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Abstract—A  complete spectral  representation for  the
electromagnetic  field of planar multilayered waveguides
inhomogeneoudly filled with omega media is presented. The problem
of guided electromagnetic propagation is reduced to an eigenvalue
equation related to a 2x2 matrix differential operator. Using the
concept of adjoint waveguide, general bi-orthogonality relations for
the hybrid modes (either from the discrete or from the continuous
spectrum) are derived. For the specia case of homogeneous layers
the linear operator formalism is reduced to a simple 2x2 coupling
matrix eigenvalue problem. Finally, as an example of application, the
surface and the radiation modes of a grounded omega slab waveguide
are analyzed.
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|. INTRODUCTION

LECTROMAGNETIC characteristics of new complex

materials, namely or omega media, have granted
considerable attention in the literature [1]-[3]. Although omega
media are nonchiral, their properties are governed by
constitutive relations similar to chira media. While chiral
artificial material consists of small wire helixes inserted into
the host medium, the omega medium contains omega-shaped
microstructures in which both the loop and the stamps lie in
the same plane. Although the electric field in both the wire and
the  elements induces not only electric but also magnetic
polarization and vice versa, differences in the mutua
placement of the polarization vectors are observed: in the wire
element of the chiral medium, these interacting fields are
parallel; in the omega microstructure they are perpendicular to
each other. This distinctive feature of omega media implies
that the orientation of the doping elements in the host isotropic
medium cannot be random but must be paralel to a unique
preferred direction. In fact, with a random distribution of
conducting microstructures, the overall electro-magnetic
coupling would result in anull average.

In this paper a linear-operator formalism for the analysis of
inhomogeneous omega planar waveguides is presented. For
these waveguides, using the theory of linear operators and
through a suitable definition of a two-vector transverse mode
function, the problem of guided electromagnetic wave
propagation is reduced to an eigenvalue equation related to a
2x2 matrix differential operator. This mathematical
framework is similar to the one developed by the authors for
inhomogeneous chiral planar waveguides [4], [5].
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Using the concept of adjoint waveguide, bi-orthogonality
relations are derived for the hybrid modes. In order to have a
complete field representation in open omega waveguides, these
relations are of utmost importance when choosing an
appropriate set of mutually orthogonal radiation modes. As an
example of application, a general analysis of the surface and
radiation modes of a grounded omega dab is aso presented.
Finally, one should note that this linear-operator formalism is
applicable to multilayered planar waveguides with
inhomogeneous layers. However no specific example of
application is worked out for this general case. For the case of
homogeneous layers the general formalism reduces to an
algebraic 2x2 coupling matrix eigenvalue problem.

I1.LINEAR-OPERATOR FORMALISM

The aim of this section is to reduce the problem of guided
electromagnetic wave propagation in (open or closed)
inhomogeneous omega waveguides to a linear-operator
formalism. Based on the transverse electromagnetic field
equations an eigenvalue problem is obtained. For each
eigenvalue the corresponding eigenfunction represents a
transverse mode function of the waveguide. Hence, the
orthogonality properties of these eigenfunctions can be used to
represent the electromagnetic field as a superposition of mode
functions, as long as completenessis guaranteed.

In this section, the general layered grounded open
waveguide depicted in Fig. 1 will be considered. It is uniform
inthe direction and is inhomogeneousdly filled with spatially
nondispersive lossless omega medium.

For bianisotropic omega media the congtitutive relations
may be written as

D=¢,(TE+ZEMH) (1a)
B = 44, (V,EE+H) (1b)

with Z, =Y, ™" =k, /(cg,) = (et )/ Ky, where & and p arethe
relative dielectric permittivity and relative magnetic
permeability dimensionless tensors, and & and { are the
magnetoelectric  coupling dimensionless tensors. As the
medium is considered spatially nondispersive these relations
are local. The structure depicted in Fig. 1 is uniform and
infinite in the y direction (hence Jd/dy=0) and can be
inhomogeneoudly filled with omega media. More precisely
g(wx), p(wx), &(wx) ad ¢(wx) ae piecewise
continuous functions of x (i.e, the general case of
inhomogeneous layers is included).
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Fig. 1 Multilayered omega waveguide closed by eleetnd/or
magnetic walls placed at =0 and x =d

Introducing normalized distances marked with prirfeeg.,
X' =kX, ¥ =ky, z=kyz) and a normalized magnetic

field s such that

then, from Maxwell’s curl equations for source fresgions
together with (1a) and (1b), one may write
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X where Q is the dimensionless omega parameter which is

positive. If the loops were oriented in the negatiy

direction, one should hava < 0.
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Fig. 2 Spatial orientation of planaf) -shaped, conducting
microstructures in the hosting isotropic material

From (6) one ha&=-{" , which shows that th€ -medium
# =ZH ) is reciprocal. Moreover, when the medium is lossléise

constitutive parameters are all real.

