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Abstract—This paper describes a study of geometrically 

nonlinear free vibration of thin circular functionally graded (CFGP) 
plates resting on Winkler elastic foundations. The material properties 
of the functionally graded composites examined here are assumed to 
be graded smoothly and continuously through the direction of the 
plate thickness according to a power law and are estimated using the 
rule of mixture. The theoretical model is based on the classical Plate 
theory and the Von-Kármán geometrical nonlinearity assumptions. 
An homogenization procedure (HP) is developed to reduce the 
problem considered here to that of isotropic homogeneous circular 
plates resting on Winkler foundation. Hamilton’s principle is applied 
and a multimode approach is derived to calculate the fundamental 
nonlinear frequency parameters which are found to be in a good 
agreement with the published results. On the other hand, the 
influence of the foundation parameters on the nonlinear fundamental 
frequency has also been analysed. 
 

Keywords—Functionally graded materials, nonlinear vibrations, 
Winkler foundation.  

I.  INTRODUCTION 
N recent years, functionally graded materials (FGMs) have 
gained much popularity as materials to be used in structural 

components exposed to extremely high-temperature 
environments such as nuclear reactors and high-speed 
spacecraft industries. FGMs are composite materials that are 
microscopically inhomogeneous, and their mechanical 
properties vary smoothly or continuously from one surface to 
the other. Typically, these materials are made from a mixture 
of ceramic and metal, or a combination of different materials. 
The concept of FGMs was first introduced in Japan in 1984. 
Since then, it has gained considerable attention [1, 2]. FGMs 
have various available or potential applications in many fields 
such as aerospace engineering, electrical engineering, 
biomedical engineering, and architecture engineering [3, 4].  

Thin-plate structures are commonly used in these 
engineering applications, and they are often subjected to 
severe dynamic loading, which may result in large vibration 
amplitudes. When the amplitude of vibration is of the same 
order of the plate thickness, a significant geometrical 
nonlinearity is induced and linear models are not sufficient to 
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predict the dynamic behavior of the plate which may exhibit 
many new features, such as the amplitude dependence of the 
frequency and mode shapes on the amplitude of vibration and 
the jump phenomenon. 

Many studies have been devoted to functionally graded 
plate vibrations in the literature, such as those of 
Allahverdizadeh, Naei and Nikkhah Bahrami [5] who 
investigated the nonlinear free and forced vibration of thin 
circular functionally graded plates. 

In the present paper, the problem of geometrically nonlinear 
free vibrations of clamped-clamped CFGP with immovable 
ends resting on linear and nonlinear Winkler elastic 
foundation is investigated using Hamilton’s principle and 
spectral analysis. Based on the governing axial equation of the 
circular plate in which the axial inertia and damping are 
ignored, an homogenization procedure, previously proposed in 
[6] in the case of functionally graded beams resting on 
nonlinear elastic foundations, is used which reduces the 
problem studied to that of isotropic homogeneous circular 
plate with effective bending stiffness and axial stiffness 
parameters.    

II. FUNCTIONALLY GRADED MATERIALS 
In this section, we consider a clamped-clamped CFGP 

having the geometrical characteristics shown in Fig. 1. It is 
assumed that the CFGP is made of ceramic and metal, and the 
effective material properties of the CFGP, i.e., Young’s 
modulus E and mass density ρ, are functionally graded in the 
thickness direction according to a function of the volume 
fractions V of the constituents. 

 

 
Fig. 1 Geometry of a FG clamped circular plate 

 
According to the rule of mixture, the effective material 

properties P can be expressed as: 
 
ܲ ൌ ௠ܲ ௠ܸ ൅ ௖ܲ ௖ܸ                  (1) 
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Where subscripts “m” and “c” refer to the metal and 
ceramic constituents, respectively.A simple power law is 
considered here to describe the variation of the volume 
fraction of the metal and the ceramic constituents as follows: 
 

௠ܸ ൌ  ሺݖ ሺ݄ሻ⁄ ൅ 1 ሺ2ሻ⁄ ሻ௡                 (2) 
 

With 1m cV V+ =  n is a non-negative parameter (power-law 
exponent) which dictates the material variation profile through 
the thickness of the plate.  

