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Abstract—A highly optimized implementation of binary mixture 

diffusion with no initial bulk velocity on graphics processors is 
presented. The lattice Boltzmann model is employed for simulating 
the binary diffusion of oxygen and nitrogen into each other with 
different initial concentration distributions. Simulations have been 
performed using the latest proposed lattice Boltzmann model that 
satisfies both the indifferentiability principle and the H-theorem for 
multi-component gas mixtures. Contemporary numerical 
optimization techniques such as memory alignment and increasing 
the multiprocessor occupancy are exploited along with some novel 
optimization strategies to enhance the computational performance on 
graphics processors using the C for CUDA programming language. 
Speedup of more than two orders of magnitude over single-core 
processors is achieved on a variety of Graphical Processing Unit 
(GPU) devices ranging from conventional graphics cards to 
advanced, high-end GPUs, while the numerical results are in 
excellent agreement with the available analytical and numerical data 
in the literature.  
 

Keywords—Lattice Boltzmann model, Graphical processing unit, 
Binary mixture diffusion, 2D flow simulations, Optimized algorithm. 

I. INTRODUCTION 
INARY mixture diffusion is a complex process that has 
several applications in fluidic systems such as chemically 

reacting flows, gas purification, pollutant dispersion and so 
forth. Diffusion of oxygen and nitrogen, discussed in the 
present work, is of a crucial importance since these two 
elements are the major constituents of atmospheric air and 
their diffusion plays a great role in combustion systems and 
nitrogen/oxygen purification processes. However, such flows 
generally involve mass and momentum diffusion of two or 
more species of multiple phases dealing with complex 
geometries and boundary conditions such as adsorption and 
phase change. These conditions make the whole process 
difficult to be described using the conventional continuum 
assumptions as they involve many small scale transport 
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phenomena. Recently, there has been a great interest in 
applying kinetic theory to capture the delicate diffusion 
processes in such flows and several models have been 
proposed to extend kinetic-based lattice Boltzmann Models 
(LBM) to these problems. Early implementations e.g. [1], [2] 
were unable to satisfy either the indifferentiability principle 
(recovering a simple component Lattice Bhatnagar-Gross-
Krook (LBGK) expression by setting the same properties for 
both species), or the H-theorem and some were limited to 
small molecular mass ratios [3]. A recent consistent model 
proposed by Arcidiacono et al. [4]-[6] is proved to satisfy 
both the indifferentiability principle and the H-theorem and is 
stable over a wide range of mass ratios. The model is based on 
the so called entropic LBM and successfully proved to recover 
the Navier-Stokes and the Stephan-Maxwell diffusion 
equations. Despite the outstanding accuracy and flexibility of 
the new model, the entropic nature of the algorithm increases 
the computational cost of a binary mixture simulation to much 
more than twice, compared to single component LBGK 
simulations. Considering such a high computational load and 
the extremely small time scales associated with diffusion 
phenomena in these problems, improving the computational 
efficiency is a real challenge especially when the model is to 
be applied to flows with complex geometries and/or boundary 
conditions.  

In addition, due to its highly explicit nature of solution, 
lattice Boltzmann method is widely accepted to be a well 
suited candidate for parallelization. Besides using multicore 
CPUs and compute clusters, some researchers have performed 
parallel LBM simulations on manycore Graphical Processing 
Units (GPU), using graphical languages such as OpenGl [7], 
[8]. By the advent of the modern programmable graphics 
cards and new graphical programming language, CUDA, in 
2006 by nVIDIA, there has been a great interest in exporting 
conventional real world computational fluid dynamics solvers 
to graphics processors in order to enhance the previously 
expensive, time-consuming flow simulations, thereby 
lowering their total simulation time. However, the LBM 
implementations so far, have been restricted to single 
component fluid flows using elementary models such as single 
or multiple relaxation time LBGK [9]-[17], and there have not 
been any serious effort to implement complex multi-
component gas mixtures on GPUs. Moreover, the proposed 
multi-component entropic model of Arcidiacono et al.  still 
inherits its fully explicit nature and massive parallelization is 
viable through the new heterogeneous, general purpose GPU 
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architectures. 
Recently, the computational power of modern GPUs has 
exceeded that of PC-based CPUs by far i.e. more than one 
order of magnitude while being available for a comparable 
price [9]. NVIDIA’s new gaming cards such as GeForce 9800 
GT has been observed to deliver over 9330 10×   single 
precision Floating point Operations Per Second (330 Giga 
FLOPS) and its recently released Tesla C1060 computing 
cards have even a much greater peak performance of about 1 
TeraFlops for single and 78 Giga Flops for double precision 
computations. In comparison, the theoretical peak 
performance of the Intel Core 2 Duo 3.0 GHz is only 24 
GFLOPS for double and 48 GFLOPS for single precision 
computations [9].  

