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Abstract—Leptospirosis is recognized as an important zoonosis 

in tropical regions well as an important animal disease with 
substantial loss in production. In this study, the model for the 
transmission of the Leptospirosis disease to human population are 
discussed. Model is described the vector population dynamics and 
the Leptospirosis  transmission to the human population are 
discussed. Local analysis of equilibria are given. We confirm the 
results by using numerical results. 
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I. INTRODUCTION 

ATHMATICAL model can be an important role in the 
development and evaluation of disease control policies. 

Through the 20th century, mathematical models have been 
established as major tools for epidemiological models [1]-[3] 
and particular the study of Leptospirosis infection [4]-[6].  

Leptospirosis is an important re-emerging infectious disease 
that affects populations worldwide. Caused by pathogenic 
spirochaetes of the genus Leptospira, the disease present 
higher incidence in tropical and subtropical regions [7]. It is 
commonly overlooked as a cause either of undifferentiated 
fever or fulminant, multisystem disease. The severe pulmonary 
form of Leptospirosis manifesting as hemorrhage has globally 
emerged as a clinical important form of this disease [8]-[10]. It 
is transmitted to humans principally by environmental water 
contaminated with the urine of wild and domestic mammals 
that are chronically colonized by Leptospira, with infected 
animal tissue, or from rat bites. 

 
 
 
 
 
 
 
 
 
 
 

 
Fig. 1 Number of patients with Leptospirosis reported in Thailand 

from 1997 to 2010 
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The modeling, study and data analysis of the spread of 

Leptospirosis diseases are very useful in evaluating strategies 
to control such diseases in populations. In this study, we 
formulate and analyze the mathematical model for 
Leptospirosis transmission. The paper is organized as follows. 
Section II, is presented the mathematical formulation for 
Leptospirosis transmission. Then, in section III, we analyze the 
system solution of ordinary differential equations from obvious 
section. Section IV we consider the real data for numerical 
simulations and discuss in finally section. 

II. MATHEMATICAL MODEL 

In the Section II, we first mathematical model for evolution 
of Leptospirosis transmission in the population is formulated. 
We construct the model by using the basic ideas and structure 
of mathematical modeling in epidemiology, the model for the 
disease will be developed under the next basic hypotheses 
[11]-[13].  
i)  The total human population N(t)  is separate in three 

subclasses: Susceptible human S(t)  is the members of the 

human population who may become infected. Infected 
human I(t) is the members of human population infected 

by Leptospirosis disease. Recovered human R(t) is the 

members of human population who have been immuned. 
ii)  The total vector (rat) population M(t)  is divided into two 

subclasses: Susceptible vector X(t)  is the members of the 

vector  population. Infected vector Y(t) is the members of 

vector population. 
iii)  The birth rate of human µ   is assumed time-independent 

as well as the natural death rate of human d . 
 

 
Fig. 2 Diagram of Leptospirosis transmission 
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TABLE I 
BASIC PARAMETER OF THE MATHEMATICAL MODEL 

Symbol Description 

µ  Birth rate of human 

σ  Birth rate of vector 

d  Natural death rate of human 

a  Natural death rate of vector 
ε  Death rate caused by Leptospirosis disease 

β  Transmission rate of human from infected vector 

α  Transmission rate of vector from infected vector 

δ  Recovery rate of human 

γ  Transmission rate at which the recovered human can be 
secondary infected 

 
Under the above assumptions, an epidemiological model for 

Leptospirosis is given by the following linear system of 
ordinary differential equations.  

'S (t) N(t) dS(t) S(t)Y(t) R(t)= µ − − β + γ ,       
'I (t) S(t)Y(t) (d )I(t)= β − + ε + δ ,          

'R (t) I(t) (d )R(t)= δ − + γ ,             
'X (t) M(t) aX(t) X(t)Y(t)= σ − − α ,        (1) 

'Y (t) X(t)Y(t) aY(t)= α − ,             

N(t) S(t) I(t) R(t)= + + ,              

M(t) X(t) Y(t)= + ,              

Where S(t), I(t) , R(t)  represent the number of human 

individuals in the three subclasses at time t and X(t) , Y(t)  

represent the number of vector individuals in the two 
subclasses at time t. 

