
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:1, 2011

80

Abstract—A highly optimized implementation of binary mixture

diffusion with no initial bulk velocity on graphics processors is
presented. The lattice Boltzmann model is employed for simulating
the binary diffusion of oxygen and nitrogen into each other with
different initial concentration distributions. Simulations have been
performed using the latest proposed lattice Boltzmann model that
satisfies both the indifferentiability principle and the H-theorem for
multi-component gas mixtures. Contemporary numerical
optimization techniques such as memory alignment and increasing
the multiprocessor occupancy are exploited along with some novel
optimization strategies to enhance the computational performance on
graphics processors using the C for CUDA programming language.
Speedup of more than two orders of magnitude over single-core
processors is achieved on a variety of Graphical Processing Unit
(GPU) devices ranging from conventional graphics cards to
advanced, high-end GPUs, while the numerical results are in
excellent agreement with the available analytical and numerical data
in the literature.

Keywords—Lattice Boltzmann model, Graphical processing unit,
Binary mixture diffusion, 2D flow simulations, Optimized algorithm.

I. INTRODUCTION
INARY mixture diffusion is a complex process that has
several applications in fluidic systems such as chemically

reacting flows, gas purification, pollutant dispersion and so
forth. Diffusion of oxygen and nitrogen, discussed in the
present work, is of a crucial importance since these two
elements are the major constituents of atmospheric air and
their diffusion plays a great role in combustion systems and
nitrogen/oxygen purification processes. However, such flows
generally involve mass and momentum diffusion of two or
more species of multiple phases dealing with complex
geometries and boundary conditions such as adsorption and
phase change. These conditions make the whole process
difficult to be described using the conventional continuum
assumptions as they involve many small scale transport

M. A. Safi is a MSc. student of mechanical engineering at Isfahan

University of Technology. He is Also with the university’s High Performance
Computing Center. Isfahan University of Technology, Isfahan, 84156-8311,
Iran (corresponding author; e-mail: sm.safi@me.iut.ac.ir).

M. Ashrafizaadeh is an assistant professor of mechanical engineering at
Isfahan University of Technology and the head of university’s High
Performance Computing Center. Isfahan University of Technology, Isfahan,
84156-8311, Iran (e-mail: mahmud@cc.iut.ac.ir).

Amir Ali Ashrafizaadeh is a BSc. student of mechanical engineering at
Isfahan University of Technology, Isfahan, 84156-8311, Iran. (e-mail:
a.ashrafizaadeh@me.iut.ac.ir).

phenomena. Recently, there has been a great interest in
applying kinetic theory to capture the delicate diffusion
processes in such flows and several models have been
proposed to extend kinetic-based lattice Boltzmann Models
(LBM) to these problems. Early implementations e.g. [1], [2]
were unable to satisfy either the indifferentiability principle
(recovering a simple component Lattice Bhatnagar-Gross-
Krook (LBGK) expression by setting the same properties for
both species), or the H-theorem and some were limited to
small molecular mass ratios [3]. A recent consistent model
proposed by Arcidiacono et al. [4]-[6] is proved to satisfy
both the indifferentiability principle and the H-theorem and is
stable over a wide range of mass ratios. The model is based on
the so called entropic LBM and successfully proved to recover
the Navier-Stokes and the Stephan-Maxwell diffusion
equations. Despite the outstanding accuracy and flexibility of
the new model, the entropic nature of the algorithm increases
the computational cost of a binary mixture simulation to much
more than twice, compared to single component LBGK
simulations. Considering such a high computational load and
the extremely small time scales associated with diffusion
phenomena in these problems, improving the computational
efficiency is a real challenge especially when the model is to
be applied to flows with complex geometries and/or boundary
conditions.