Effective material properties P of the CFGP such as 
Young’s modulus (E) and mass density (ρ) can be determined 
by substituting (2) into (1), which gives:

                  
 

 
ܲሺݖሻ ൌ ௠ܲ ൅ ሺ ௖ܲ െ ௠ܲሻ ሺݖ ሺ݄ሻ⁄ ൅ 1 ሺ2ሻ⁄ ሻ௡              (3) 

III.  NONLINEAR FREE VIBRATION ANALYSIS 
Consider a fully clamped thin circular plate of a uniform 

thickness h and a radius a. The co-ordinate system is chosen 
such that the middle plane of the plate coincides with the polar 
coordinates (r, θ), the origin of the co-ordinate system being at 
the centre of the plate with the z-axis downward, as depicted 
in Fig. 1. The plate is made of a mixture of ceramic and metal. 
Considering axisymmetric vibrations of the circular plate, the 
displacements are given in accordance with classical plate 
theory by:

      
,ݎ௥ሺݑ ,ݖ ሻݐ ൌ ܷሺݎ, ሻݐ െ ݖ ,ݎሺݓ߲ ሻݐ ሺ߲ݎሻ⁄ , ,ݎఏሺݑ ሻݐ ൌ 0 , ,ݎ௭ሺݑ ሻݐ ൌ ܹሺݎ,  ሻ (4)ݐ
         
where U and W are the in-plane and out-of-plane 
displacements of the middle plane point )0,,( θr  respectively, 
and ur, uθ and uz are the displacements along r, θ and z 
directions, respectively. 

The non-vanishing components of the strain tensor in the 
case of large displacements are given by Von-Karman 
relationships: 
 
ሼߝሽ ൌ ሼߝ଴ሽ ൅ ሽܭሼݖ ൅ ሼߣ଴ሽ               (5) 

 
In which {ε0}, {K} and {λ0} are given by: 
 

ሼߝ଴ሽ ൌ ൤ఌೝ
బ

ఌഇ
బ൨ ൌ ቂడ௨ ሺడ௥ሻ⁄

௨ ሺ௥ሻ⁄ ቃ , ሼܭሽ ൌ ቂ௄ೝ
௄ഇ

ቃ ൌ ቂ ିడ௪మ ൫డ௥మ൯ൗ
ିଵ ሺ௥ሻ⁄ డ௪ ሺడ௥ሻ⁄ ቃ      (6, 7) 

 
ሼߣ଴ሽ ൌ ቂఒೝ

ఒഇ
ቃ ൌ ቂଵ ሺଶሻ⁄ ሺడ௪ ሺడ௥ሻ⁄ ሻమ

଴ ቃ               (8) 
 
For the FGM circular plate shown in Fig. 1, the stress can 

be expressed as: 
 
ሼߪሽ ൌ ሾܳሿሼߝሽ                      (9) 
 

In which {σ} = [σr σθ]T and the terms of the matrix [Q] can 
be obtained by the relationships given in reference [7].the 
force and moment resultants are defined by: 
 

ሺ ௥ܰ, ఏܰሻ ൌ ׬  ሺߪ௥, ఏሻߪ
௛

ଶൗ
ି௛

ଶൗ  (10)                 ݖ݀ 

 

ሺܯ௥, ఏሻܯ ൌ ׬  ሺߪ௥, ఏሻߪ
௛

ଶൗ
ି௛

ଶൗ  (11)                         ݖ݀ 

 
The in-plane forces and bending moments in the plate are   

given by:  
 
ൣே

ெ൧ ൌ  ൣ஺
஻

஻
஽൧ ቂ൛ఌబൟା൛ఒబൟ

ሼ௄ሽ ቃ              (12) 
 

A, B and D are symmetric matrices given by the following 
equation: 
 

 ൫ܣ௜௝, ,௜௝ܤ ௜௝൯ܦ ൌ ׬  ܳ௜௝
௛

ଶൗ
ି௛

ଶൗ
ሺ1, ,ݖ  (13)            ݖ݀ ଶሻݖ

 
Here, the Qij’s are the reduced stiffness coefficients of the 

plate.  The expression for the bending strain energy Vb, the 
membrane strain energy Vm, the coupling strain energy Vc and 
the kinetic energy T are given by: 
 

௕ܸ ൌ ׬ ߨ ଶݓଵଵሾሺ߲ܦ ሺ߲ݎଶሻ⁄ ሻଶ ൅ 1 ሺݎሻଶ⁄  ሺ߲ݓ ሺ߲ݎሻ⁄ ሻଶ ൅௔
଴

                              2 ߥ ሺݎሻ⁄ ݓ߲  ሺ߲ݎሻ⁄ ଶݓ߲  ሺ߲ݎଶሻ⁄ ሿ             ݎ݀ݎ

(14) 
 