A. Previous works 
Several papers have discussed porting conventional LB 

solvers to graphics processors and enhancing the 
computational performance of such solvers. Tolke [9] 
developed a highly optimized 2D lattice Boltzmann model 
using CUDA and reported one order of magnitude 
performance gain compared to standard CPU only codes. The 
main point of his work was using shared memory buffer to 
prevent inefficient memory transactions. Later on, Tolke and 
Krafczyk [10] reported efficiency gain of up to two orders of 
magnitude using a CUDA based lattice Boltzmann kernel for 
3D flow simulations. Kaufman, Fan and Petkov [11] have 
advocated the use of GPU clusters for large scale LBM 
simulations and for high performance computing. Kuznik, 
Obrecht, Rusaouen and Roux [12] employed a high-end 
platform equipped with nVIDIA GT200 to simulate lattice 
Boltzmann flows and even performed double precision 
calculations on their GPU. Zadehgol, Ashrafizaadeh and Safi 
[13] implemented a lattice Boltzmann flow solver in a square 
cavity on different kinds of single GPUs and delivered a 
performance gain of up to 180 times over single CPUs. 
Bernasch, Fatica, Melchionna, Succi and Kaxiras [14] ported 
a 3D solver for flow in human coronary artery using D3Q19 
model and obtained more than 900 Mega Lattice Update Per 
Second (MLUPS) by eight parallel GPUs. They employed 
some ad hoc techniques to manage the solid and fluid nodes 
separately and doing so, they prevented the calculations on 
inactive nodes. Ribbrock, Geveler, Goddeke and Turek [15] 
presented a solution for a two-dimensional shallow water flow 
and obtained eightfold speedup over multithreaded CPU code 
by means of a single GPU device. Obrecht, Kuznik, 
Tourancheau and Roux [16] suggested a set of new 
optimization instructions in their research and could extract 
more than %86 of the device throughput in their memory 
transactions without engaging the precious shared memory 
buffer, this way saving it for other instructions. Safi, 
Ashrafizaadeh and Zadehgol [17] implemented simulations of 
2D flow over a column of cylinders on multiple GPUs and 
discussed some critical optimization approaches such as 
increasing hardware occupancy to enhance the computational 
performance.  

B. Paper Contribution and Overview 
In this paper an efficient GPU based implementation of a 

LB model for time dependent binary diffusion of oxygen and 
nitrogen with a distinct initial concentration distribution is 
presented. The present parallel version is based on a serial 
solver previously developed by our research group [18]. A 
comparison of the present results with those of analytical data 
shows how accurately the present results can mimic the time 
varying analytic solution for such a basic but complex 
phenomenon. 

The LB model for binary mixtures is describes in section II. 
A brief review on GPU programming model is presented in 
Section III. Section IV discusses the optimization strategies 
and the programming methodology applied to the present 
implementation. The results, including time-elapsed 
concentration variation of each species as well as performance 
measurement for different platforms are presented in Section 
V. Conclusions are reported in section VI. 