In addition, due to its highly explicit nature of solution,
lattice Boltzmann method is widely accepted to be a well
suited candidate for parallelization. Besides using multicore
CPUs and compute clusters, some researchers have performed
parallel LBM simulations on manycore Graphical Processing
Units (GPU), using graphical languages such as OpenGl [7],
[8]. By the advent of the modern programmable graphics
cards and new graphical programming language, CUDA, in
2006 by nVIDIA, there has been a great interest in exporting
conventional real world computational fluid dynamics solvers
to graphics processors in order to enhance the previously
expensive, time-consuming flow simulations, thereby
lowering their total simulation time. However, the LBM
implementations so far, have been restricted to single
component fluid flows using elementary models such as single
or multiple relaxation time LBGK [9]-[17], and there have not
been any serious effort to implement complex multi-
component gas mixtures on GPUs. Moreover, the proposed
multi-component entropic model of Arcidiacono et al. still
inherits its fully explicit nature and massive parallelization is
viable through the new heterogeneous, general purpose GPU

Lattice Boltzmann Simulation of Binary Mixture
Diffusion Using Modern Graphics Processors

Mohammad Amin Safi, Mahmud Ashrafizaadeh, Amir Ali Ashrafizaadeh

B

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:1, 2011

81

architectures.
Recently, the computational power of modern GPUs has
exceeded that of PC-based CPUs by far i.e. more than one
order of magnitude while being available for a comparable
price [9]. NVIDIA’s new gaming cards such as GeForce 9800
GT has been observed to deliver over 9330 10× single
precision Floating point Operations Per Second (330 Giga
FLOPS) and its recently released Tesla C1060 computing
cards have even a much greater peak performance of about 1
TeraFlops for single and 78 Giga Flops for double precision
computations. In comparison, the theoretical peak
performance of the Intel Core 2 Duo 3.0 GHz is only 24
GFLOPS for double and 48 GFLOPS for single precision
computations [9].

A. Previous works
Several papers have discussed porting conventional LB

solvers to graphics processors and enhancing the
computational performance of such solvers. Tolke [9]
developed a highly optimized 2D lattice Boltzmann model
using CUDA and reported one order of magnitude
performance gain compared to standard CPU only codes. The
main point of his work was using shared memory buffer to
prevent inefficient memory transactions. Later on, Tolke and
Krafczyk [10] reported efficiency gain of up to two orders of
magnitude using a CUDA based lattice Boltzmann kernel for
3D flow simulations. Kaufman, Fan and Petkov [11] have
advocated the use of GPU clusters for large scale LBM
simulations and for high performance computing. Kuznik,
Obrecht, Rusaouen and Roux [12] employed a high-end
platform equipped with nVIDIA GT200 to simulate lattice
Boltzmann flows and even performed double precision
calculations on their GPU. Zadehgol, Ashrafizaadeh and Safi
[13] implemented a lattice Boltzmann flow solver in a square
cavity on different kinds of single GPUs and delivered a
performance gain of up to 180 times over single CPUs.
Bernasch, Fatica, Melchionna, Succi and Kaxiras [14] ported
a 3D solver for flow in human coronary artery using D3Q19
model and obtained more than 900 Mega Lattice Update Per
Second (MLUPS) by eight parallel GPUs. They employed
some ad hoc techniques to manage the solid and fluid nodes
separately and doing so, they prevented the calculations on
inactive nodes. Ribbrock, Geveler, Goddeke and Turek [15]
presented a solution for a two-dimensional shallow water flow
and obtained eightfold speedup over multithreaded CPU code
by means of a single GPU device. Obrecht, Kuznik,
Tourancheau and Roux [16] suggested a set of new
optimization instructions in their research and could extract
more than %86 of the device throughput in their memory
transactions without engaging the precious shared memory
buffer, this way saving it for other instructions. Safi,
Ashrafizaadeh and Zadehgol [17] implemented simulations of
2D flow over a column of cylinders on multiple GPUs and
discussed some critical optimization approaches such as
increasing hardware occupancy to enhance the computational
performance.

B. Paper Contribution and Overview
In this paper an efficient GPU based implementation of a

LB model for time dependent binary diffusion of oxygen and
nitrogen with a distinct initial concentration distribution is
presented. The present parallel version is based on a serial
solver previously developed by our research group [18]. A
comparison of the present results with those of analytical data
shows how accurately the present results can mimic the time
varying analytic solution for such a basic but complex
phenomenon.

The LB model for binary mixtures is describes in section II.
A brief review on GPU programming model is presented in
Section III. Section IV discusses the optimization strategies
and the programming methodology applied to the present
implementation. The results, including time-elapsed
concentration variation of each species as well as performance
measurement for different platforms are presented in Section
V. Conclusions are reported in section VI.

