minima by blue colour. Maxima of these 

differences are occurred on the upper and lower base of the 

container near the outside walls. The maxima are caused by 

flatter shape contours in cuboid container than contours in 

cylindrical container. Higher values of Lorentz forces in 

cuboid container are apparently caused by shape of the 

container – container edges. Moving (dominantly in azimuthal 

direction) melt is accelerating and slowing owing to container 

edges and cross-section change.  

 

Fig. 4 Percentage difference between Lorentz forces in cuboid and 
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cylindrical container 

 

In horizontal axis non-dimensional cuboid edge size r´(-) is 

used as well. In vertical axis non-dimensional height of the 

container z´(-) is used. Because of symmetry only half of the 

container section is displayed. Axis of symmetry is situated on 

the left of fig. 4. 

In fig. 4 percentage difference between Lorentz forces in 

cuboid and cylindrical container is displayed. Referential value 

is maximum difference between forces in cuboid and 

cylindrical container. Percentage value of this difference is 

100 %. Other values were divided by this maximum value. 

Resulting difference is displayed in percentage.  

V. DEPENDENCE OF LORENTZ FORCES ON NON-DIMENSIONAL 

HEIGHT OF CONTAINER 

 

Fig. 5 Dependence of Lorentz forces on non-dimensional height 
of container 

 

Dependence of time – averaged normalized Lorentz forces 

in azimuthal direction on non-dimensional height of container 

is displayed in fig. 5. Normalized Lorentz forces are in vertical 

axis and non-dimensional height of the container is in 

horizontal axis. Normalized Lorentz forces in cuboid container 

(from computing program NS-FEM3D) are displayed by blue 

dash line, forces in cylindrical container by red line. Lorentz 

force is a bivariant function (r and z). For displaying forces in 

graph value of coordinate r was chosen on lateral surface of 

the container (r´ = r/R = 1). Shape of this graph answers to 

contours of Lorentz forces in azimuthal direction (fig. 1 and 

fig. 2). Maxima of Lorentz forces are occurred on the outer 

walls of container in the distance z´ = 0 (in half of container 

height). On the contrary minima (zero value of function) of 

magnetic forces are on upper and lower base (because of 

boundary conditions). Shapes of Lorentz forces contours in 

cuboid container are flatter than shape of forces contours in 

cylindrical container. This dependence corresponds to the 

published results of others authors, see [3, 4]. 

VI. CONCLUSIONS 

My work will be proceed on change the whole 

determination system from cylindrical container to cuboid 

container. The aim is finding analytical formula for time-

averaged Lorentz forces in azimuthal direction in cuboid 

container. This analytical formula is important for computing 

program NS-FEM3S. Results of analytical formula will be 

compared with the exact result of the computing program NS-

FEM3D and finally integrated to another flow computing to 

speed up time of this code computing.   
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