After substituting (6) into Maxwell's equations)(&nd
eliminating the components directed alorg one obtains the

following set of coupled partial differential eqicats

-j0'x# =E[E+Er (3a)

2,5 =—jCH,

X

jOXE=CE+pr (3b)

was assumed and’ =

propagation of the formexp-jf&'), where S is the

0/k,

)

where f, is a column vector with the electric and magnetic
where time-harmonic field variation of the forexp(jat) field components tangential to thye plane

. Considering forward plane wave

normalized longitudinal wavenumber given by

B=klkg (4)  matrix given by
one has -~
D, = ﬂx’)’i - jﬁz (5) O uzz 0
where g stands ford/ &' . £ _:3_2 0 0
In this paper, only the case €f -shaped perfectly conducting Y
microstructures oriented as in Fig. 2 in a isottopiost o
material, will be considered. The normal to thenpk of the ..oQ 0 0
loops points in thex direction while the stamps are aligned J'By_xx
along the z direction, and the loops are oriented in the
positive y direction. Therefore tensois, p, & and { have Vg
the following dyadic representation 0 0 -4, +£_
_'c':g”i(i(JrgWX)ergz{zA (6a) The transverse field components may
W= M XXt LYY+ UL 22 (6b)  expressed in terms df as follows
&= jQzXx (6¢)
¢=-joxz (6d) f =G,

t=[g, = x EJ.

®)

(T stands for transpose), where& is a 4x4 coupling

where

0 |®

be algebrgicall

(10)

800



International Journal of Engineering, Mathematical and Physical Sciences
ISSN: 2517-9934
Vol:6, No:8, 2012

f.=[E, #]. (11)
In (10) G is a 2x 4 matrix given by
0 0 ﬁ 0
- EXX (12)
G=
By o 2
#XX #XX

One should note that, according to (8)-(12), onlgrid modes
can propagate in the planar structure. Moreoverhaise

trC=0 (13a)

tr(adiC) = 0, (13b)

and hence the eigenvalues ©f are anti-symmetric therefore
allowing and (7) to be recast as Zx 2 matrix eigenvalue
problem.

A.Eigenvalue Equation for Inhomogeneous Waveguides

In order to recast the electromagnetic field eaqumstiin
terms of a single eigenvalue equation, the foll@definition
of a two-vector transverse mode function (or eigaofion) is
introduced:

(14)
Hence, from (7)-(12) one obtains the eigenvalueatgn
7 ®=p[% [@® (15)

where # is a2x2 matrix differential operator given by

(dx’ id% + Eyy)g. (dx’ idx’ + Eyy}ﬂxx
.'77 - :uzz J luzz (16)

dX'Z + /Jyygzz J/Jny
and " is the weight operator
0 1
v = £, J Q (17)
£X)< £XX
Once the field componentsE, and ., have been

determined through (15), the remaining componeats also
be determined.

In everything that follows within this section, éer classes
of waveguides will be considered: @losedwaveguides with

electric and/or magnetic walls placed ¥t=0 and x' =d’;
(i) open waveguides extending fronx' = -0 to X' =+o;
(iii) open groundedvaveguides extending from an electric or
magnetic wall placed ak' =0 to x' =+ . Hence, a finite,
infinite or semi-infinite intervall on x' will be introduced as
follows: (i) | :[O,d'] for closed waveguides,; (i)
| =]~o0,+e[ for open waveguides: (i} =[0,+e[ for open
grounded waveguides. In order to define the domainof
« , only surface modes will be considered for the tlasses
(ii) and (iii) of open waveguides. Consequently, and 7,
always have finite energy and hence they belonyeosector
space of square integrable functions overHowever , only
for closed waveguides i.¢., for regular problems
corresponding to finite intervall ), a complete spectral
representation is possible with .