II. LATTICE BOLTZMANN MODEL FOR BINARY MIXTURES
In the lattice Boltzmann model the continuous spectrum of

particle velocities has been replaced by a set of discrete
velocities of imaginary particles which are forced to move on
a lattice structure only. As a result of this simplification, the
solution of the Boltzmann equation has become considerably
easier and at the same time some limitations such as low Mach
number, have been imposed on the standard model. A direct
extension of the discrete lattice Boltzmann equation for multi-
component mixtures can be written as

t ji ji ji jif c fα α∂ + ∂ = Ω (1)

where 0,...,i N= , with N being the number of discrete lattice
velocities jic α , { , , }x y zα = , and jiΩ is the collision term. The

above equation is further expanded based on fast-slow
decomposition of motion in the vicinity of quasi-equilibrium
state, as proposed in [19], which guarantees the positive
entropy production of the process and hence satisfies the H-
theorem. Therefore, the process is composed of a fast
relaxation from the initial state f to the quasi-equilibrium *f
and then moving slowly from the quasi-equilibrium state *f
towards the equilibrium eqf . Expressing the two motions as
BGK terms, the final collision term for the LB equation takes
the following form for each species j :

1 2

1 1() ()eq
ji ji ji ji ji

j j

f f f f
τ τ

∗ ∗Ω = − − − − (2)

where 1 jτ and 2 jτ are the two relaxation times corresponding to
each of the relaxation stages, with the condition 2 1j jτ τ≥
which ensures the stability of the model and puts a limit on the
admissible Schmidt number / ABDν , where ν is the kinematic
viscosity and ABD is the binary diffusion coefficient. This
bounding on the Schmidt number is further discussed at the

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:1, 2011

82

end of this section.
The moments of each component are defined as,

,

,

eq
j ji j ji ji

j i

eq eq eq eq
j ji ji ji j ji ji ji ji

i i

f j f c

P f c c Q f c c c

α α

αβ α β αβγ α β γ

ρ = =

= =

∑ ∑

∑ ∑
 (3)

where jρ , jJ α , jP αβ and jQ αβγ are the density, the
momentum, the pressure tensor and the third order moment of
component j , respectively. For the D2Q9 model considered in
this paper, the discrete lattice velocities are

(0,0) 0

(1) (1)cos ,sin 1 4,
2 2

(2 9) (2 9)2 cos ,sin 5 8
4 4

ij j

j

i

i ic c i to

i ic i to

π π

π π

⎧
⎪

=⎪
⎪ ⎧ ⎫− −⎛ ⎞ ⎛ ⎞⎪= =⎨ ⎨ ⎬⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎩ ⎭⎪
⎪ ⎧ ⎫− −⎛ ⎞ ⎛ ⎞⎪ =⎨ ⎬⎜ ⎟ ⎜ ⎟⎪ ⎝ ⎠ ⎝ ⎠⎩ ⎭⎩

r (4)

where the magnitude of jc for each component is related to

the speed of sound of the components as 3j sjc c= , where sjc
is defined as,

0 /sj B jc k T m= (5)

where Bk is the Boltzmann constant, 0T is a reference
temperature and jm is the molecular mass of component
j .The entropic nature of the model requires the minimization

of the H-function defined by the following equation,

ln ji
ji

j i i

f
H f

W
= ∑∑ (6)

which will be minimized under the constraints of conservation
of density of each species jρ and the total mixture momentum

A BJ J Jα = + . The corresponding weighting factor is:

4 / 9 0
1 / 9 1, ,4
1 / 36 5, ,8

i

i
W i

i

=⎧
⎪= =⎨
⎪ =⎩

K

K

 (7)

The cumbersome process of minimization leads to the

following final equation for the equilibrium distribution
function that is similar to that of a single component fluid,

