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Abstract—In this paper, we present a new segmentation approach 

for focal liver lesions in contrast enhanced ultrasound imaging. This 

approach, based on a two-cluster Fuzzy C-Means methodology, 

considers type-II fuzzy sets to handle uncertainty due to the image 

modality (presence of speckle noise, low contrast, etc.), and to 

calculate the optimum inter-cluster threshold. Fine boundaries are 

detected by a local recursive merging of ambiguous pixels. The 

method has been tested on a representative database. Compared to 

both Otsu and type-I Fuzzy C-Means techniques, the proposed 

method significantly reduces the segmentation errors. 

 

Keywords—Defuzzification, fuzzy clustering, image 

segmentation, type-II fuzzy sets.  

I. INTRODUCTION 

ONTRAST Enhanced UltraSound (CEUS) [1]-[3] 

consists in acquiring an ultrasound image after injecting 

in the patient’s blood a contrast agent made of gas-filled 

microbubbles [4]. This new modality allows an improvement 

of tumor detection by emphasizing the relative differential 

perfusion of the tumor tissue compared to normal liver 

parenchyma. Unfortunately, the modality suffers, as 

conventional ultrasonology, from several drawbacks, making 

the lesion detection process very difficult: low resolution, low 

contrast be-tween the lesion and the surrounding tissue, and 

discontinuity [4]. 

 Many techniques have been developed for ultrasound 

image segmentation. They are categorized into: histogram 

thresholding; region growing; model-based (active contour, 

level set; Markov model), machine learning; watershed 

methods; and fuzzy clustering [5]-[9]. Due to the complex 

nature of images, the use of these methodologies often 

involves preprocessing (filtering for noise reduction), and/or 

prior knowledge.  

In this paper, we present a new liver lesion segmentation 

approach for CEUS imaging that considers two clusters: the 

lesion and the surrounding tissue. Fuzzy C-Means clustering is 
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used due to its ability to deal with different types of 

uncertainty and treat overlapping clusters. This method 

considers both local and global information. The optimum 

inter-cluster threshold is calculated by considering type-II 

fuzzy sets, an extension of type-I fuzzy sets, but with an 

additional dimension that represents the uncertainty about the 

degree of membership. Type-II fuzzy sets are considered 

useful in circumstances where it is difficult to determine the 

exact membership function for a fuzzy set [10], and they can 

be used to enhance the contrast of ultrasound images [10-11]. 

Such optimum threshold enables the detection of “ambiguous 

pixels” close to the boundary regions. Their cluster affection is 

done by applying a two-step decision that simulates gradual 

focusing perception, thus considering the local information.  

The paper is organized as follows: Section II provides a 

detailed explanation of the proposed approach, in addition to 

type-I fuzzy sets, type-II fuzzy sets, and the decision process; 

Section III shows the results and evaluations of the pro-posed 

methodology; and the paper is concluded in Section IV. 
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II. METHODOLOGY 

The proposed approach, illustrated in Fig. 1, consists of the 

following main parts: (i) Fuzzy C-Means clustering; (ii) 

calculating the optimum threshold (inter-cluster threshold) that 

distinguishes between the ambiguous pixels and non-

ambiguous pixels; (iii) revealing ambiguous pixels; (iv) local 

treatment of ambiguous pixels; and (v) final segmentation. 

A. Type-I Fuzzy Sets 

The concept of fuzzy sets was introduced as a 

generalization of the classic set theory. In real world, many 

classes of objects are not as well defined as regular set theory 

would suggest, and thus, the concept of a crisp set could be 

very hard to deal with sometimes. The definition of a fuzzy set 

has what is needed to define a set with inexact boundaries i.e. 

objects with vague membership. A fuzzy set A  in X  can be 

defined as a set of ordered pairs [11]: 

 

  
A= {(x, y) x ∈ X , y = µ

A
(x) ∈[0,1]}             (1) 

    

where ( )
A

xµ is the membership function.  

Under these considerations, we can describe the type-I 

Fuzzy C-Means clustering. 

Let � = {��, … , �� , … , �	} be the set of n objects, and  
� = {�, … , � , … , �} be the set of c centroids in a p- 

dimensional feature space. The Fuzzy C-Means partitions X  

into c  clusters by minimizing the following objective function 

[12]: 
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where 
2

2 x vij j id = −          (4) 

     

FCM starts by randomly choosing c  objects as centroids 

(means) of the c  clusters. Memberships are calculated based 

on the relative distance (i.e. Euclidean distance) of the object 

x j to the centroids using (4). After the memberships of all 

objects have been found, the centroids of the clusters are 

calculated using (3). The process stops when the centroids 

from the previous iteration are identical to those generated in 

the current iteration [12]. 

