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 
Abstract—This paper presents a numerical solution, namely limit 

and shakedown analysis, to predict the safety state of smart structures 
made of heterogeneous materials under unknown cyclic loadings, for 
instance, the flexure hinge in the micro-positioning stage driven by 
piezoelectric actuator. In combination of homogenization theory and 
finite-element method (FEM), the safety evaluation problem is 
converted to a large-scale nonlinear optimization programming for an 
acceptable bounded loading as the design reference. Furthermore, a 
general numerical scheme integrated with the FEM and 
interior-point-algorithm based optimization tool is developed, which 
makes the practical application possible. 
 

Keywords—Limit state, shakedown analysis, homogenization, 
heterogeneous structure. 

I. INTRODUCTION 

MART structures are usually partly composed with 
components made of heterogeneous materials which 

provide feedback for a controlled loop. They are widely used in 
some advanced engineering fields, like the flexure hinge in the 
micro-positioning stage driven by a piezoelectric actuator. 
Those components are usually suffer as a result of cyclic 
loadings, yet are varying with time and amplitude. The local 
deformation will tend to lead stress concentration and fatigue 
failure. Direct method, namely limit and shakedown analysis, 
represent the most convenient tools to determine the loading 
bearing capacity of structures subjected to varying loadings [1]. 
In combination of the homogenization theory and FEM, this 
paper presents a general numerical approach to deal with the 
homogenized parameters prediction of heterogeneous material 
for further structure safety analysis, which may largely reduce 
the design expense either in material or structure level.  

II. DIRECT METHODS APPLIED TO COMPOSITES  

A. Multiscale Analysis  

For heterogeneous media, two different scales are adopted, 
as shown in Fig. 1: the macroscopic (or global) scale system ࢞ 
and the mesoscopic (or local) scale system	ࣈ. The link between 
them is homogenization theory [2], whereas ߠ is a small scale 
parameter which determines the size of the Representative 
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Volume Element (RVE). It plays an important role in studying 
the heterogeneous material, especially for non-uniform 
structures.  

 

 

Fig. 1 Illustration of homogenization theory 
 
The macroscopic stress ࢳ and strain ࡱ and their counterparts 

in microscopic level stratify the relationship,  
 

ࢳ ൌ ଵ

௏
׬ ሻܸ݀௏ߦሺ࣌ ൌ  (1)                       〈ሻߦሺ࣌〉

 

ࡱ ൌ ଵ

௏
׬ ሻܸ݀ߦሺࢿ
௏

ൌ  (2)                       〈ሻߦሺࢿ〉

 
Here 〈∙〉 stands for the averaging operator. ܸ is the volume of 

RVE. The local strain ࢿ can be decomposed into two parts: the 
average value ࡱ and the fluctuating part	ࢿ∗,  

 
ࢿ ൌ ࡱ ൅  (3)                                    ∗ࢿ

 
Over RVE, it becomes  
 

〈∗ࢿ〉 ൌ 0                                      (4) 
 
Therefore, one obtains  
 

࢛ ൌ ࡱ ∙ ࣈ ൅  n                      (5)           ∗࢛
 
in which ࢛∗ is the fluctuating displacement. Referring to (4) 
and (5), the numerical implementation of boundary condition of 
RVE is: 
 

௜ݑ
ᇱ െ ௜ݑ ൅ ௜ݑ

ௗ ൌ 0                               (6) 
 
in which ݑ௜

ᇱ and ݑ௜ are the displacements of relative opposite 
periodic node pairs, while ݑ௜

ௗ is the displacement of the dummy 
node in the macroscopic level [3], as illustrated in Fig. 2. The 
deformed RVE should fully satisfy the periodic conditions, as 
shown in Fig. 3. 
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Fig. 2 Implementation of boundary condition 
 

 

Fig. 3 Numerical illustration of deformed RVE 

B. Static Limit and Shakedown Formulation 

In static limit and shakedown theory, the structure 
shakedown will occur, if there exists a loading factor 1<ߙ and a 
time-independent residual stress field ࣋, whose superposition 
with elastic stress field ࢋ࣌	 does not exceed the material yield 
condition ܨ ൑ 0 at any time ݐ ൐ 0 and at all points in volume,  

 
ࢋ࣌ߙሾࡲ ൅ ,࣋ ሿࢅ࣌ ൑ 0                              (7) 

 
 is the assumed the variables to be optimized for maximal load ࣋
factor ߙ. Limit analysis is a special case of shakedown analysis, 
when the loads increase proportionally. For heterogeneous 
media, the macroscopic stress is decomposed into elastic part 
and residual part. The residual stress field satisfies the 
periodicity condition, 
 

ଵ

௏
׬ ௏ܸ݀࣋ ൌ 0                                   (8) 