2 2 2 2

1

2 3 2 3
ji

j

c
cd

j j jeq
ji j i

j j

c c u u c u
f W

c c u

α

α α α

α α

ρ
=

⎛ ⎞⎛ ⎞− + + +
⎜ ⎟⎜ ⎟=
⎜ ⎟⎜ ⎟−
⎝ ⎠⎝ ⎠

∏ (8)

where /u Jα α ρ= is the mixture velocity in α direction, and

A Bρ ρ ρ= + .
The quasi-equilibrium function jif ∗ can be obtained using

two complementary approaches; taking either the difference
between the momentum Jα of the mixture and the momentum

jJ α of the component j as an extra constraint for the
minimization problem, or the stress tensor jPαβ as the extra
quasi-equilibrium variable. The selection directly depends on
magnitudes of transport coefficients of the species and will be
further elaborated at the end of this section. Here, for brevity,
only the first approach is explained. Using the difference
between momentums along with the previous conservation
rules, one may eventually reach to the following set of
constraints:

j ji

i

j ji ji
i

f

J f cα α

ρ =

=

∑

∑
 (9)

The above equations lead to derivation of the quasi-

equilibrium function merely by substituting the velocity of the
species /j j ju Jα α ρ= instead of Uα in (8), therefore obtaining,

(,) (,)eq

ji j j ji j jf u f uρ ρ∗ =
r r (10)

The standard BGK model can be easily recovered for a

single component fluid from (2) and (10), where
A Bτ τ τ= = and A Bm m= and hence the indifferentiability

principle is proved to be valid.
The relaxation times 1 jτ and 2 jτ for each component are

related to transport coefficients of the flow by using the
Chapman-Enskog expansion in the hydrodynamic limit,
adapting it to simplify the conservation equations for each
component, and then comparing them to standard Navier-
Stokes and Stephan-Maxwell diffusion equations. The lengthy
mathematical process is beyond the scope of this paper and
the details can be found in [5]. The final set of equations for
the relaxation times for each component are expressed as,

1
0

2

j
j

B

AB AB
j

A B

nk T
D m
X X P

μ
τ

τ

=

=
 (11)

where jμ is the dynamic viscosity of the component, ,A BX X
are the mole fractions of component A and B, n is the total
number of moles in the mixture, 0BP k T n= is the mixture
pressure, and / ()AB A B A Bm ρ ρ ρ ρ= + is the mixture reduced
mass. Considering these two equations, the mentioned
restriction on the Schmidt number can now be introduced.
Rewriting the Schmidt number as,

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:1, 2011

83

1

2

j AB

j AB A B

mSc
D X X P
μ τ

ρ τ
= = (12)

The construction 1 2j jτ τ< leads to the following inequality:

j A B
j

j AB A B

Y YSc
D X X
μ

ρ
= ≤ (13)

where jY is the mass fraction of component j . Note that this
restriction is a result of taking the difference between mixture
momentum Jα , and momentum of each component jJ α as
the extra quasi-equilibrium variable. The evaluation of quasi-
equilibrium function using the stress tensor jPαβ as the extra
constraint leads to a complementary inequality,

A B
j

A B

Y YSc
X X

≥ (14)

Deciding between the two models depends on which of the

above inequalities is satisfied, considering the magnitudes of
the species transport coefficients, as mentioned before.

III. OVERVIEW OF GPU PROGRAMMING AND CUDA
CUDA is a new computational architecture introduced by

NVIDIA Corporation that includes heterogeneous computing
innovations at both software and hardware levels. It has been
designed for utilizing graphical processing units (GPUs) for
non graphical and general purpose computations. The
NVIDIA’s “C for CUDA” programming language is an
extension to the conventional C language and allows the
programmer to define new class of functions, called kernels
which will be launched on GPU. By calling each kernel, N
different CUDA threads will be executed in parallel, contrary
to only once like regular C functions in serial algorithms [19].
In GPU terminology, the graphical processing unit is referred
to as the “Device” while the CPU is referred to as the “Host”.
As it can be seen in Fig. 1, the GPU is equipped with many
cores (a number of multiprocessors, each constitutes of eight
processors) as processing units, and different types of
memories.

In a typical CUDA program, data is first transferred from
the host to the device. As shown in Fig. 2, the host then
launches special GPU functions (kernels), which will run the
program on the many cores of the device, in parallel, and
finally the results are transferred back to the host. It is
important to note that the maximum bandwidth and latency of
various memory types of the GPU are quite different. The
global device memory (DRAM of the GPU) is large; however,
it is much slower than the shared memory which is a limited
source of on-chip memory for each multiprocessor. Therefore,
in order to achieve the best performance, there should be a
careful balance between storing the variables on the global

and shared memories which will be discussed later.