III.  ANALYSIS THE MODEL 

Following ideas were developed in papers [14]-[15] about 
how to scale models with populations varying in size, adding 
the first three equations of the system (1) and using the sixth 
equation we obtain that 

'N (t) ( d)N I= µ − − ε .              (2) 

Dividing both members of (2) by N  one gets  
'N I

( d)
N N

= µ − − ε .               (3) 

If we define the ratios (depend on time) 
S

s
N

= , 
I

i
N

= , 
R

r
N

= ,             (4) 

(3) can be transformed into  
'N

( d) i
N

= µ − − ε .               (5) 

 
Now, let us calculate the derivative of s  using (5). Then, we 
obtain that 

' '
'

2

NS SN
s

N

−=  

    
'

' S
s s( d i)

N
= − µ − − ε               (6) 

and analogously, one gets that 
'

' I
i i( d i)

N
= − µ − − ε , 

'
' R

r r( d i)
N

= − µ − − ε .              (7) 

Now, let us consider the first equation of system (1). If we 
divided by N , we have 

'S S S R
d Y

N N N N
= µ − − β + γ            (8) 

and substituting by the corresponding ratios defined in (4) and 
using (8) we obtain the equation 

's r ( Y i)s= µ + γ − β + µ − ε .                      (9) 

  
Remaining part of the equations of system (1) can be scaled 
similarly to obtain  

'i sY ( d i)i= β − ε + µ + − ε             (10) 
'r i ( i)r= δ + γ − µ + ε ,              (11) 

' ' '1 s i r= + + .                 (12) 
Using the same method, adding the fourth and fifth 

equations of the system (1) and using the seventh equation we 
obtain that 

'M (t) ( a)M= σ − .               (13) 

Dividing both members of (13) by M  one gets  
'M

a
M

= σ − .                  (14) 

If we define the ratios 
X

x
M

= , 
Y

y
M

= .                (15) 

Now, let us calculate the derivative of x  using (14). Then, 
we obtain that  

'
' X

x x( a)
M

= − σ −                (16) 

and analogously, one gets that  

 
'

' Y
y y( a)

M
= − σ − .               (17) 

Let us consider the fourth equation of system (1). If we 
divided by M , we have  

'X X XY
a

M M M
= σ − − α               (18) 

and substituting by the corresponding ratios defined in (15) 
and using (18) we obtain the equation 

'x (1 x) xY= σ − − σ .              (19) 

Remaining part of the equations of system (1) can be scaled 
similarly to obtain  

'y yX y= α − σ ,                (20) 
' '1 x y= + .              

Then we have  
's r ( Y i)s= µ + γ − β + µ − ε , 
'i sY ( d i)i= β − ε + µ + − ε , 
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'r i ( i)r= δ + γ − µ + ε ,              (21) 
'x (1 x) xY= σ − − σ ,               

'y yX y= α − σ , 
' ' '1 s i r= + + , 
' '1 x y= + . 

Using the relations in (15) and as ' ' 's i r 1+ + = , ' 'x y 1+ = , we 

can eliminate 'r  and 'x  and  consider the three-dimensional 
system. 

's (1 s i) ( yM i)s= µ + γ − − − β + µ − ε , 
'i syM ( d i)i= β − ε + µ + − ε ,           (22) 
'y y(1 y)M y= α − − σ . 

From the following data 
1. Between 1997 and 2010 of 74,097 in Thailand have 
Leptospirosis infection [16]-[29]. 
2. There are the peak incidence rate with Leptospirosis 
infection in 2000. 
3. Data statistics from Division of Epidemiology, Ministry of 
Public Health, Thailand. 

IV. NUMERICAL SIMULATION  

In this section, we simulate the numerical solutions all 
proportions. Some of the model parameters can be estimated 
by using the values from our previous study [6] and are 
summarized in below table. 

 
TABLE II 

PARAMETERS OF THE MODEL 

Parameter Values 

µ  1/(365 70)×  per day 

σ  1/(365 1.5)×  per day 

d  1/(365 70)×  per day  

M  5000 
ε  0.000001 
δ  1/ 360 per day   
γ  0.0001 

 
We assume as initial condition in the following values  
 s(0) 0.00001= , i(0) 0.06= , y(0) 0.05= .       (23) 

0 20000 40 000 60000 80 000100000120 000140000
Time�days�

0.0188

0.0190

0.0192

0.0194

SusceptibleHuman Proportion

 