II. LATTICE BOLTZMANN MODEL FOR BINARY MIXTURES 
In the lattice Boltzmann model the continuous spectrum of 

particle velocities has been replaced by a set of discrete 
velocities of imaginary particles which are forced to move on 
a lattice structure only. As a result of this simplification, the 
solution of the Boltzmann equation has become considerably 
easier and at the same time some limitations such as low Mach 
number, have been imposed on the standard model. A direct 
extension of the discrete lattice Boltzmann equation for multi-
component mixtures can be written as 

 

t ji ji ji jif c fα α∂ + ∂ = Ω  (1) 
 

where 0,...,i N= , with N  being the number of discrete lattice 
velocities jic α , { , , }x y zα = , and jiΩ  is the collision term. The 

above equation is further expanded based on fast-slow 
decomposition of motion in the vicinity of quasi-equilibrium 
state, as proposed in [19], which guarantees the positive 
entropy production of the process and hence satisfies the H-
theorem. Therefore, the process is composed of a fast 
relaxation from the initial state f  to the quasi-equilibrium *f  
and then moving slowly from the quasi-equilibrium state *f  
towards the equilibrium eqf . Expressing the two motions as 
BGK terms, the final collision term for the LB equation takes 
the following form for each species j : 

1 2

1 1( ) ( )eq
ji ji ji ji ji

j j

f f f f
τ τ

∗ ∗Ω = − − − −  (2) 

where 1 jτ and 2 jτ are the two relaxation times corresponding to 
each of the relaxation stages, with the condition 2 1j jτ τ≥  
which ensures the stability of the model and puts a limit on the 
admissible Schmidt number / ABDν , where ν  is the kinematic 
viscosity and ABD  is the binary diffusion coefficient. This 
bounding on the Schmidt number is further discussed at the 
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end of this section. 
The moments of each component are defined as, 
 

,
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where jρ  , jJ α  , jP αβ  and jQ αβγ  are the density, the 
momentum, the pressure tensor and the third order moment of 
component j , respectively. For the D2Q9 model considered in 
this paper, the discrete lattice velocities are 
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where the magnitude of jc  for each component is related to 

the speed of sound of the components as 3j sjc c= , where sjc  
is defined as, 
 

0 /sj B jc k T m=  (5) 

 
where Bk is the Boltzmann constant, 0T  is a reference 
temperature and jm  is the molecular mass of component 
j .The entropic nature of the model requires the minimization 

of the H-function defined by the following equation, 
 

ln ji
ji

j i i

f
H f

W
= ∑∑  (6) 

 
which will be minimized under the constraints of conservation 
of density of each species jρ and the total mixture momentum 

A BJ J Jα = + . The corresponding weighting factor is: 
 

4 / 9 0
1 / 9 1, ,4
1 / 36 5, ,8

i

i
W i

i
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K

K

 (7) 

 
The cumbersome process of minimization leads to the 

following final equation for the equilibrium distribution 
function that is similar to that of a single component fluid, 

 

2 2 2 2

1

2 3 2 3
ji

j

c
cd

j j jeq
ji j i

j j
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f W

c c u

α

α α α
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ρ
=
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∏  (8) 

 

where /u Jα α ρ=  is the mixture velocity in α  direction, and 

A Bρ ρ ρ= + .  
The quasi-equilibrium function jif ∗  can be obtained using 

two complementary approaches; taking either the difference 
between the momentum Jα of the mixture and the momentum 

jJ α of the component j as an extra constraint for the 
minimization problem, or the stress tensor jPαβ  as the extra 
quasi-equilibrium variable. The selection directly depends on 
magnitudes of transport coefficients of the species and will be 
further elaborated at the end of this section. Here, for brevity, 
only the first approach is explained. Using the difference 
between momentums along with the previous conservation 
rules, one may eventually reach to the following set of 
constraints: 

 
j ji

i

j ji ji
i

f

J f cα α

ρ =

=

∑

∑
 (9) 

 
The above equations lead to derivation of the quasi-

equilibrium function merely by substituting the velocity of the 
species /j j ju Jα α ρ=  instead of Uα  in (8), therefore obtaining, 

 
( , ) ( , )eq

ji j j ji j jf u f uρ ρ∗ =
r r  (10) 