Fig. 1 A simple graphical representation of host and device

As mentioned before, CUDA creates several threads which

will run the kernel commands in parallel. Since the number of
threads could be different from the number of available cores,
the execution of threads on these available cores is managed
by CUDA. Threads are packed in groups which are called
“blocks”. A “grid” in CUDA terminology is a batch of thread
blocks, and its dimension should be defined in accordance
with the size of the problem. All the threads in a block will be
passed to one multiprocessor to be processed and these
threads can simultaneously access the shared memory while
this is not possible for threads running on different blocks.
Once a GPU core completes the execution of a thread, it can
be utilized by CUDA for the execution of the next thread in
line.

Fig. 2 Grids of blocks and thread of each block in the GPU programming
model

One critical point in writing an efficient CUDA code is to

appropriately manage the memory accesses. Most importantly,
the programmer should pay special attention to the memory
alignments. This, along with the concept of hardware
occupancy will be discussed in the following sections.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:1, 2011

84

A. Memory access management
Achieving the maximum performance for memory

transactions within different memories requires the following
qualifications to be met:

• Memory access coalescence in global memory
• Preventing bank conflict in shared memory

Since the latency of memory accesses in the device memory
is rather high, the hardware would combine a number of
memory calls into single packs or groups of data and transfers
them all together. Depending on the type of the device, the
memory size of these groups would be 32, 64, or 128 bytes.
However, this requires the programmer to consider alignment
in his memory calls [20], [21]. Memory alignment means that
the pointer address value should always be a multiple of the
size of the type of the variable. It is worthwhile to note that
ignoring such principles would dramatically degrade the
performance of the simulation and the memory bandwidth will
drop to about 10 GB/s compared to its maximum of almost
100 GB/s [10].

Moreover, since the shared memory is made up of 16
separate memory banks, to prevent bank conflict within the
shared memory space, the block size should be a multiple of
16.

B. Hardware Occupancy
Since each multiprocessor has a limited amount of registers

and shared memory, it will have a certain capacity to accept
threads. Therefore, keeping the multiprocessors of the GPU as
busy as possible is vital to gain a good performance and is
often referred to as occupancy which is the ratio of the
number of active threads per multiprocessor to the maximum
number of possible active threads [21]. It is up to the
programmer to set the dimension of the blocks and the amount
of shared memory and register for block threads to reach the
maximum possible occupancy of the hardware.

One should note that decreasing the allocated registers for
each thread to a minimum count (in order to maximize the
occupancy) will degrade the computational performance of
kernel instructions. Therefore, care must be taken to find an
appropriate balance while setting this parameter.

IV. NUMERICAL OPTIMIZATIONS
In order to satisfy the requirements mentioned in previous

sections, the following steps were taken:
• A structure consisting of 9 distinct arrays was used for

different distribution functions.
• Data transfer between the host and device is performed

by means of one-dimensional buffers, therefore, one-
dimensional arrays are utilized.

• The dimensions of the computational domain at least
in one direction is multiple of powers of 2 (and
preferably greater than 64 [20]), to satisfy the
alignment requirements.

• During the LBM propagation stage, transfer of data for
the rest particles and for the north and south

directions, automatically satisfies the memory
alignment requirements since under the above
dimensional circumstances, the source and
destination addresses are aligned with the size of the
types of the variables. For the other directions;
however, the use of the fast shared memory is
preferred.

• To engage the hardware as much as possible we have
examined imposing different amounts of registers for
each thread along with selecting an optimum size for
our thread blocks.

For the present study, we have analyzed several versions of
our code, using the CUDA Visual Profiler provided by
nVIDIA [22], to check whether we have reached the optimum
possible memory alignment or not. Employing this useful tool,
we were able to find the exact number of coalesced and un-
coalesced memory transactions from or to the global memory,
this way making sure that the misalign accesses are at the
minimum level in the code.