B.Bi-Orthogonality Relation

Introducing the following real type inner product

(uur) =], (wus+ uu?) ox (18)

it is possible to determine the adjoint operatefsand %, of
v and %, respectively, with ®, satisfying thesame
boundary conditions. In fact, making use of (18)thwi
u,=[u,u,]' 0D and uf :[uf, u;‘T 0D*, where D?
denotes the domain of; , one can easily see that
=g (19a)
vi=y"

(19b)

according to (16) and (17).
At this point it is useful to introduce the concegtadjoint

waveguide[6], as the one which has the same geometry and

dimensions of the original waveguide, with identica
boundaries, and satisfying to the following eigdnggroblem

F@° = B (20)

where plane wave propagation of the foemp(— j,Baz) was

considered. According to the fact that every eigth/ﬁz of
& is an eigenvalue of7® [7], one can readily prove that

(8 -B7)(Wm,, 0% =0
if @ OD and ® 0OD® Hence, after a suitable
normalization, the following bi-orthogonality reilan holds

(21)

(7 ®,,03)=7, (22)

where &y, is the Kronecker delta.
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IIl. HOMOGENEOUSLAYERS

Since this waveguide is ampen structureextending from

For the special case of homogeneous layers, trearlin the perfectly conducting plane at’'=0 to x'=+co, the

operator formalism herein derived is reduced to2a?2

coupling matrix eigenvalue problem. In fact, foistbase, one

obtains from (15)-(17)

2,2 = -R® (23)
where
_ |Re R
R= (24)
R; Ry
with
_ i
Ri1 = & Hyy—— (252)
Exx
_ol P b
Rip = JQ Hyy =—— (25b)
Exx
Ryy = 2z (u —[’—ZJ - s, 22 (250)
Hxx W Exx W Hyxx
2 2 2
Q B
Ro2 = i, (f ‘—]‘—[ﬂ ——]- (25d)
oW Hyxx Hxx W Exx

Hence, in a similar way as shown [4], one may write for
each homogeneous omega layer:

®(x)=M¥(X) (26)
where
1 1
M = 27)
Ta Tb
is the modal matrix oR , such that
2 ¥ =-A¥W (28)

with ¥ =[W,
has

(Rug+ Rzz)i’\/( Rii- R22)2+4 R B

he? =
S 2

(29)
and
2
hs” — R _
Ri2

Ro1
hs? = Roy

Tg = (30)

with s=a, b.

IV. GROUNDEDSLAB WAVEGUIDE

As an example of application of the previous foism| the
grounded omega slab waveguide depicted in Fig. IBbei
analyzed.

w,]" andA = diag(ha2 ,hoz). Therefore, one

operator # is defined over a semi-infinite interval, and laas
discrete spectrum as well as a continuous spectne
should stress that, for the sake of completenbsstadiation
modes must be included in the analysis. Nevertheltse
radiation modes do not actually belong to the donwdithe
operator: indeed they are improper eigenfunctions.

Assuming that theQ -shaped conducting microstructures have
a spatial orientation in the slab as in Fig. 2tfa modes in the
waveguide are hybrid.

t
z

—_—
Fig. 3 Grounded omega slab waveguide. The slabidiriesst is

an isotropic medium withQ -shaped conducting microstructures

with spatial orientation as in Fig. 2, while thepep medium is the air

According to (26), (27), (29) and (30), fab<x'<t',
wheret’ is the normalized thickness of the slab, one has,

E, =W, +W, (31a)
7 =T W v W (31b)

where
W, = Alsin(h;X) - Qcof h, X)| (32a)
W, = Al Rsin( h X) + Qcof fy ] (32b)

which automatically guarantees theE, =0 for x'=0.

Imposing the other boundary condition at' =0, i.e,
Ey =0, one obtains from (A1)
Q=0. (33)

In the air regioni.e., for x' >0, one gets
E, = alA{co%p(x' - t’)]+ B siv{|p( X - t’)]} (34a)

7 =a,Mcod p(x - t)]+ B, sif p(x-t) ]} (34b)

with

p*=1-p%, (35)
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and whereB; and B, are arbitrary constants determinede,, =4, iy, =1, w4y, =2, and 4, = 3. Hereafter, one will

according to the type of modes to be consideredekample,
when considering the surface hybrid modes one dhmake

B,=-] and B, =—| while p=—ja with a=48?-1
real for lossless media. In order to satisfy theiaton
condition one must hawe>0,i.e., £>1.