 
The standard BGK model can be easily recovered for a 

single component fluid from (2) and (10), where 
A Bτ τ τ= = and A Bm m=  and hence the indifferentiability 

principle is proved to be valid. 
The relaxation times 1 jτ and 2 jτ for each component are 

related to transport coefficients of the flow by using the 
Chapman-Enskog expansion in the hydrodynamic limit, 
adapting it to simplify the conservation equations for each 
component, and then comparing them to standard Navier-
Stokes and Stephan-Maxwell diffusion equations. The lengthy 
mathematical process is beyond the scope of this paper and 
the details can be found in [5]. The final set of equations for 
the relaxation times for each component are expressed as, 

 

1
0

2

j
j

B

AB AB
j

A B

nk T
D m
X X P

μ
τ

τ

=

=
 (11) 

 
where jμ  is the dynamic viscosity of the component, ,A BX X  
are the mole fractions of component A and B, n  is the total 
number of moles in the mixture, 0BP k T n=  is the mixture 
pressure, and / ( )AB A B A Bm ρ ρ ρ ρ= + is the mixture reduced 
mass. Considering these two equations, the mentioned 
restriction on the Schmidt number can now be introduced. 
Rewriting the Schmidt number as, 
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ρ τ
= =  (12) 

 
The construction 1 2j jτ τ<  leads to the following inequality: 
 

j A B
j

j AB A B

Y YSc
D X X
μ

ρ
= ≤  (13) 

 
where jY  is the mass fraction of component j . Note that this 
restriction is a result of taking the difference between mixture 
momentum Jα  , and momentum of each component jJ α  as 
the extra quasi-equilibrium variable. The evaluation of quasi-
equilibrium function using the stress tensor jPαβ  as the extra 
constraint leads to a complementary inequality, 
 

A B
j

A B

Y YSc
X X

≥  (14) 

 
Deciding between the two models depends on which of the 

above inequalities is satisfied, considering the magnitudes of 
the species transport coefficients, as mentioned before. 

III. OVERVIEW OF GPU PROGRAMMING AND CUDA 
CUDA is a new computational architecture introduced by 

NVIDIA Corporation that includes heterogeneous computing 
innovations at both software and hardware levels. It has been 
designed for utilizing graphical processing units (GPUs) for 
non graphical and general purpose computations. The 
NVIDIA’s “C for CUDA” programming language is an 
extension to the conventional C language and allows the 
programmer to define new class of functions, called kernels 
which will be launched on GPU. By calling each kernel, N 
different CUDA threads will be executed in parallel, contrary 
to only once like regular C functions in serial algorithms [19].  
In GPU terminology, the graphical processing unit is referred 
to as the “Device” while the CPU is referred to as the “Host”. 
As it can be seen in Fig. 1, the GPU is equipped with many 
cores (a number of multiprocessors, each constitutes of eight 
processors) as processing units, and different types of 
memories. 

In a typical CUDA program, data is first transferred from 
the host to the device. As shown in Fig. 2, the host then 
launches special GPU functions (kernels), which will run the 
program on the many cores of the device, in parallel, and 
finally the results are transferred back to the host. It is 
important to note that the maximum bandwidth and latency of 
various memory types of the GPU are quite different. The 
global device memory (DRAM of the GPU) is large; however, 
it is much slower than the shared memory which is a limited 
source of on-chip memory for each multiprocessor. Therefore, 
in order to achieve the best performance, there should be a 
careful balance between storing the variables on the global 

and shared memories which will be discussed later. 
 

 
Fig. 1 A simple graphical representation of host and device 

 
As mentioned before, CUDA creates several threads which 

will run the kernel commands in parallel. Since the number of 
threads could be different from the number of available cores, 
the execution of threads on these available cores is managed 
by CUDA. Threads are packed in groups which are called 
“blocks”. A “grid” in CUDA terminology is a batch of thread 
blocks, and its dimension should be defined in accordance 
with the size of the problem. All the threads in a block will be 
passed to one multiprocessor to be processed and these 
threads can simultaneously access the shared memory while 
this is not possible for threads running on different blocks. 
Once a GPU core completes the execution of a thread, it can 
be utilized by CUDA for the execution of the next thread in 
line.  