B. Type-II Fuzzy Sets 

The main drawback with type-I fuzzy sets is that the 

assignment of a membership degree to an element (pixel) is 

not certain. Memberships are usually defined by the expert 

and are based on intuition and knowledge. The fact that 

different fuzzy techniques differ mainly in the way they define 

the membership function is for most of the part due to this 

dilemma [13]. Type-1 fuzzy sets are also not able to directly 

model uncertainties, since their membership functions are 

totally crisp. In order to find a more robust solution, type-II 

fuzzy sets should be introduced, as they are able to model 

uncertainties especially that their membership functions are 

themselves fuzzy [14]. Type-II fuzzy sets are fuzzy sets for 

which the membership function does not deliver a single value 

for every element, but an interval [13]. 

In order to define a type-II fuzzy set, one can define a type-I 

fuzzy set, and assign upper and lower membership degrees to 

each element in order to (re-)construct the footprint of 

uncertainty (FOU), which encapsulates the uncertainties 

associated with the membership functions, and is 

characterized by the upper and lower membership degrees �� 

and �� , respectively, of the initial (skeleton) membership 

function � [13], [18]. 

Type-II fuzzy sets can be defined as [13]: 
 

�~ = ���, �����, ������|∀� ∈ �, ����� ≤ ���� ≤ �����, � ∈ �0,1 ! (5) 

     

The upper and lower membership values can be defined as 

[13]: 
 

[ ]
1

( ) ( )
U

x x αµ µ=                                (6) 

  

[ ]( ) ( )
L

x x
α

µ µ=                                   (7) 

 

where (1, )α ∈ ∞ . For image data, (1, 2]α ∈  is 

recommended to be used, since α >> 2  is usually not 

meaningful for image data [13]. For our experimental results, 

2α = was used. 

C. Measure of Ultrafuzziness  

The most common measure of fuzziness is the linear index 

of fuzziness [13]. We consider the CEUS image with type-II 

fuzzy sets, where the calculation of its degree of fuzziness is 

needed, provided that the higher the degree of fuzziness, the 

higher the image ambiguity, and thus, making the threshold 

definition difficult. 

The measure of ultrafuzziness (i.e. linear index of 

fuzziness) 
~γ for an M N× image subset

~
A X⊆  with L  

gray levels [0, 1]g L∈ − , histogram ( )h g , and the 

membership function 
~
( )

A
gµ , can be defined as [13]: 
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where, ( )
U

gµ  and ( )
L

gµ  are defined in (6) and (7), 

respectively, and (1, 2]α ∈ . 

D. Calculating the Optimum Threshold Using Type-II Fuzzy 

Sets 

The optimum threshold provides the global estimation of 

edge ambiguity. The general algorithm (Algorithm.1) for 

calculating the optimum threshold based on type-II fuzzy sets 

and measures of ultrafuzziness are as follows [13]:  

Algorithm.1: Calculating the Optimum Threshold  

a) Select the shape of skeleton membership function µ(g) and 

initialize α ,   

b) Calculate the image histogram, 

c) Initialize the position of the membership function, 

d) Shift the membership function along the gray-level range,  

e) Calculate in each position the upper and lower membership values 

( )
U

gµ  and ( )
L

gµ , 

f) Calculate in each position the amount of ultrafuzziness as in (8), 

g) Locate the position optg  with maximum ultrafuzziness,  

h) Threshold the image with . 

 

The membership function used in this paper is the S-

function [15], which is defined as: 
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where 0, 1, 0.5
2

a c
a c b

+
= = = =  (crossover point). 

E. Defuzzification 

In fuzzy clustering, the minimization of the functional J , 

given in (2), leads to partitions characterized by the 

membership degree matrix. A defuzzification is thus needed to 

obtain the final segmentation. Usually, the data is attributed to 

the class having the highest membership degree. In ultrasound 

imaging however, this method doesn’t give appropriate results 

because lesion borders are often not clearly defined. 