 
The periodicity conditions for elastic stress filed ࢋ࣌	and 

residual stress field ࣋  in RVE are given in the following 
equations, respectively [4], 

 

चࢋ

ە
ۖ
۔

ۖ
ۓ div	࣌௘ ൌ 0														 						in	ܸ																																									

௘࣌	 ൌ :ࢊ ሺࡱ ൅ 			ሻ∗ࢿ 				in	ܸ																																							

௘࣌ ∙ 																								࢔ 				anti െ periodic		on	߲ܸ				

																																					∗ࢿ periodic	on	߲ܸ																					
〈ࢿ〉 ൌ 〈࣌〉		or			ࢥ ൌ 				ࢳ

 (9) 

 

च࢙ࢋ࢘ ቐ
div	࣋ ൌ ૙ in	ܸ																																			

࣋ ∙ 								࢔ anti െ periodic		on	߲ܸ
ۧ∗ࢿۦ ൌ ૙

         (10) 

III. NUMERICAL IMPLEMENTATION 

Based on the principle of virtual work and periodicity 
condition (8), the work done by the local stress and strain can 
be expressed as the global stress and strain,  

 

׬ ሼࢿߜሽ	
்
ሼ࣌ߙ௘ ൅ ሽ௏࣋ 	ܸ݀ ൌ :ࢳ	ܸ  (11)              	ࡱߜ

 
The purely elastic reference solution ࣌௘  is calculated for 

each loading vertex ௞ܲ by means of conventional FE-Analysis, 
like ANSYS, ABAQUS.   

After the finite element discretization of the residual stress is 
filed, the shakedown problem can be formulated as a 
mathematical programming: 

 

maxߙ 																				

ቐ
																									ሾ࡯ሿሼ࣋ሽ ൌ 0
௜࣌ߙሾܨ

௘ሺ ௞ܲሻ ൅ ,௜࣋ ௒௜ሿߪ ൑ 0
݅ ∈ ሾ1, ,ሿܵܩܰ ݇ ∈ ሾ1, 2௡ሿ

                     (12) 

 
ሾ࡯ሿ is the equilibrium matrix, derived from (8).  ܰܵܩ is the 
total number of Gaussian points, ܰܵܩ is related to stress vector 
at each Gaussian point and the number of nodes. ݊  is the 
number of independent loads, for plane loads ݊ ൌ 2, which 
means, for Limit Analysis, ݇ ൌ 1 , loads increase 
proportionally; for Shakedown Analysis, there are four load 
vertices.  ܨ  here is the von Mises yield criterion used for 
individual material phase in this work. 

For composite materials, due to the shear stress in the 
interface of two phases, the 8-node solid element with linear 
shape functions may not overcome the “shear lock”. A 20-node 
solid element with 2nd order shape functions leads to a much 
more precise result, but cause a huge number of variables in the 
further mathematical programming. Here, the 8-node non- 
conforming element [6] is proved to be a feasible solution, 
since additional nonlinear equations are included in the shape 
functions.  
 

ቐ
ݑ ൌ ∑ ௜ܰݑ௜ ൅

଼
௜ୀଵ ଵሺ1ߙ െ ଶሻݎ ൅ ଶሺ1ߙ െ ଶሻݏ ൅ ଷሺ1ߙ െ ଶሻݐ

ݒ ൌ ∑ ௜ܰݒ௜ ൅
଼
௜ୀଵ ସሺ1ߙ െ ଶሻݎ ൅ ହሺ1ߙ െ ଶሻݏ ൅ ଺ሺ1ߙ െ ଶሻݐ

ݓ ൌ ∑ ௜ܰݓ௜ ൅
଼
௜ୀଵ ଻ሺ1ߙ െ ଶሻݎ ൅ ሺ1଼ߙ െ ଶሻݏ ൅ ଽሺ1ߙ െ ଶሻݐ

   (13) 

 
ሼݑ, ,ݒ 	ሽݓ is the nodal displacement, ௜ܰ  ሺ݅ ൌ 1,… , 8ሻ	 is the 
shape function matrix, and  ܽ௜	ሺ݅ ൌ 1,… , 9ሻ is the additional 
degree of freedom.  

The programming scales using different elements are present 
in Table I. The number of variables, as well as the number of 
constraints is reduced largely by using an 8-node 
non-conforming element. 

The application of static shakedown approach on a real 
composite structure or structural element usually leads to a 
large-scale nonlinear optimization problem. There are many 
optimization algorithms and corresponding software packages, 
like LANCELOT [7], which is based on an augmented 
Lagrangian method, and IPDCA (Interior Point with DC 
regularization Algorithm), which is based on interior-point 
method and especially designed for shakedown problems [8]. 
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The efficiency of IPDCA was proved in [9], but it was not 
suitable for composite materials. In this work, AMPL+IPOPT 
are adopted as the numerical solver. AMPL, an algebraic 
modeling language for mathematical programming, may deal 

with the linear and nonlinear optimization problem with 
discrete or continuous variables. IPOPT, short for “Interior 
Point OPTimizer”, is an open software library for large-scale 
nonlinear optimization of continuous systems.  

