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Abstract—A complete spectral representation for the 

electromagnetic field of planar multilayered waveguides 
inhomogeneously filled with omega media is presented. The problem 
of guided electromagnetic propagation is reduced to an eigenvalue 
equation related to a 2 2×  matrix differential operator. Using the 
concept of adjoint waveguide, general bi-orthogonality relations for 
the hybrid modes (either from the discrete or from the continuous 
spectrum) are derived. For the special case of homogeneous layers 
the linear operator formalism is reduced to a simple 2 2×  coupling 
matrix eigenvalue problem. Finally, as an example of application, the 
surface and the radiation modes of a grounded omega slab waveguide 
are analyzed. 
 

Keywords—Metamaterials, linear operators, omega media, 
layered waveguide, orthogonality relations 

I. INTRODUCTION 

LECTROMAGNETIC characteristics of new complex 
materials, namely or omega media, have granted 

considerable attention in the literature [1]-[3]. Although omega 
media are nonchiral, their properties are governed by 
constitutive relations similar to chiral media. While chiral 
artificial material consists of small wire helixes inserted into 
the host medium, the omega medium contains omega-shaped 
microstructures in which both the loop and the stamps lie in 
the same plane. Although the electric field in both the wire and 
the   elements induces not only electric but also magnetic 
polarization and vice versa, differences in the mutual 
placement of the polarization vectors are observed: in the wire 
element of the chiral medium, these interacting fields are 
parallel; in the omega microstructure they are perpendicular to 
each other. This distinctive feature of omega media implies 
that the orientation of the doping elements in the host isotropic 
medium cannot be random but must be parallel to a unique 
preferred direction. In fact, with a random distribution of 
conducting microstructures, the overall electro-magnetic 
coupling would result in a null average. 

In this paper a linear-operator formalism for the analysis of 
inhomogeneous omega planar waveguides is presented. For 
these waveguides, using the theory of linear operators and 
through a suitable definition of a two-vector transverse mode 
function, the problem of guided electromagnetic wave 
propagation is reduced to an eigenvalue equation related to a 
2 2×  matrix differential operator. This mathematical 
framework is similar to the one developed by the authors for 
inhomogeneous chiral planar waveguides [4], [5]. 
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Using the concept of adjoint waveguide, bi-orthogonality 

relations are derived for the hybrid modes. In order to have a 
complete field representation in open omega waveguides, these 
relations are of utmost importance when choosing an 
appropriate set of mutually orthogonal radiation modes. As an 
example of application, a general analysis of the surface and 
radiation modes of a grounded omega slab is also presented. 
Finally, one should note that this linear-operator formalism is 
applicable to multilayered planar waveguides with 
inhomogeneous layers. However no specific example of 
application is worked out for this general case. For the case of 
homogeneous layers the general formalism reduces to an 
algebraic 2 2×  coupling matrix eigenvalue problem. 

II. LINEAR-OPERATOR FORMALISM 

The aim of this section is to reduce the problem of guided 
electromagnetic wave propagation in (open or closed) 
inhomogeneous omega waveguides to a linear-operator 
formalism. Based on the transverse electromagnetic field 
equations an eigenvalue problem is obtained. For each 
eigenvalue the corresponding eigenfunction represents a 
transverse mode function of the waveguide. Hence, the 
orthogonality properties of these eigenfunctions can be used to 
represent the electromagnetic field as a superposition of mode 
functions, as long as completeness is guaranteed. 

 In this section, the general layered grounded open 
waveguide depicted in Fig. 1 will be considered. It is uniform 
in the   direction and is inhomogeneously filled with spatially 
nondispersive lossless omega medium. 

 For bianisotropic omega media the constitutive relations 
may be written as 

 

 ( )0 0Zε= ⋅ + ⋅D ε E ξ H  (1a) 

 

 ( )0 0Yµ= ⋅ + ⋅B ζ E µ H  (1b) 