Boujemaa et al. [16] introduced the notion of local 

ambiguity for a given pixel by considering a spatial criterion, 

describing the neighborhood. The method is divided into two 

steps. Firstly, data are compared with the optimum threshold 

(calculated in the previous section) to reveal the most 

ambiguous pixels (i.e. weak membership degree) from the 

remaining strong ones (i.e. high membership degree) to 

represent the coarse image information. In the second step, 

weak pixels are assigned with regards to their spatial context. 

As shown in Fig. 2, the weak pixel "# will be evaluated 

against its neighbors in the window (assuming the window is 

of size 3 % 3). 

Each cluster (Fig. 3) could be represented by a crisp lower 

approximation, fuzzy boundary [12], core (i.e. �&' = 1), and 

support (i.e. �&' ( 0). 

 
 

p1 

 

p2 
 

p3 

 
p4 

 
p5 

 
p6 
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p8 
 

p9 

Fig. 2 3 % 3 window 

 

 

Fig. 3 Cluster )&  represented by a crisp lower approximation, fuzzy 

boundary, core, and support 

 

To treat all ambiguous pixels, the whole image has to be 

explored. Different exploration methods are then possible. The 

first consists in making a linear sweeping, where the data is 

affected to the major cluster of its neighbors. Thus, in Fig. 4, 

the weak pixel will be assigned to cluster *. 
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Fig. 4 Weak pixel "# assigned to cluster * 

 

Linear sweeping is a very fast method, but may affect 

ambiguous pixels to a class with several ambiguous neighbors. 

Obviously, it is frequent to deal with pixels which neighbors 

are also ambiguous. The second method is based on a double 

iterative sweeping in order to take a decision only with the less 

ambiguous pixels. This process is iterated until all pixels are 

treated. The first method was used in this paper. 

The pseudocode for the proposed approach is demonstrated 

in Algorithm.2. 

III. RESULTS AND DISCUSSION 

The performance of the proposed approach was tested on 

six annotated liver contrast enhanced ultrasound (CEUS) 
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images, where the liver and the lesion areas were labeled by 

an expert. These images were obtained using a Siemens 

Acuson Sequoia 512 with a 4C1 probe, in CPS mode, after 

Sonovue injection. Fig. 5 shows a sample of such images, the 

ambiguous pixels that have been dealt with in the proposed 

approach (revealed and assigned to the appropriate clusters), 

the ground truth of the image sample, and the results obtained 

for three different methods. 

Algorithm 2: Defuzzification by gradual focusing 

Input /* image */ 

X={x1,…, xn} /* set of n-objects (data points) */ 

m /* number of classes */ 

Output 

L={l1,…, ln} /* li is a label for point xi */ 

Implementation 
Matrix: µ /* membership matrix of size n×m */ 

Begin 

Step 1 /* Initialization */ 

Initialize the membership matrix μ with random values that satisfy the 

following constraints: 

[0,1], 1...n, 1...ij i j mµ ∈ ∀ = ∀ =  

1

1, 1...
m

ij i

j

nµ
=

= ∀ =∑  

Step 2  

Repeat 

calculate the fuzzy centers vi , i=1..c: 

 ( )
1

1 n
m

i ij j

jin =

= ∑v μ x  

calculate the membership μij, i=1..c, j=1..n:  

u
i j

=
1

d
ij

d
kj











k=1

c

∑
2

m−1

 

calculate the objective function J, until J < ε: 

( ) 2

1 1

n c
m

ij j i

j i

J
= =

= −∑∑ μ x v  

Step 3 

find ambiguous threshold β  

Step 4 /* defuzzification */ 

for i=1…n 

li=k, where µik=max µij 

end 
/* reveal ambiguous pixels */ 

if µij >= β 

assign pixel to its cluster 

else if µij < β 

mark pixel as ambiguous  

end 

end 

/* check the neighborhood (i.e. 3×3) of the ambiguous pixels in order 

to assign them to the appropriate cluster */ 

if repeat(cm) > repeat(cn) 

assign pixel to cm 

else if repeat(cm) < repeat(cn) 

assign pixel to cn 

else if repeat(cm) == repeat(cn) 

assign pixel to cluster it would be appointed to in step 4 

end 

end 

end 

Return L 

Step 5 

extract boundary of interest /* semi-automatic step for detecting the 

lesions */ 

End 
 

       

                 (a)                                   (b)                                    (c) 

 

      

             (d)                                     (e)                                    (f) 

Fig. 5 (a) Annotated CEUS image (red region: legion; green region: 

liver); (b) ambiguous pixels (in red); (c) ground truth of (a); (d) result 

of proposed approach; (e) Fuzzy C-Means clustering result; and (f) 

Otsu’s method result 

 

Table I shows the optimum threshold obtained for each 

CEUS image. 
 