 

 
Fig. 2 Grids of blocks and thread of each block in the GPU programming 
model 

 
One critical point in writing an efficient CUDA code is to 

appropriately manage the memory accesses. Most importantly, 
the programmer should pay special attention to the memory 
alignments. This, along with the concept of hardware 
occupancy will be discussed in the following sections. 
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A. Memory access management 
Achieving the maximum performance for memory 

transactions within different memories requires the following 
qualifications to be met: 

• Memory access coalescence in global memory  
• Preventing bank conflict in shared memory 

Since the latency of memory accesses in the device memory 
is rather high, the hardware would combine a number of 
memory calls into single packs or groups of data and transfers 
them all together. Depending on the type of the device, the 
memory size of these groups would be 32, 64, or 128 bytes. 
However, this requires the programmer to consider alignment 
in his memory calls [20], [21]. Memory alignment means that 
the pointer address value should always be a multiple of the 
size of the type of the variable. It is worthwhile to note that 
ignoring such principles would dramatically degrade the 
performance of the simulation and the memory bandwidth will 
drop to about 10 GB/s compared to its maximum of almost 
100 GB/s [10]. 

Moreover, since the shared memory is made up of 16 
separate memory banks, to prevent bank conflict within the 
shared memory space, the block size should be a multiple of 
16. 

B. Hardware Occupancy 
Since each multiprocessor has a limited amount of registers 

and shared memory, it will have a certain capacity to accept 
threads. Therefore, keeping the multiprocessors of the GPU as 
busy as possible is vital to gain a good performance and is 
often referred to as occupancy which is the ratio of the 
number of active threads per multiprocessor to the maximum 
number of possible active threads [21]. It is up to the 
programmer to set the dimension of the blocks and the amount 
of shared memory and register for block threads to reach the 
maximum possible occupancy of the hardware. 

One should note that decreasing the allocated registers for 
each thread to a minimum count (in order to maximize the 
occupancy) will degrade the computational performance of 
kernel instructions. Therefore, care must be taken to find an 
appropriate balance while setting this parameter. 

IV. NUMERICAL OPTIMIZATIONS 
In order to satisfy the requirements mentioned in previous 

sections, the following steps were taken: 
• A structure consisting of 9 distinct arrays was used for 

different distribution functions. 
• Data transfer between the host and device is performed 

by means of one-dimensional buffers, therefore, one-
dimensional arrays are utilized. 

• The dimensions of the computational domain at least 
in one direction is multiple of powers of 2 (and 
preferably greater than 64 [20]), to satisfy the 
alignment requirements. 

• During the LBM propagation stage, transfer of data for 
the rest particles and for the north and south 

directions, automatically satisfies the memory 
alignment requirements since under the above 
dimensional circumstances, the source and 
destination addresses are aligned with the size of the 
types of the variables. For the other directions; 
however, the use of the fast shared memory is 
preferred.  
 

• To engage the hardware as much as possible we have 
examined imposing different amounts of registers for 
each thread along with selecting an optimum size for 
our thread blocks. 

For the present study, we have analyzed several versions of 
our code, using the CUDA Visual Profiler provided by 
nVIDIA [22], to check whether we have reached the optimum 
possible memory alignment or not. Employing this useful tool, 
we were able to find the exact number of coalesced and un-
coalesced memory transactions from or to the global memory, 
this way making sure that the misalign accesses are at the 
minimum level in the code. 

In addition to above conventional optimizations we have 
applied a new addressing scheme for the particular problem of 
interest in this paper. Here, we have two sets of distribution 
functions; one for Oxygen and the other for Nitrogen. In a 
serial programming approach, one has to define two sets of 
structures, launch separate functions for each component and 
solve them in serial. On the other hand, updating the 
distributions for each species in a particular grid point in the 
computational domain is absolutely independent from the 
other species and hence they can be solved at the same time. 
In a heterogeneous programming model of GPUs, the 
programmer can combine the two sets of distribution 
functions in a single grid of blocks and launch them all 
together. As such, instead of defining a set of distinct arrays 
for each component a structure of 9 arrays is defined. Each 
array contains the distribution functions of the first 
component, followed by the distributions of the second one, 
so that we can preserve the alignment requirements. Fig. 3 and 
Fig. 4 show how the separate grids of blocks will constitute a 
single grid, and how the two arrays combine, forming a single 
array, respectively. 