In addition to above conventional optimizations we have
applied a new addressing scheme for the particular problem of
interest in this paper. Here, we have two sets of distribution
functions; one for Oxygen and the other for Nitrogen. In a
serial programming approach, one has to define two sets of
structures, launch separate functions for each component and
solve them in serial. On the other hand, updating the
distributions for each species in a particular grid point in the
computational domain is absolutely independent from the
other species and hence they can be solved at the same time.
In a heterogeneous programming model of GPUs, the
programmer can combine the two sets of distribution
functions in a single grid of blocks and launch them all
together. As such, instead of defining a set of distinct arrays
for each component a structure of 9 arrays is defined. Each
array contains the distribution functions of the first
component, followed by the distributions of the second one,
so that we can preserve the alignment requirements. Fig. 3 and
Fig. 4 show how the separate grids of blocks will constitute a
single grid, and how the two arrays combine, forming a single
array, respectively.

Using a single structure of arrays also brings this benefit of
reducing the required shared memory and registers for storing
the kernel arguments and managing data accesses inside the
kernel. The only disadvantage of such an approach might be a
rather complicated addressing scheme for the arrays in the
kernel, since the array elements corresponding to the second
species will be addressed by an offset of the size of the
computational domain as depicted in Fig. 3.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:1, 2011

85

Fig. 3 The grids corresponding to the two distinct computational domain are
combined to form a single one and are solved in parallel.

Fig. 4 The suggested array configuration scheme for each of the 9 discrete
velocities, k, applied in this work. Here, F1 and F2 correspond to Oxygen and
Nitrogen, respectively and F corresponds to the new binary array.

V. RESULTS AND DISCUSSION

A. Hydrodynamics
The geometry of the problem consists of a rectangular 2D

box with an initial concentration of oxygen at the central
region, and nitrogen distributed on both sides along the axial
direction x with the following profile:

2 2

2 2

85% , 15% if - / 2 / 2

46% , 53% if - / 2 or / 2
O N

O N

X X h X h

X X h X h X

= = ≤ ≤

= = ≥ ≤
 (15)

and includes the binary diffusion of the two gases from both
sides, where h is the length of the Oxygen concentration zone.
Simulating more abrupt changes in initial molar profile is a
real computational challenge and care must be taken to choose
a proper initial distribution, because under intense molar
differences the flow is likely to allow some artificial pressure
waves to grow and disturb the numerical results [18].

Periodic boundary conditions are imposed at the top and
bottom of the computational domain and the unknown
incoming distributions at 0,x x L= = (where L is the length of
the domain) are approximated as *((1), 0)jf t uρ − = , and

(1)j tρ − is the density of the component j evaluated at the
previous time step [23]. The above problem has the following
analytical solution which expresses the evolution for the mole
fraction of each component as a function of time [18]:

[() ()]
2 4 4

initial
jinitial

j j

X h x h xX X erf erf
Dt Dt

Δ + −
= + + (16)

where initial
jX is the initial mole fraction of component j

along the x axis, initial
jXΔ is the initial mole fraction difference

and D is the binary diffusion coefficient. Fig. 5 shows an
excellent agreement between the analytical solution and LB
simulations for several time steps using graphical processing
unit on a computational domain of typical size of 16 x 1024.
Note that the simulations have been performed using single
precision floating point operations.

Fig. 5 Time evolution for the molar fraction of Oxygen from its initial
distribution. The solid lines indicate the LB predictions and the symbols
correspond to the analytical answer for the same problem; time step 1000
(diamonds); 3000 (circles); 6000 (squares), and 9000 (crosses).

B. Numerical Performance
The technical specifications of the two GPUs in hand for

our simulations are given in Table I. Two personal computer
platforms are also used here. The first one is a regular Intel-
based PC equipped with an Intel Core 2 Duo 3.0 GHz CPU
and a GeForce 9800 GT GPU and the second platform is a
high-end workstation equipped with 16 Intel Xeon x5570 2.93
GHz cores, and three Tesla C1060 GPUs.

