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Abstract—This paper is concerned with an investigation into the 

localized non-stability of a thin elastic orthotropic semi-infinite plate. 
In this study, a semi-infinite plate, simply supported on two edges 
and different boundary conditions, clamped, hinged, sliding contact 
and free on the other edge, are considered. The mathematical model 
is used and a general solution is presented the conditions under which 
localized solutions exist are investigated.  
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I. INTRODUCTION 
HE existence of edge waves along the free edge of a 
homogeneous and isotropic semi-infinite thin plate, 

modeled using Kirchhoff theory , was first noted by 
Konenkov [1] . Konenkov established that, for isotropic 
plates, precisely one edge wave solution exists for all values 
of the two free parameters, namely the bending stiffness and 
Poisson’s ratio. The edge wave speed is found to be 
proportional to and slightly less than the speed of flexural 
(one-dimensional) waves on a plate of infinite extent. 
Ambartsumyan and Belubekyan [2] considered localized 
bending waves along the edge of a plate using several non-
classical plate theories, concluding that Timoshenko–Mindlin 
plates do not admit localized edge waves. One of the latest 
developments in the field has been the localized bending 
waves in an elastic orthotropic plate, by Mkrtchyan [3].  

The analogy between localized vibrations of plates and 
plate localized non-stability was established in [4]. Further 
investigations on the late localized non-stability problems 
were done, for example [5]-[7]. In the present paper the 
mathematical model and differential equations is presented. 
The solutions are found; correspondingly, the necessary and 
sufficient different conditions for the existence of localized 
solutions are investigated. The limiting cases obtained. The 
results and conclusions are then reported. 

II. MATHEMATICAL MODELING 
A semi-infinite plate with two simply supported edges as 

sketched if Fig. 1, is considered. The width of the plate is b 
and the thickness is 2h. The Cartesian coordinate system 
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(x,y,z) is chosen so that the plane (xoy) is coincident with the 
plate middle surface, while z is the coordinate along the 
thickness; the x axes and y are aligned the edges. The plate in 
Cartesian coordinates to be defined by a domain: 
 

hzh,by,x ≤≤−≤≤∞≤≤ 00   
 

The plate is uniformly compressed along the edges 0=y  

and by =  with a constant load P. The stability equation for 

plate middle plane normal displacement )y,x(w  can be 
expressed as [8], [9]. 
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Fig.1. uniformly compressed semi-infinite plate simply supported 
along the edges y=0 and y=b 

 
where 11D , 22D are the bending stiffness in the x, y direction 

respectively. Further 11D , 22D , 12D and 66D  can be written 
as 
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Here, the suffixes 1 and 2 refer to the x and y directions, 
respectively, so 1E  is the Young modulus in the x direction, 

12G is the shear modulus in the x-y plane, and 12ν  is the 
Poisson ratio for transverse strain in the y direction caused by 
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stress in the x direction, with similar definition for 2E and 

21ν . 
The boundary conditions on the simply supported edges at 
y=0, y=b are: 
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We consider later the edge x=0 with different boundary 
conditions. One additional boundary condition is needed. If 
the plate is semi-infinite, the localization condition prescribes 
attenuation as ∞→x , hence an additional constraint is 
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General solution of (1) can be represented as series 

expansion 
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Equations (4) and (1) yield to the following linear ordinary 

differential equation and the function )x(fn can be 
determined by solving the ordinary differential equation 
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The attenuation condition of (3) implies that 0→)x(fn  

as ∞→x . Therefore, the general solution of (5) is in the 
form 
 

xp
n

xp
nn

nn eBeAf λλ 21 −− +=                                                (7)                                                 
 
where 1p and 2p are given by 
  

( )2
2

2
1121 1 n,p ηααα −−±=                                     (8) 

                      
Refer to (6) it is clear that      
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The constants nA  and nB  can be obtained imposing the 

different boundary conditions at edge 0=x   lead to a linear 
homogeneous system in nA  and nB . The nontrivial solution is 
given by posing the determinant of the matrix of the 
coefficients to zero. That yields the equation in nη . 