Using a single structure of arrays also brings this benefit of 
reducing the required shared memory and registers for storing 
the kernel arguments and managing data accesses inside the 
kernel.  The only disadvantage of such an approach might be a 
rather complicated addressing scheme for the arrays in the 
kernel, since the array elements corresponding to the second 
species will be addressed by an offset of the size of the 
computational domain as depicted in Fig. 3. 
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Fig. 3 The grids corresponding to the two distinct computational domain are 
combined to form a single one and are solved in parallel. 

 

 
Fig. 4 The suggested array configuration scheme for each of the 9 discrete 
velocities, k, applied in this work. Here, F1 and F2 correspond to Oxygen and 
Nitrogen, respectively and F corresponds to the new binary array. 

V. RESULTS AND DISCUSSION 

A. Hydrodynamics 
The geometry of the problem consists of a rectangular 2D 

box with an initial concentration of oxygen at the central 
region, and nitrogen distributed on both sides along the axial 
direction x  with the following profile: 

 
2 2

2 2

85% , 15% if - / 2 / 2

46% , 53% if - / 2 or / 2
O N

O N

X X h X h

X X h X h X

= = ≤ ≤

= = ≥ ≤
 (15) 

 
and includes the binary diffusion of the two gases from both 
sides, where h is the length of the Oxygen concentration zone. 
Simulating more abrupt changes in initial molar profile is a 
real computational challenge and care must be taken to choose 
a proper initial distribution, because under intense molar 
differences the flow is likely to allow some artificial pressure 
waves to grow and disturb the numerical results [18].  

Periodic boundary conditions are imposed at the top and 
bottom of the computational domain and the unknown 
incoming distributions at 0,x x L= =  (where L is the length of 
the domain) are approximated as *( ( 1), 0)jf t uρ − = , and 

( 1)j tρ −  is the density of the component j  evaluated at the 
previous time step [23]. The above problem has the following 
analytical solution which expresses the evolution for the mole 
fraction of each component as a function of time [18]: 

 

[ ( ) ( )]
2 4 4

initial
jinitial

j j

X h x h xX X erf erf
Dt Dt

Δ + −
= + +  (16) 

where initial
jX  is the initial mole fraction of component j  

along the x  axis, initial
jXΔ  is the initial mole fraction difference 

and D  is the binary diffusion coefficient. Fig. 5 shows an 
excellent agreement between the analytical solution and LB 
simulations for several time steps using graphical processing 
unit on a computational domain of typical size of 16 x 1024. 
Note that the simulations have been performed using single 
precision floating point operations. 

 
Fig. 5 Time evolution for the molar fraction of Oxygen from its initial 
distribution. The solid lines indicate the LB predictions and the symbols 
correspond to the analytical answer for the same problem; time step 1000 
(diamonds); 3000 (circles); 6000 (squares), and 9000 (crosses). 
 

B. Numerical Performance 
The technical specifications of the two GPUs in hand for 

our simulations are given in Table I. Two personal computer 
platforms are also used here. The first one is a regular Intel-
based PC equipped with an Intel Core 2 Duo 3.0 GHz CPU 
and a GeForce 9800 GT GPU and the second platform is a 
high-end workstation equipped with 16 Intel Xeon x5570 2.93 
GHz cores, and three Tesla C1060 GPUs. 