 

with ( ) ( )1
0 0 0 0 0 0/ /Z Y k kωε ωµ−= = = , where εεεε  and µ  are the 

relative dielectric permittivity and relative magnetic 

permeability dimensionless tensors, and ξ  and ζ  are the 

magnetoelectric coupling dimensionless tensors. As the 
medium is considered spatially nondispersive these relations 
are local. The structure depicted in Fig. 1 is uniform and 
infinite in the y  direction (hence ∂ ∂/ y ≡ 0 ) and can be  

inhomogeneously filled with omega media. More precisely 

( ), xωε , ( ), xωµ , ( ), xωξ  and ( ), xωζ  are piece-wise-

continuous functions of x  (i.e., the general case of 
inhomogeneous layers is included). 
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Fig. 1 Multilayered omega waveguide closed by electric and/or 

magnetic walls placed at x = 0  and x d=  
 

Introducing normalized distances marked with primes (e.g., 
′ =x k x0 , ′ =y k y0 , ′ =z k z0 ) and a normalized magnetic 

field HHHH  such that 
 
 0Z= HHHHH  (2) 

 
then, from Maxwell’s curl equations for source free regions 
together with (1a) and (1b), one may write 
 
 j ′− ∇ × = ⋅ + ⋅ε E ξH HH HH HH H  (3a) 

 
 j ′∇ × = ⋅ + ⋅E ζ E µ HHHH  (3b) 

 
where time-harmonic field variation of the form ( )exp j tω  

was assumed and 0/ k′∇ = ∇ . Considering forward plane wave 

propagation of the form ( )exp − ′j zβ , where β  is the 

normalized longitudinal wavenumber given by 
 
 β = k k/ 0  (4) 

one has 
 ˆ ˆ

x j∂ β′′∇ = −x z  (5) 

 
where ∂ ′x  stands for ∂ ∂/ ′x .  

In this paper, only the case of Ω -shaped perfectly conducting 
microstructures oriented as in Fig. 2 in a isotropic host 
material, will be considered. The normal to the planes of the 
loops points in the x  direction while the stamps are aligned 
along the z  direction, and the loops are oriented in the 
positive y  direction. Therefore tensors ε , µ , ξ  and ζ  have 

the following dyadic representation 
 
 ˆ ˆ ˆ ˆ ˆ ˆ

xx yy zzε ε ε= + +ε xx yy zz  (6a) 

 ˆ ˆ ˆ ˆ ˆˆ
xx yy zzµ µ µ= + +µ xx yy zz  (6b) 

 ˆ ˆj= Ωξ zx  (6c) 

 ˆ ˆj= − Ωζ xz  (6d) 

where Ω  is the dimensionless omega parameter which is 
positive. If the loops were oriented in the negative y  

direction, one should have Ω < 0 . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2 Spatial orientation of planar, Ω -shaped, conducting 
microstructures in the hosting isotropic material 

 
From (6) one has T= −ξ ζ , which shows that the Ω -medium 

is reciprocal. Moreover, when the medium is lossless the 
constitutive parameters are all real. 
 After substituting (6) into Maxwell’s equations (3) and 
eliminating the components directed along x , one obtains the 
following set of coupled partial differential equations 
 
 x t tj∂ ′ = − ⋅f C f  (7) 

 
where tf  is a column vector with the electric and magnetic 

field components tangential to the yz plane 

 

 
T

t y z y zE E =  f H HH HH HH H , (8) 

 
(T stands for transpose), whereas C  is a 4 4×  coupling 
matrix given by 
 

 

2

2

2

0 0 0

0 0

0 0

0 0 0

zz

yy
xx xx

zz
xx xx

yy
xx

j

j

µ

βε β
µ µ

β ε
µ µ

βµ
ε

 
 
 Ω −
 
 
 = Ω Ω − + 
 
 
 

− + 
 

C (9) 

 
The transverse field components may be algebraically 
expressed in terms of tf  as follows 

 
 n t= ⋅f G f  (10) 

where 

 z 

x 

d 

z 

Ω Ω Ω Ω Ω
Ω Ω Ω Ω Ω
Ω Ω Ω Ω Ω
Ω Ω Ω Ω Ω

 

y 
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 [ ]T

n x xE=f HHHH . (11) 

 
In (10) G  is a 2 4×  matrix given by 
 

 

0 0 0

0 0

xx

xx xx

j

β
ε

β
µ µ

 
 
 =
 Ω
 −
  

G . (12) 

 
One should note that, according to (8)-(12), only hybrid modes 
can propagate in the planar structure. Moreover one has 
 
 tr 0=C  (13a) 
 

 ( )tr adj 0=C , (13b) 

 
and hence the eigenvalues of C  are anti-symmetric therefore 
allowing and (7) to be recast as a 2 2× matrix eigenvalue 
problem. 