use the descriptoer for each hybrid mode, where the
subscript p, with p= 0, indicates the mode order, where all

the modes are ordered after increasing cutoff £agies. The
fundamental modeH; (i.e., the first propagating mode) has

no cutoff, or t/A,=0. For any value oft' where

The coefficientsa; and a, in (34) are evaluated by imposing / = 2,71/ ) , one easily obtains from Fig. 4 the number of

the continuity of E, and E, at X' =t’. By enforcing the
remaining boundary conditions, i.e., the continaity.”, and
7, at x' =t', the following linear system is obtained

M m||1] [0
= | (36)
Va Wl |R 0
where

1 =t s= ,-Q)U_s coghgt') - By siff hsf)} (37a)

Vg = [,uyy - f—:(] B, sin(hst') - phg co£ hst’) (37b)

propagating modes.

o
=

0.4

0.2

0

0 0.4 0.8 1.2 1.6 2

with s=a b. In order to have a determined system anéid- 4 Variation oft / A, , where A, denotes the cutoff wavelength,

obtain non trivial solutions, one has to ensuré¢ tha

NaVp = Vallp=0. (38)
Furthermore, one also obtains from (36):
R=-Ta-_la (39)

To Yo

For the surface modes, sing and B, are both defined, (38)
becomes the modal equation of the omega waveguiéeyo
3.

A.Surface Modes

The surface modes, which constitute the discregetsm

of the linear operatorz and define its domain as the set of

eigenfunctions® =[E, ], such thatE, and #, are
square integrable functions ov{a®,+oo[, must satisfy to the
radiation condition. Therefore, one must haBge=-j and
B, =—j in (34), while p=—ja with a real and positive for

lossless media. According to (35), all the surfatades are
slow modesij.e., £>1, and reach cutoff wherr =0, i.e., for

p=1.

In Fig. 4, the variation of / A; - where A. denotes the cutoff

0
wavelength - withQ is presented. These curves are easily
calculated by makingr =0 in the modal equation (38). For

numerical results the following values of the disienless
constitutive parameters were considereg}, =2, &, =3,

with Q

2.2

18

1.2

1
0 0.2 0.4 0.6 0.8 1

t/A

Fig. 5 Variation of 8 with t/ A for Q =01

In Fig. 5, the variation of3 - defined in (4) - witht/ A is

presented, forQ =01. In the high frequency regime, when
t/A - o, there are two asymptotic values fg - S, and

5 - corresponding tdy — 0, with s=a, b. In both cases,
when hg =0, one hasdetR )=0 in (23). Nevertheless, for

every mode, the dispersion curve converges at ttaghe
highest of these two values. In the present nuraleexample,

has £, = /&ty when  hy =0, while

B = 1/syy(/,zxx—Qz/szz) whenh, =0.
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Since &,y /&y > txy/Hyy, ONe has alwaysf, > G;.

Therefore, for all the hybrid modeb< S < 4,, inasmuch as [
when t/A - « all the dispersion curves converge to
ExMyy - WhenQ — 0 all the hybrid modes degenerate intd?!

the TE and TM surface modes of the biaxial anigitrcase,
with the dispersion curves crossing each othereaustof
displaying coupling points.

2.2

Fig. 6 Variation of 8 with the dimensionless omega parameer

Finally Fig. 6 shows the variation off with the

dimensionless omega paramefer for all propagating modes
when t/A=06. One should stress that moddég reaches

cutoff while the dashed curve correspondgsts 3, .

B.Radiation Modes

The set of modes described in section A is sufiici®
describe any guided field distribution in the slabveguide
provided that there is not any variation aloagdirection.
However, this set is not sufficient to describe thdiation
phenomena. For a complete spectral representatien
analysis must include an infinite number of radiatmodes.
The fields of the radiation modes do not decayhi autside

(3]

(4]

(5]

(6]

(7
(8]

of the structurej.e., they are not bound to the slab, which

means that they need not to obey to the radiatamditdon.
Unlike the guided modes each individual radiationdes
carries an infinite amount of energy. Therefore thie
orthogonality relation (22) for these modes musoive the
Dirac delta functiori8]

(7 @(x,p), @ (X,0))=6(p-p) (40)
and can be used for the normalization of the raxfiahodes.
According to (34) there are two arbitrary constaB{sand B,
to be chosen, in order to have a complete set thbgonal
radiation modes. This unique degree of freedom shihat
only two types of radiation modes need to be cansid for a
complete spectral representation. One possiblecehisi the
ITE (Incident Transverse Electicand ITM (ncident

Transverse Magneficcontinuous radiation modes, which can

be proved to obey to the bi-orthogonality relat{d).
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