 
TABLE I 

COMPARISON OF PROGRAMMING SCALES FOR A SIMPLE NUMERICAL EXAMPLE WITH 100 SOLID ELEMENTS 

Element 

8-node non-conforming 20-node second order 

Nr. Elem 100 100 

Nr. Var. 4801 162001 

Nr. Eq. 1626 2403 

Nr. InEq. 800 2700 

 
To make the application on real industrial structure possible, 

a numerical platform, integrating with Finite Element Software 
and Optimization Solver, was developed under the framework 
of MATLAB, as shown in Fig. 4. 

 

 

Fig. 4 Illustration of Numerical Platform 

IV. FAILURE CRITERION PREDICTION 

Based on the homogenization theory, three states of the 
composites during the failure are defined: 
 Onset of plasticity 

 

ா௅ࢳ ൌ  (14)                          ۧࢋ࣌ۦா௅ߙ
 Shakedown state 

 

ௌ஽ࢳ ൌ  (15)                           ۧࢋ࣌ۦௌ஽ߙ

 Limit state 
 

௅ெࢳ ൌ  (16)                           ۧࢋ࣌ۦ௅ெߙ
 
As the flowchart Fig. 5 shows, under the assumption that 

each phase of the composites is elastic-perfectly plastic, the 
obtained homogenized limit domain can predict the yield 
strength, while the predicted strength from shakedown domain 
is the fatigue limit, which means the material will never fail 
below that cyclic load. In this work, the yield strength was 
discussed firstly [5]. 

 

 

Fig. 5 Flowchart for prediction of homogenized properties 
 
There are two ways to derive the yield criterion: to find the 

best fitted mathematical formulation or to identify the limit 
domain using existing criteria. Here, we take a continuously 
unidirectional fiber reinforced composites as a numerical 
example, which can be treated as transversely homogeneous 
material. Therefore, the Hill’s yield criterion can be adopted to 
fit the limit domain.  

ሺܽଵ, ܽଶ, ܽଷሻ 

ሺܽସ, ܽହ, ܽ଺ሻ 

ሺܽ଻, ଼ܽ, ܽଽሻ 
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From (16), the homogenized limit stress components ߑ௜௝ 
depend on the orientation of the coordinate system. 
Nevertheless, there are certain invariants, i.e. the principle 
stresses, associated with every tensor. They can be determined 
through the characteristic equation: 

 
ଷ࣌ െ ଶ࣌ଵܫ ൅ ࣌ଶܫ ൅ ଷܫ ൌ 0                             (17) 

 
 ,ଷ are the first, second and third stress invariantsܫ ଶ andܫ ,ଵܫ

respectively. The Hill’s yield criterion is written as: 
 

ଶߪሺܨ െ ଷሻଶߪ ൅ ଷߪሺܩ െ ଵሻଶߪ ൅ ଵߪሺܪ െ ଶሻଶߪ ൌ 1        (18) 
 

with ܨ ൌ
ଵ

ଶ
ቀ
ଵ

௒మ
൅

ଵ

௓మ
െ

ଵ

௑మ
ቁ ܩ , ൌ

ଵ

ଶ
ቀ
ଵ

௓మ
൅

ଵ

௑మ
െ

ଵ

௒మ
ቁ  and ܪ ൌ

ଵ

ଶ
ቀ ଵ

௑మ
൅ ଵ

௒మ
െ ଵ

௓మ
ቁ . ܺ, ܻ  and ܼ  are the axial strength of the 

orthotropic material. For transversely homogeneous material, 
with the assumption	ܻ ൌ ܼ, i.e. ܩ ൌ ଵߪ The line .ܪ ൌ ଶߪ ൌ  ଷߪ
is defined as the hydrostatic axis, the plane ߪଵ ൅ ଶߪ ൅ ଷߪ ൌ 0 is 
named as ߨ െplane. Hill’s yield surface in the principle stress 
coordinate is represented by an ellipse column around the 
hydrostatic axis. 