A. Eigenvalue Equation for Inhomogeneous Waveguides 

In order to recast the electromagnetic field equations in 
terms of a single eigenvalue equation, the following definition 
of a two-vector transverse mode function (or eigenfunction) is 
introduced: 
 

 [ ]T

z xE=Φ H . (14) 

 
Hence, from (7)-(12) one obtains the eigenvalue equation 
 
 2β⋅ = ⋅Φ ΦL WL WL WL W  (15) 

 
where LLLL  is a 2 2×  matrix differential operator given by 
 
 

 

2

1 1
x x yy x x yy xx

zz zz

yy zz yy

j

j
x

∂ ∂ ε ∂ ∂ ε µ
µ µ

∂ µ ε µ

′ ′ ′ ′

    Ω+ +    
    =
 
 + Ω ′ 

LLLL  (16) 

 
and WWWW is the weight operator 
 

 

0 1

zz

xx xx

j
ε
ε ε

 
 

=  
 
  

ΩWWWW . (17) 

 
Once the field components Ez  and xH  have been 

determined through (15), the remaining components can also 
be determined.  

In everything that follows within this section, three classes 
of waveguides will be considered: (i) closed waveguides with 

electric and/or magnetic walls placed at ′ =x 0  and ′ = ′x d ; 
(ii) open waveguides extending from ′ = −∞x  to ′ = +∞x ; 
(iii) open grounded waveguides extending from an electric or 
magnetic wall placed at ′ =x 0  to ′ = +∞x . Hence, a finite, 
infinite or semi-infinite interval I  on ′x  will be introduced as 
follows: (i) [ ]0,I d ′=  for closed waveguides,; (ii) 

] [I = −∞ +∞,  for open waveguides: (iii) [ [I = +∞0,  for open 

grounded waveguides. In order to define the domain D  of 
LLLL , only surface modes will be considered for the two classes 
(ii) and (iii) of open waveguides. Consequently, Ez  and xH  

always have finite energy and hence they belong to the vector 
space of square integrable functions over I . However , only 
for closed waveguides (i.e., for regular problems  
corresponding to finite interval I ), a complete spectral 
representation is possible within D . 

B. Bi-Orthogonality Relation 

Introducing the following real type inner product 
 

 ( )1 1 2 2, a a a
I u u u u dx′= +∫u u  (18) 

 
it is possible to determine the adjoint operators aLLLL  and aWWWW  of 

LLLL  and WWWW , respectively, with aΦ  satisfying the same 

boundary conditions. In fact, making use of (18) with 

[ ]1 1 2,
T

u u D= ∈u  and 1 1 2,
Ta a a au u D = ∈ u , where Da  

denotes the domain of aLLLL , one can easily see that 

 
 a T=L LL LL LL L  (19a) 
 
 a T=W WW WW WW W  (19b) 
 
according to (16) and (17). 
At this point it is useful to introduce the concept of adjoint 
waveguide [6], as the one which has the same geometry and 
dimensions of the original waveguide, with identical 
boundaries, and satisfying to the following eigenvalue problem 
 
 2a a a

a aβ⋅ =Φ ΦL WL WL WL W  (20) 

 

where plane wave propagation of the form ( )exp − j zaβ  was 

considered. According to the fact that every eigenvalue β 2  of 

LLLL  is an eigenvalue of a
LLLL  [7], one can readily prove that 

 

 ( )2 2 , 0a
m n m nβ β− =⋅Φ ΦW  (21)  

if m D∈Φ  and a a
n D∈Φ . Hence, after a suitable 

normalization, the following bi-orthogonality relation holds 
 

 , a
m n mnδ=⋅Φ ΦWWWW  (22) 

 
where δmn is the Kronecker delta. 
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III.  HOMOGENEOUS LAYERS 

For the special case of homogeneous layers, the linear 
operator formalism herein derived is reduced to a 2 2×  
coupling matrix eigenvalue problem. In fact, for this case, one 
obtains from (15)-(17) 
 
 2

x∂ ′ = − ⋅Φ R Φ  (23) 

where 

 
11 12

21 22

R R

R R

 
 =
 
 

R  (24) 

with 

 R zz yy
xx

11

2

= −










ε µ β

ε
 (25a) 

 R j yy
xx

12

2

= −










Ω µ β

ε
 (25b) 

 R j jzz

xx
yy

xx
yy

zz

xx
21

2

= −










 −

Ω
Ω

ε
µ

µ β
ε

ε
µ
µ

 (25c) 