௠ܸ ൌ න ߨ  ଵଵܣ

௔

଴

ሾሺ߲ݑ ሺ߲ݎሻ⁄ ሻଶ ൅ ݑ߲  ሺ߲ݎሻ⁄ ሺ߲ݓ ሺ߲ݎሻ⁄ ሻଶሿݎ݀ݎ 

൅ߨ න ଵଵܣ

௔

଴

ሾ 2 ܷߥ ሺݎሻ⁄ ݑ߲  ሺ߲ݎሻ⁄ ൅ ܷߥ ሺݎሻ⁄  ሺ߲ݓ ሺ߲ݎሻ⁄ ሻଶሿݎ݀ݎ 

 
൅׬ ߨ ଵଵܣ

௔
଴ ቂଵ

ସ
 ሺ߲ݓ ሺ߲ݎሻ⁄ ሻସ ൅ ଶݑ ሺݎሻଶ⁄ ቃ  (15)           ݎ݀ݎ

 
௖ܸ ൌ

ߨ  ׬ െܤଵଵ ሾ߲ݓଶ ሺ߲ݎଶሻ⁄  ሺ߲ݓ ሺ߲ݎሻ⁄ ሻଶ ൅௔
଴

ߥ  ሺݎሻ⁄ ݓ߲  ሺ߲ݎሻ⁄  ሺ߲ݓ ሺ߲ݎሻ⁄ ሻଶሿ                                  ݎ݀ݎ 

(16) 

 
and  
 
ܶ ൌ ଴ܫ ߨ  ׬  ሺ߲ݓ ሺ߲ݎሻ⁄ ሻଶ௔

଴  (17)                                 ݎ݀ݎ 
 
where I0 is the inertial term given by:  
 

଴ܫ ൌ ׬  ሻݖሺߩ
௛

ଶൗ
ି௛

ଶൗ  (18)                    ݖ݀  

 
An approximation has been adopted in the present work 

consisting on neglecting the contribution of the in-plane 
displacement U in the membrane strain energy expression. 
Such an assumption of neglecting the in-plane displacements 
in the non-linear plate strain energy has been made in Refs.  
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[8, 9] when calculating the first two non-linear mode shapes of 
fully clamped rectangular plates. For the first non-linear mode 
shape, the range of validity of this assumption has been 
discussed in the light of the experimental and numerical 
results obtained for the non-linear frequency–amplitude 
dependence and the non-linear bending stress estimates 
obtained at large vibration amplitudes. In order to examine the 
effects of large vibration amplitudes on the membrane stress 
patterns for clamped circular plates, the assumption introduced 
above leads to: 
 

௠ܸ ൌ ଵଵܣሺ ߨ  ሺ4ሻ⁄ ሻ ׬ ሺ߲ݓ ሺ߲ݎሻ⁄ ሻସ௔
଴  (19)               ݎ݀ݎ 

 
The strain energy of the elastic foundation fV  of the CFGP 

is given by: 
 

௙ܸ ൌ  ଵ
ଶ

׬  ׬ ௅ܭ
ଶగ

଴
௔

଴ ߠ݀ݎ݀ݎଶݓ ൅ ଵ
ସ

׬  ׬ ே௅ܭ
ଶగ

଴
௔

଴  (20)     ߠ݀ݎ݀ݎ ସݓ
 
where LK and NLK  are the linear and the nonlinear Winkler 
foundation stiffness respectively. For a general parametric 
study, we use the following non dimensional formulation by 
putting:  
 
כݎ ൌ ݎ ሺܽሻ⁄ ௜ݓ    ,  

כ ൌ ௜ݓ  ሺ݄ሻ⁄            (21, 22) 
 

Applying Hamilton’s principle and expanding the 
displacement W in the form of a finite series, the following set 
of nonlinear algebraic equations is obtained: 
 
2ܽ௜݇௜௥

כ ൅ 3ܽ௜ ௝ܽܽ௞ܾ௜௝௞௥
כ ൅ ሺ8 ሺߨሻ⁄ ሻܽ௜ ௝ܽܥ௜௝௥

௦כ െ ଶܽ௜݉௜௥כ2߱
כ ൌ 0 (23)  

 

where mij
* , k ij

*  , bijkl
*  and c

s
ijk

* stand for the non dimensional 

mass tensor, the linear rigidity tensor, the fourth order non-
linear rigidity tensor and the third order non-linear coupling 
tensor, respectively, which are defined as: 
 

݇௜௝
כ ൌ න ቈ

ሺ߲ݓ௜
ଶכ ሺ߲כݎଶሻ⁄ ሻ൫߲ݓ௝

ଶכ ሺ߲כݎଶሻ⁄ ൯
൅ሺ1 ሺכݎଶሻ⁄ ሻሺ߲ݓ௜

כ ሺ߲כݎሻ⁄ ሻ൫߲ݓ௝
כ ሺ߲כݎሻ⁄ ൯

቉
ଵ

଴

 כݎ݀כݎ

 

൅ න 2ሺߥ ሺכݎሻ⁄ ሻሺ߲ݓ௜
כ ሺ߲כݎሻ⁄ ሻ൫߲ݓ௝

ଶכ ሺ߲כݎଶሻ⁄ ൯ כݎ݀כݎ

ଵ

଴

 

 
൅ܭ௅

כ ׬ ௜ݓ
௝ݓכ

ଵכ
଴  (24)                          כݎ݀כݎ 

 