20 000 40 000 60 000 80000100 000120 000140 000
Time�days�

0.755

0.760

0.765
Infectious Human Proportion

1000 2000 3000 4000 5000 6000 7000
Time�days�

0.40

0.45

0.50

0.55

0.60

Infectious Vector Proportion

 
Fig. 3 Dynamics of the different subpopulations when 0.000001β =  

and 0.000001α =  

 
TABLE III 

EQUILIBRIUM STATE WHEN 0.000001β = AND 0.000001α = OF 

SYSTEM (22) 

Equilibrium State Values 

*s  0.0189204 
*i  0.7647665 

*y  0.6347032 

 
TABLE IV 

EIGENVALUES OF THE  JACOBIAN 
* * *J(s , i , y )WHEN 0.000001β = AND 

0.000001α = OF SYSTEM (22) 

Eigenvalues Values 

1λ  11.589600−  

2λ  0.003213−  

3λ  0.000097−  

20000 40 000 60000 80 000100000120 000140000
Time�days�

0.0095

0.0096

0.0097

0.0098
Susceptible Human Proportion
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20 000 40 000 60 000 80000100 000120 000140 000
Time�days�

0.760

0.765

0.770

Infectious Human Proportion

 

1000 2000 3000 4000 5000 6000 7000
Time�days�

0.40

0.45

0.50

0.55

0.60

Infectious Vector Proportion

 
Fig. 4 Dynamics of the different subpopulations when  

                      0.000002β = and 0.000001α =  
 

TABLE V 
EQUILIBRIUM STATE WHEN 0.000002β = AND 0.000001α = OF 

SYSTEM (22) 

Equilibrium State Values 

*s  0.0095496 
*i  0.7720622 

*y  0.6347032 

 
TABLE VI 

EIGENVALUES OF THE  JACOBIAN 
* * *J(s , i , y )WHEN 0.000002β = AND 

0.000001α =  OF SYSTEM (22) 

Eigenvalues Values 

1λ  11.589600−  

2λ  0.006386−  

3λ  0.000098−  

 
For the first simulation we consider that the spread of 

Leptospirosis in population is in equilibrium, proportions of 
susceptible, infected human and infected vector are invariant 
over the parameter values and other parameters are defined in 
Table II, 0.000001β =  and 0.000001α = . Thus, we can 

compute the equilibrium state * * *(s , i , y ) and the jacobian 
* * *J(s , i , y ) of system (23). The eigenvalues of * * *J(s , i , y ) are 

negative and therefore equiulibrium state * * *(s , i , y ) is locally 

asymptotically stable [30]. See Table III and VI.  In fig. 4, it 

can be seen that the solutions s(t) , i(t)  and y(t)  stay 

invariant over the time. In the second simulation the 
transmission rate 0.000002β =  is increased to the double 

value of the previous simulation. In Table V and VI, the 
equilibrium state * * *(s , i , y ) and the eigenvalues of the 

Jacobian * * *J(s , i , y ) are showed. The obtained eigenvalues 

are negative, therefore the equilibrium state is locally 
asymptotically stable. 

V. CONCLUSION 

In this model, we study the Leptospirosis transmission by 
using the mathematical model. The model is divided the 
human population into three subclasses and vector population 
into two subclasses. We use the system of ordinary differential 
equation for analyzing. The numerical simulations of the 
model are shown in fig. 3 and fig. 4. We can see from the 
dynamic of Leptospirosis infection when β is increase, the 

infected human proportion is increase too. Moreover, we 
compare the numerical simulation when α  increase in below 
figure.  

20000 40 000 60000 80 000100000120 000140000
Time�days�

0.0147

0.0148

0.0149

0.0150

0.0151

Susceptible Human Proportion

 

20 000 40 000 60 000 80000100 000120 000140 000
Time�days�

0.760

0.765

Infectious Human Proportion

 

1000 2000 3000 4000 5000 6000 7000
Time�days�

0.8162

0.8164

0.8166

0.8168

0.8170

0.8172

Infectious Vector Proportion

 
Fig. 5 Dynamics of the different subpopulations when 

0.000001β = and 0.000002α =  
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We can see in fig.5 for the third simulation, we consider all 
proportions when the transmission rate of vector from infected 
vector ( α ) is increased to the double value of the the first  
simulation. It is possible to see that the solution s(t) , 

i(t) andy(t) converge to the equilibrium state 0.0147541, 

0.7680102, 0.8173516, respectively. We can see, infected 
human and infected vector increase. So, the controlling in 
Leptospirosis transmission is good when we can control the 
transmission rate of vector from infected vector or the 
transmission rate of human from infected vector are decreases.  
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