 R zz yy
xx xx

yy
xx

22

2 2 2

= −










 − −











µ ε β

µ µ
µ β

ε
Ω

. (25d) 

Hence, in a similar way as shown in [4], one may write for 
each homogeneous omega layer: 
 
 ( ) ( )x x′ ′= ⋅Φ M Ψ  (26) 

where 

 
1 1

a bτ τ

 
 =
 
 

M  (27) 

 
is the modal matrix of R , such that 
 

 2
x∂ ′ = − ⋅Ψ Λ Ψ  (28) 

 

with [ ]T

a b= Ψ ΨΨ  and ( )2 2diag ,a bh h=Λ . Therefore, one 

has 
 

 
( ) ( )

h
R R R R R R

s
2 11 22 11 22

2
12 214

2
=

+ ± − +
 (29) 

and 

 τ s
s

s

h R

R

R

h R
=

−
=

−

2
11

12

21
2

22

 (30) 

 
with s a b= , . 

IV.  GROUNDED SLAB WAVEGUIDE 

As an example of application of the previous formalism, the 
grounded omega slab waveguide depicted in Fig. 3 will be 
analyzed.  

Since this waveguide is an open structure extending from 
the perfectly conducting plane at ′ =x 0  to ′ = +∞x , the 
operator LLLL  is defined over a semi-infinite interval, and has a 
discrete spectrum as well as a continuous spectrum. One 
should stress that, for the sake of completeness, the radiation 
modes must be included in the analysis. Nevertheless, the 
radiation modes do not actually belong to the domain of the 
operator: indeed they are improper eigenfunctions. 
Assuming that the Ω -shaped conducting microstructures have 
a spatial orientation in the slab as in Fig. 2, all the modes in the 
waveguide are hybrid. 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3 Grounded omega slab waveguide. The slab of thickness t  is 
an isotropic medium with Ω -shaped conducting microstructures 

with spatial orientation as in Fig. 2, while the upper medium is the air 
 

According to (26), (27), (29) and (30), for 0 < ′ < ′x t , 
where ′t  is the normalized thickness of the slab, one has, 
 
 Ez a b= +Ψ Ψ  (31a) 

 
 x a a b bτ τ= Ψ + ΨH  (31b) 

where 

 ( ) ( )[ ]Ψa a aA h x Q h x= ′ − ′sin cos  (32a) 

 

 ( ) ( )[ ]Ψb b bA R h x Q h x= ′ + ′sin cos  (32b) 

 
which automatically guarantees that Ez = 0  for ′ =x 0 . 

Imposing the other boundary condition at ′ =x 0 , i.e., 
Ey = 0 , one obtains from (A1) 

 
 Q = 0. (33) 

In the air region, i.e., for ′ >x 0 , one gets 
 

 ( )[ ] ( )[ ]{ }E A x t B x tz = ′ − ′ + ′ − ′α ρ ρ1 1cos sin  (34a) 

 

 ( ) ( ){ }2 2cos sinx A x t B x tα ρ ρ′ ′ ′ ′   = − + −   H  (34b) 

 
with 

 ρ β2 21= − , (35) 

 

 z 

x 

t 
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and where B1  and B2  are arbitrary constants determined 

according to the type of modes to be considered. For example, 
when considering the surface hybrid modes one should make 

B j1 = −  and B j2 = −  while ρ α= − j  with α β= −2 1  

real for lossless media. In order to satisfy the radiation 
condition one must haveα > 0 , i.e., β > 1. 

The coefficients α1  and α2  in (34) are evaluated by imposing 

the continuity of Ey  and Ez at ′ = ′x t . By enforcing the 

remaining boundary conditions, i.e., the continuity of yH  and 

zH  at ′ = ′x t , the following linear system is obtained 

 

 

η η

ν ν

a b

a b R

















⋅
















=
















1 0

0

, (36) 

where 

 ( ) ( ) ( )η µ τ
µ

ρs xx s
s

zz
s sj

h
h t B h t= − ′ − ′









Ω cos sin2  (37a) 

 ( ) ( )ν µ
β
ε ρs yy

xx
s s sB h t h h t= −











 ′ − ′

2

1 sin cos  (37b) 

 
with s a b= , . In order to have a determined system and 

obtain non trivial solutions, one has to ensure that 
 
 η ν ν ηa b a b− = 0 . (38) 

 
Furthermore, one also obtains from (36): 

 R a

b

a

b
= − = −η

η
ν
ν

. (39) 

 
For the surface modes, since B1  and B2  are both defined, (38) 

becomes the modal equation of the omega waveguide of Fig. 
3. 