TABLE I 

OPTIMUM THRESHOLD FOR EACH CEUS IMAGE 

Image Optimum threshold 

1 0.0577 

2 
3 

4 

5 
6 

0.1164 
0.0903 

0.0638 

0.1464 
0.0604 

 

We have studied six observation criteria [17], thereby 

highlighting the improvements in the segmentation, in terms 

of precision, shape and information extracted. We relied on 

precision, recall and the Dice index, all three defining 

statistically the quality of segmentation. We also analyzed the 

Hamming measure, which characterizes the number of 

disparities between two images. The shape analysis is based 

on the determination of the Mean Absolute Distance (denoted 

by MAD), and the SSIM (Structural SIMilarity) is used to 

estimate the amount of information extracted from the original 

image.  

Precision and recall are defined as: 

 

 Precision = 34

34564
          (10) 

 

        Recall = 34

3456:
         (11) 

 

The Dice index is defined as: 
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 Dice index = 2 % 4?@�&A&B	%C@�D��

4?@�&A&B	5C@�D��
          (12) 

     

The Manhattan distance is defined as: 

 

 Manhattan distance = 3453:

3456453:56:
         (13) 

 

Hamming measure is defined as: 
 

HI�J� ⟹ JL� = n − ∑ OP�CQ∈RQ
|SL ∩ S�|CU∈RU

        (14) 

 

where S� and SL are segmentation areas in the images J� and 

JL, respectively. And, V is the number of pixels of one image. 

The mean absolute distance (MAD), which analyzes the 

contour points, and thus, the shape of the segmentation, is 

defined as: 
 

MAD�S�, SL� = �

X
∑ ‖�Z − [Z‖X

Z\�      (15) 

 

where �Z  and [Z are contour points of S� and SL, 

respectively. 

The structural similarity (SSIM) for the extracted structural 

information is defined as: 
 

SSIM�S�, SL� =
�LZQZU5_Q��L�B`Q,U5_U�
�ZQ

U5ZU
U5_Q��aQ

U5aU
U5_U�

      (16) 

 

where O� and OL are the average values of S� and SL; b�
L and 

bL
L are the variance; c� and cL are two coefficients 

proportional to the dynamic range of the pixel values. 

Table II shows the results obtained for our approach, which 

uses the ambiguous pixels to delimitate its extraction, 

compared to Fuzzy C-Means clustering and Otsu’s method 

[19]. 

From Table II, we can see that the proposed approach 

performs better compared to the two other methods. Indeed, 

the Dice index is increased by 10.57%, 10.81%, compared with 

Fuzzy C-Means clustering and Otsu’s method, respectively. 

The number of disparities is divided by a factor of 10, and the 

criteria defining the shape and the information extracted is 

also improved. The shape of the segmentation is greatly 

enhanced and the quality of the information extracted 

increased by 42%. Figs. 5 (d)-(f) depict those results. 

 
TABLE II 

SEGMENTATION PERFORMANCE OF THREE METHODS 

 Proposed approach FCM         Otsu      

Precision 99.25%  99.91%     99.91% 

Recall 
Dice index 

Hamming measure 

MAD 
SSIM 

98.65%  
98.95% 

5135 

2.74 
0.88 

79.23%     78.85% 
88.38%     88.14% 

51157       52090 

12.14       12.08 
0.61         0.62 

IV. CONCLUSION 

In obtaining the final segmentation from fuzzy clustering, a 

defuzzification (decision stage) is needed. Due to the complex 

nature of CEUS images, especially where lesion borders are 

often not clearly defined, the proposed approach used a two-

step decision stage: revealing ambiguous pixels, and assigning 

such ambiguous pixels to the appropriate clusters with regards 

to their spatial context. Dealing with and treating ambiguous 

pixels, through the proposed approach, provided significant 

improvements as compared to two classical segmentation 

algorithms, Fuzzy C-Means clustering, and Otsu’s method. 

The proposed approach reduced the number of disparities, 

segmentation was enhanced, and the quality of the information 

extracted increased. As a future prospect to this work, we are 

aiming at expanding the proposed decision stage to be 

performed from a multi-scale decision perspective.  
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