Table II and Table III show the best computational
performance of single and even double precision runs, where
applicable, in Millions of Lattice Updates per Second or
MLUPS. Note that since the computational resources
(especially the number of processor cores) are not the same
for each of the platforms, the optimum size of the
computational domain may vary on different devices.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:1, 2011

86

TABLE I
COMPARISON OF THE MAJOR SPECIFICATIONS OF GEFORCE 9800 GT AND

TESLA C1060 GPUS

GPU
TYPE

Single/double
precision

cores

Memory
(GB)

Processor
Clock
(GHz)

Memory
Bandwidth
(GB/sec)

Geforce
9800 GT 112 / 0 1 1.5 57.6

Tesla
C1060 240 / 30 4 1.3 102

TABLE II

NUMERICAL PERFORMANCE OF GEFORCE 9800 GT
Block
size

Register
count

Domain size
(Y x X) Occupancy Performance

(MLUPS)
64 30 64 x 1024 33% 113

128 30 64 x 1024 33% 121
192 30 64 x 1536 25% 120
256 30 64 x 1024 33% 123
256 30 128 x 1024 33% 132
256 30 256 x 1024 33% 134
256 30 512 x 1024 33% 143

TABLE III
NUMERICAL PERFORMANCE OF TESLA C1060

Block
size

Register
count

Domain size
(Y x X) Occupancy

Performance
(MLUPS)

single/double
64 31 210 x 2024 50% 239 / 26

128 31 210 x 2024 50% 252 / 26
192 31 210 x 2112 38% 260 / 23
256 31 210 x 2024 50% 277 / 26
256 31 210 x 2024 50% 298 / 25
256 31 420 x 3328 50% 300 / 25
256 31 420 x 3804 50% 301 / 25

As it can be seen, the performance of single precision

simulations will be more than 143, and 301 MLUPS on
Geforce 9800 GT, and Tesla C1060, respectively, while
,regardless of the size of the domain, the performance on a
single core intel Core2 Dou and Intel Xeon CPUs barely
exceeds 1.1 and 1.4 MLUPS, respectively. This means that
the best GPU performance by Tesla C1060 is extremely faster
than that of the best CPU based code on Intel Xeon by a factor
of almost 200, which is quite impressive.

The register counts have been adjusted to reach a balance
between the occupancy and the instructions’ performance, and
the maximum affordable occupancy was evaluated to be not
greater than 50 percent on Tesla C1060. The highlighted rows
in both tables point to careless selections of block size which
results in lower occupancy and hence a relatively lower
performance.

It can be seen that increasing the size of the thread blocks
has a certain positive effect on the performance, since it
allows for more coalesced memory transactions. Moreover,
increasing the size of the domain up to certain values causes
most of the computational resources to be engaged and hence
increases the speed. Apparently, choosing 210 or 420 as the
dimension in the y direction contributes to this effect on
Tesla C1060 as it causes the computational grid to be aptly
distributed on the existing number of multiprocessors and

available memories.
It is evident from Table III that the computational capability

of double precision for Tesla C1060 is much lower than its
single precision performance. Fortunately, this deficiency has
been alleviated in the new Tesla C2050 generation; where the
peak performance of double precision computations is
increased to more than 500 Giga FLOPS.

VI. CONCLUSIONS
A 2D lattice Boltzmann flow solver for binary diffusion of

oxygen and nitrogen has been developed for the GPU. We
used an optimized algorithm to employ the maximum
computational power of GPUs using both conventional
optimization strategies and a novel addressing scheme to solve
the transport equations for both species in parallel. We have
shown that, even using a relatively low cost graphical
processing unit such as a GeForce 9800 GT, it is possible to
obtain more than 100 times speed up for such a slow pace 2D
LBM flow simulation. Using more advanced GPUs (TESLA
C1060), more than 200 times speed up is achievable, bringing
the long, wearisome simulation times down to just a few
minutes. These results encourage the implementation of more
sophisticated, 3D multi-component flow implementations on
GPUs and indicate that similar speedups will be attainable for
these problems. Preliminary results are quite promising and
are subject to future publications.

ACKNOWLEDGMENT
Financial support of the Iranian ministry of science,

research and technology and the aviation industries is
acknowledged.

REFERENCES
[1] X. Shan and J. Doolen, “Diffusion in a multicomponent Lattice

Boltzmann model,” in , Physical Review E., Vol. 54, 1996.
[2] L .S. Luo and S. S. Girimaji, “Theory of Lattice Boltzmann Method:

Two fluid model for binary,” in Physical Review E., Vol. 67, 2003.
[3] M. E. McCracken and J. Abraham, “Lattice Boltzmann Method for

binary mixtures with different molecular weights,” in Physical
Review E., Vol. 71, 2005.