Let ሼݔଵ, ,ଵݕ ,ଶݔଵሽ and ሼݖ ,ଶݕ  ଶሽ are the original principle andݖ
transformed coordinate systems, respectively, as shown in Fig. 
 .ଶ is the hydrostatic axisݖ ,6

 

   

Fig. 6 Illustration of two coordinate systems and an example of the 
projection for von Mises yield criterion into ߨ െplane 

 
The obtained principle stresses ሼߪଵ, ,ଶߪ ଷሽߪ  in ሼݔଵ, ,ଵݕ  ଵሽݖ

coordinate system can be transformed to ሼߛଵ, ,ଶߛ ଷሽߛ  in 
ሼݔଶ, ,ଶݕ  :ଶሽ system underݖ

 
࣌ ൌ  (19)                                     ࢽ܂

 
 is the rotation matrix [5]. Finally, the projection of Hill’s ܂

criterion into ߨ-plane is an ellipse: 
 
ሺܨ ൅ ܪ1.866 ൅ ଵଶߛ	ሻܩ0.134 ൅ ሺܨ ൅ ܪ0.134 ൅  ଶଶߛ	ሻܩ1.866

൅ሺܩ െ ܨ2 ൅ ଶߛଵߛ	ሻܪ ൌ 1                   (20) 
 

For transversely homogeneous material, (20) can be written 
as: 
 

ሺܨ ൅ ଵଶߛ	ሻܪ2 ൅ ሺܨ ൅ ଶߛ	ሻܪ2
ଶ ൅ ሺ2ܪ െ ଶߛଵߛ	ሻܨ2 ൌ 1   (21) 

 
There are two parameters to identify here in (21). 
An ellipse with the coordinate origin as the center can be 

expressed parametrically in the trace of a point	ሼݔሺݐሻ,  :ሻሽݐሺݕ
 

ሻݐሺݔ ൌ acosሺݐሻ cosሺ߰ሻ െ ܾsinሺݐሻ sinሺ߰ሻ           (22) 
ሻݐሺݕ ൌ acosሺݐሻ cosሺ߰ሻ ൅ ܾsinሺݐሻsin	ሺ߰ሻ 

 
߰ is the angle between the ݔ-axix and the major axis of the 

ellipse, here ߰ ൌ ߨ 4⁄ . Parameter ݐ varies in	ሾ0,  ܾ ሿ, ܽ andߨ2
represent the major and minor radii, respectively. 

After a series deduction, the two parameters to identify in 
(21) are reformulated in variables ܽ and ܾ: 

 
ܪ ൌ 1 3ܽଶ⁄ 	                                (23) 

ܨ ൌ 1 2ܾଶ െ 1 6ܽଶ⁄⁄  
 
For the general orthotropic material, there are three 

parameters to identify.  

V. NUMERICAL ILLUSTRATION  

In this paper, a simple square patterned unidirectional fiber 
reinforced periodic metal matrix composites is used to verify 
the accuracy of the proposed approach.  The RVE is shown in 
Fig. 7, with perfect interface. 

 

 

Fig. 7 Illustration of Periodic Composites and the RVE 
 
The fiber ratio is 40%. The material properties of each phase 

are given in Table I, elastic-perfectly plastic, with the 
assumption that each phase is isotropic. 

 
TABLE II 

UNITS FOR MAGNETIC PROPERTIES 

Properties Matrix (Al) Fiber (Al2O3) 

E (GPa) 70 370 

v 0.3 0.3 

 ௒ (MPa) 80 2000ߪ

  ௎ (MPa) 120ߪ

 
The homogenized limit principle stresses (ࢳଵ-ࢳଶ), as shown 

in Fig. 8 (a), is projected into ߨ െplane. Based on the least 
square fitting method, the curve fitted using Hill’s yield 
criterion was plotted in dash line in Fig. 8 (b). The value of the 
major axis ܽ and minor axis ܾ will be obtained. Follow (23), 
the homogenized axial strength is 296.18 MPa, equally 
௒୫ߪ3.70 , while the homogenized transverse strength is 98.5 
MPa, equally 1.23ߪ௒

୫, in which ߪ௒
୫ is the yield strength of the 

matrix. 
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(a)                    (b) 

Fig. 8 Yield criterion fitting (a) Homogenized limit principle stresses (ࢳଵ-ࢳଶ) (b) Hill’s yield criterion fitting in ߨ െplane 
 
The numerical results match the physical phenomenon 

understanding, the axial direction is reinforced largely by the 
unidirectional fiber, yet the transverse direction is slightly 
reinforced.  

VI. CONCLUSION 

The work in this paper addresses to predict the homogenized 
parameters of heterogeneous materials that compose smart 
structures. Making good use of the advantage, which is that 
direct approach has no requirement for loading evolution 
information, and thus, over RVE, under the assumption of 
elastic-perfectly material model for each phase, the shakedown 
load can be regarded as the fatigue strength while the limit load 
is treated as the yield strength of the global material. A simple 
periodic composite material is tested numerically, which 
proves the feasibility of the proposed model for design 
reference; however, the engineering accuracy still needs further 
experimental confirmation. 
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