Table II and Table III show the best computational 
performance of single and even double precision runs, where 
applicable, in Millions of Lattice Updates per Second or 
MLUPS. Note that since the computational resources 
(especially the number of processor cores) are not the same 
for each of the platforms, the optimum size of the 
computational domain may vary on different devices. 
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TABLE I 
COMPARISON OF  THE MAJOR SPECIFICATIONS OF GEFORCE 9800 GT AND 

TESLA C1060 GPUS 

GPU 
TYPE  

Single/double   
precision       

cores 

Memory 
(GB) 

Processor    
Clock     
(GHz) 

Memory 
Bandwidth 
(GB/sec) 

Geforce 
9800 GT 112 / 0 1 1.5 57.6 

Tesla 
C1060 240 / 30 4 1.3 102 

 
TABLE II 

NUMERICAL PERFORMANCE OF GEFORCE 9800 GT 
Block 
size  

Register 
count 

Domain size 
(Y x X) Occupancy Performance 

(MLUPS) 
64 30 64 x 1024 33% 113 

128 30 64 x 1024 33% 121 
192 30 64 x 1536 25% 120 
256 30 64 x 1024 33% 123 
256 30 128 x 1024 33% 132 
256 30 256 x 1024 33% 134 
256 30 512 x 1024 33% 143 
 

TABLE III 
NUMERICAL PERFORMANCE OF TESLA C1060 

Block 
size  

Register 
count 

Domain size 
(Y x X) Occupancy 

Performance 
(MLUPS) 

single/double 
64 31 210 x 2024 50% 239 / 26 

128 31 210 x 2024 50% 252 / 26 
192 31 210 x 2112 38% 260 / 23 
256 31 210 x 2024 50% 277 / 26 
256 31 210 x 2024 50% 298 / 25 
256 31 420 x 3328 50% 300 / 25 
256 31 420 x 3804 50% 301 / 25 

 
As it can be seen, the performance of single precision 

simulations will be more than 143, and 301 MLUPS on 
Geforce 9800 GT, and Tesla C1060, respectively, while 
,regardless of the size of the domain, the performance on a 
single core intel Core2 Dou and Intel Xeon CPUs barely 
exceeds 1.1 and 1.4  MLUPS, respectively. This means that 
the best GPU performance by Tesla C1060 is extremely faster 
than that of the best CPU based code on Intel Xeon by a factor 
of almost 200, which is quite impressive.  

The register counts have been adjusted to reach a balance 
between the occupancy and the instructions’ performance, and 
the maximum affordable occupancy was evaluated to be not 
greater than 50 percent on Tesla C1060. The highlighted rows 
in both tables point to careless selections of block size which 
results in lower occupancy and hence a relatively lower 
performance.  

It can be seen that increasing the size of the thread blocks 
has a certain positive effect on the performance, since it 
allows for more coalesced memory transactions. Moreover, 
increasing the size of the domain up to certain values causes 
most of the computational resources to be engaged and hence 
increases the speed. Apparently, choosing 210 or 420 as the 
dimension in the y  direction contributes to this effect on 
Tesla C1060 as it causes the computational grid to be aptly 
distributed on the existing number of multiprocessors and 

available memories. 
It is evident from Table III that the computational capability 

of double precision for Tesla C1060 is much lower than its 
single precision performance. Fortunately, this deficiency has 
been alleviated in the new Tesla C2050 generation; where the 
peak performance of double precision computations is 
increased to more than 500 Giga FLOPS.  

VI. CONCLUSIONS 
A 2D lattice Boltzmann flow solver for binary diffusion of 

oxygen and nitrogen has been developed for the GPU. We 
used an optimized algorithm to employ the maximum 
computational power of GPUs using both conventional 
optimization strategies and a novel addressing scheme to solve 
the transport equations for both species in parallel. We have 
shown that, even using a relatively low cost graphical 
processing unit such as a GeForce 9800 GT, it is possible to 
obtain more than 100 times speed up for such a slow pace 2D 
LBM flow simulation. Using more advanced GPUs (TESLA 
C1060), more than 200 times speed up is achievable, bringing 
the long, wearisome simulation times down to just a few 
minutes. These results encourage the implementation of more 
sophisticated, 3D multi-component flow implementations on 
GPUs and indicate that similar speedups will be attainable for 
these problems. Preliminary results are quite promising and 
are subject to future publications. 
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