 The different boundary conditions at edge 0=x can be 
presented as follow 

 

A. Clamped Edge 
The boundary conditions on the clamped edge at 0=x  are 
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Substitution of (4) into above boundary conditions yields  
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Substitution of (7) into (11), a set of simultaneous equation 

with regard to nA and nB  is obtained as follow 
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Substitution of (8) into above equation the following 

equation is obtained  
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Localized solution doesn't exist, because (12) doesn't satisfy 
condition (10). 
 

B. Hinged Edge 
The boundary conditions on the hinged edge at 0=x  are 
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Substitution of (4) into above boundary conditions yields  
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Substitution of (7) into (13), a set of simultaneous equation 
with regard to nA and nB  is obtained as follow 
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Substitution of (8) into above equation the following 

equation is obtained  
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Localized solution doesn't exist, because (15) doesn't satisfy 
condition (10). 
 

C. Sliding Contact 
The boundary conditions on the sliding contact edge at 

0=x  are 
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Substitution of (4) into above boundary conditions yields  
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Substitution of (7) into (16), a set of simultaneous equation 

with regard to nA and nB  is obtained as follow 
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There are two cases  
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1
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Substitution of (8) into above equation the following 

equation is obtained  
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Localized solution doesn't exist, because (18) doesn't satisfy 
condition (10). 
 
2. C. 021 =pp  
 
Limiting case (no localization) 
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From (17) and above equations we obtain 0=nA  
 

Substitution of 0=nA  into (7) the following equation is 
obtained 

nn Bf =   
 

Substation of above equation into (4) the following 
equation is obtained  
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The equation (20) is a lost of stability by cylindrical 
surface. 

From 12 =nη   the minimum of P is obtained as follow  
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D. Free Edge 
The boundary conditions at the free edge 0=x  are 
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where 1M arising from distribution of in-plane normal stress 

xσ  and the twisting moment H and shear forces per unit 

length, 1N  arising from the shear stress in the plate and 1N~  is 
reaction force along the edge 0=x .                                                            
 
 

Substation of (4) into boundary conditions (22) yields  
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Some new notations are introduced as follow 
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where 432 ααα ,,  are three independent constants  
 

By using of (6), (24) and substitution of (7) into (23), a set 
of simultaneous equation with regard to nA and nB  is 
obtained as follow 
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The condition that the determinant 0=Δ  yields the 

characteristic equation as follow 
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Instead of (26) it is possible to write 
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With use of equalities as follow 
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The equation (28) can be written as 
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From (27) there are two cases as follow 

 
1. D.   012 =− pp   

Substitution of (8) into above equation the following 
equation is obtained  
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Localized solution doesn't exist, because (31) doesn't satisfy 
condition (10). 
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In first limiting case 021 211 ==⇒→ p,pn αη  
 
From (30) the following equation is obtained  
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In second limiting case 2210 αη =⇒→ ppn  
 

From (30) the following equation is obtained  
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The condition (35) is sufficient for existence of real root of   
(32) in the following interval 
 
 10 << nη  
 
 

From (30) and (34) the following equation is obtained  
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From (8) the following equation is obtained  
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From (36) and (37) the following equation is obtained 
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When condition (35) doesn't satisfy, there is no root or 
there are two roots.  

III. CONCLUSION 
In this paper localized non-stability of a thin elastic 

orthotropic semi-infinite plate has been analyzed. Several 
conclusions can be summarized in the following. 

- In clamped edge conditions localized solution doesn't 
exist. 

- In hinged edge conditions localized solution doesn't 
exist.  

- In sliding contact conditions there are two cases, one 
case localized solution doesn't exit and in the other case 
we obtain the equation of lost of stability by cylindrical 
surface.  

- In free edge there are two cases, one case localized 
solution doesn't exit and in the other case we obtain 
real roots.  
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