[4] S. Arcidiacono, S. Ansumli, I. V. Karlin J. Mantzaras and K.B.
Boulouchos, “Entropic Lattice Boltzmann Method for simulation of
binary mixtures,” in Mathematics and Computers in simulation, Vol.
72, No. 2-6, pp. 79-83, 2006.

[5] S. Arcidiacono, I. V. Karlin J. Mantzaras and C. Foruzakis, “Lattice
Boltzmann model for the simulation of multicomponent mixtures,” in
Physical Review E., Vol. 78, No. 4, 2008.

[6] S. Arcidiacono, J. Mantzaras and I. V. Karlin “Lattice Boltzmann
simulation of catalytic reactions,” in Physical Review E., Vol. 76, No. 4,
2007.

[7] W. Li, Z. Fan, X. Wei and A. Kaufman, “GPU-based flow simulation
with complex boundaries,” in GPU Gems 2Pharr M., (ed) Addison
Wesley: Boston, MA, 747-764, 2005.

[8] H. Zhu, X. Liu, Y. Liu and E. Wu, “Simulation of miscible binary
mixtures based on Lattice Boltzmann method,” in Comp. Anim. Virtual
Worlds, 17, 403-410, 2008.

[9] J. Tolke, “Implementation of a Lattice Boltzmann kernel using the
compute unified device architecture,” in computing and Visualization in
Science, 2008.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:1, 2011

87

[10] J. Tolke and M. Krafczyk, “TeraFLOP computing on a desktop PC with
GPUs for 3D CFD,” in International Journal of Computational Fluid
Dynamics, Vol. 22, No. 7, 2008.

[11] A. Kaufman, Z. Fan and K. Petkof, “Implementing the Lattice
Boltzmann model on commodity graphics hardware,” in Journal of
Statistical Mechanics: Theory and Experiment, 2009.

[12] F. Kuznik, C. Obrecht, G. Rusaouen and J. Roux, “LBM Based flow
simulation using GPU computing processor,” in Comp. and Math. With
App. Volume 59, Issue 7, pp. 2380-2392, 2010.

[13] A. Zahehgol, M. Ashrafizaadeh, and M.A. Safi, “GPU implementation
of a lattice Boltzmann flow solver”, in Proc. 18th Annual International
Conference on Mechanical Engineering, Sharif University of
Technology, Tehran, 2010.

[14] M. Bernasch, M. Fatica, S. Melchionna, S. Succi and E. Kaxiras, “A
flexible high-performance Lattice Boltzmann GPU code for simulation
of fluid flows in complex geometries,” in Concurrency and
Computation: Prac. Exper. 22, pp 1-14, 2010.

[15] D. Ribbrock, M. Geveler, D. Goddeke and S. Turek, “Performance and
accuracy of Lattice Boltzmann kernels on multi- and manycore
architectures,” in Procedia Computer science 1, pp 239-247, 2010.

[16] C. Obrecht, F. Kuznik, B. Tourancheau and J. Roux, “A new approach
to the lattice Boltzman method for graphics processing units,” in Comp.
Math. with App. 2010, to be published.

[17] M. A. Safi, M. Ashrafizaadeh, and A. Zahehgol, “Implementing lattice
Boltzmann fluid flow simulations on graphics processors”, in Proc. 13
Annual and 2nd international Fluid Dynamics Conference, University of
Shiraz, Shiraz, 2010, submitted for publication.

[18] Rastegari, A., "Simulation of gaseous mixtures in a packed bed of
unfixed particles," Msc. Thesis, Isfahan University of Technology, 2008.

[19] A.N. Ghorban and I. V. Karlin, in Physica A 206, 40, 1994.
[20] nVIDIA, CUDA Programming Guide V3.0, 2010.
[21] nVIDIA, CUDA Best Practice Guide V3.0, 2010.
[22] nVIDIA, CUDA Visual Profiler V3.0.23, 2010.
[23] S. S. Chikatamarla, S. Ansumali, and I. V. Karlin, in Europhys. Lett. 74,

215, 2006.