A. Surface Modes 

The surface modes, which constitute the discrete spectrum 
of the linear operator LLLL  and define its domain as the set of 

eigenfunctions [ ]T

z xE=Φ H , such that Ez  and xH  are 

square integrable functions over [ [0,+∞ , must satisfy to the 

radiation condition. Therefore, one must have B j1 = −  and 

B j2 = −  in (34), while ρ α= − j  with α  real and positive for 

lossless media. According to (35), all the surface modes are 
slow modes, i.e., β > 1, and reach cutoff when α = 0, i.e., for 

β = 1. 

In Fig. 4, the variation of t c/ λ  - where λc  denotes the cutoff 

wavelength - with Ω  is presented. These curves are easily 
calculated by making α = 0  in the modal equation (38). For 
numerical results the following values of the dimensionless 
constitutive parameters were considered: εxx = 2 , εyy = 3, 

εzz = 4 , µxx = 1, µyy = 2 , and µzz = 3. Hereafter, one will 

use the descriptor Hp  for each hybrid mode, where the 

subscript p , with p ≥ 0 , indicates the mode order, where all 

the modes are ordered after increasing cutoff frequencies. The 
fundamental mode H0  (i.e., the first propagating mode) has 

no cutoff, or t c/ λ = 0. For any value of ′t  where 

′ =t t2π λ/ , one easily obtains from Fig. 4 the number of 

propagating modes. 
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Fig. 4 Variation of t c/ λ , where λc  denotes the cutoff wavelength, 

with Ω  
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Fig. 5 Variation of β  with t / λ  for ΩΩΩΩ = 01.  

 
In Fig. 5, the variation of β  - defined in (4) - with t / λ  is 

presented, for ΩΩΩΩ = 01. . In the high frequency regime, when 
t / λ → ∞ , there are two asymptotic values for β  - βa  and 

βb  - corresponding to hs → 0 , with s a b= , . In both cases, 

when hs = 0 , one has det( )R = 0  in (23). Nevertheless, for 

every mode, the dispersion curve converges at last to the 
highest of these two values. In the present numerical example, 

one has β ε µb xx yy=  when hb = 0 , while 

( )β ε µ εa yy xx zz= − Ω2  when ha = 0.  
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Since ε ε µ µxx yy xx yy> , one has always β βb a> . 

Therefore, for all the hybrid modes 1< <β βb , inasmuch as 

when t / λ → ∞  all the dispersion curves converge to 

ε µxx yy . When Ω → 0  all the hybrid modes degenerate into 

the TE and TM surface modes of the biaxial anisotropic case, 
with the dispersion curves crossing each other instead of 
displaying coupling points. 
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Fig. 6 Variation of β  with the dimensionless omega parameter Ω  

 
Finally Fig. 6 shows the variation of β  with the 

dimensionless omega parameter Ω  for all propagating modes 
when t / .λ = 0 6. One should stress that mode H6  reaches 

cutoff while the dashed curve corresponds to β β= a . 

B. Radiation Modes 

The set of modes described in section A is sufficient to 
describe any guided field distribution in the slab waveguide 
provided that there is not any variation along z  direction. 
However, this set is not sufficient to describe the radiation 
phenomena. For a complete spectral representation the 
analysis must include an infinite number of radiation modes. 
The fields of the radiation modes do not decay in the outside 
of the structure, i.e., they are not bound to the slab, which 
means that they need not to obey to the radiation condition. 
Unlike the guided modes each individual radiation modes 
carries an infinite amount of energy. Therefore the bi-
orthogonality relation (22) for these modes must involve the 
Dirac delta function [8] 
 

 ( ) ( ) ( ), , ,ax xρ ρ δ ρ ρ′ ′ ′ ′= −⋅Φ ΦWWWW  (40) 

 
and can be used for the normalization of the radiation modes. 
According to (34) there are two arbitrary constants B1  and B2  

to be chosen, in order to have a complete set of orthogonal 
radiation modes. This unique degree of freedom shows that 
only two types of radiation modes need to be considered for a 
complete spectral representation. One possible choice is the 
ITE (Incident Transverse Electric) and ITM (Incident 
Transverse Magnetic) continuous radiation modes, which can 
be proved to obey to the bi-orthogonality relation (40). 
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