௜௝௞ܥ
௦כ ൌ ௜ݓනൣሺ߲ ߚ 

ଶכ ሺ߲כݎଶሻ⁄ ሻ൫߲ݓ௝
כ ሺ߲כݎሻ⁄ ൯ሺ߲ݓ௞

כ ሺ߲כݎሻ⁄ ሻ൧
ଵ

଴

 כݎ݀כݎ 

 

൅ߚ නൣሺߥ ሺכݎሻ⁄ ሻሺ߲ݓ௜
כ ሺ߲כݎሻ⁄ ሻ൫߲ݓ௝

כ ሺ߲כݎሻ⁄ ൯ሺ߲ݓ௞
כ ሺ߲כݎሻ⁄ ሻ൧

ଵ

଴

 כݎ݀כݎ 

(25) 

݉௜௝
כ ൌ ׬  ௜ݓ

௝ݓכ
 כ

ଵ
଴  (26)                     כݎ݀כݎ 

 

ܾ௜௝௞௟
כ ൌ ߙ  නሺ߲ݓ௜

כ ⁄כݎ߲ ሻ൫߲ݓ௝
כ ⁄כݎ߲ ൯ሺ߲ݓ௞

כ ⁄כݎ߲ ሻሺ߲ݓ௟
כ ⁄כݎ߲ ሻכݎ݀כݎ

ଵ

଴

  

 
൅ ܭே௅

כ ׬  ௜ݓ
௝ݓכ

௞ݓכ
௟ݓכ

ଵכ
଴  (27)             כݎ݀כݎ 

 
where α , β , K*

L, K*
NL and K*

S are given by: 

 
ߙ ൌ  ሺܣଵଵ݄ଶ ሺ4ܦଵଵሻ⁄ ሻ ,   ߚ ൌ  ሺെ ܤଵଵ݄ ሺܦଵଵሻ⁄ ሻ      (28, 29) 
 
௅ܭ

כ ൌ  ሺܽସ ሺܦଵଵሻ⁄ ሻܭ௅ , ே௅ܭ    
כ ൌ  ሺ2ܽସ ሺܣଵଵሻ⁄ ሻܭே௅             (30, 31)  

To obtain the nonlinear free response of a clamped-clamped 
CFGP in the neighborhood of its first resonant frequency, the 
values of the linear rigidity matrix K*

ij and the nonlinear 
geometrical rigidity tensor b*

ijkl have been calculated using the 
first six normalized symmetric linear circular plate function, 
w*

1, w*
2 ,....., w*

6. The functions have been normalized in such 
a manner that the obtained mass matrix equals the identity 
matrix. 

IV.  NUMERICAL RESULTS AND DISCUSSIONS  
In the problem considered herein, the top surface of the 

CFGP is ceramic rich (Ec=384.43e9GPa, υc=0.24, 
ρc=2370Kg/m3), whereas the bottom surface of the CFGP is 
metal rich (Em=201.04e9GPa, υm=0.3177ρm=8166 Kg/m3). 
 

TABLE I 
FREQUENCY RATIO Ω*

NL / Ω*
L FOR VARIOUS NON-DIMENSIONAL VIBRATION 

AMPLITUDES ASSOCIATED WITH THE FIRST MODE SHAPE OF CLAMPED 
CIRCULAR ISOTROPIC PLATE FOR A POISSON’S RATIO Ν=0.28 

 
In table I, the first nonlinear frequency ratios ω∗

nl/ω∗
l, 

calculated in the present work at various vibration amplitudes, 
is compared with the results obtained in [5]. It is noted that the 
solution given in the present work overestimates the 
frequencies of the clamped circular isotropic plate, especially 
for high values of dimensionless amplitude. This discrepancy 
is mainly due to the fact that the axial displacements have 
been neglected in the expression of the axial strain energy. 
 
 
 
 
 

 

W*
max 

PRESENT WORK 
2013 

[5] 
2008 

 
0.2 

 
1.0108 

 
1.0075 

0.4 1.0421 1.0296 
0.5 1.0648 1.0459 
0.6 1.0916 1.0654 
0.8 1.1560 1.1135 
1.0 1.2318 1.1724 
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TABLE II 
FREQUENCY RATIO Ω*

NL / Ω*
L FOR VARIOUS NON-DIMENSIONAL VIBRATION 

AMPLITUDES ASSOCIATED WITH THE FIRST MODE SHAPE OF CLAMPED 
CIRCULAR FG PLATE 

W*
max 

PRESENT WORK 
2013 

[5] 
2008  

 
0.2 

 
1.0045 

 
1.0068  

0.4 1.0176 1.0275  
0.5 1.0270 1.0413  
0.6 1.0383 1.0586  
0.8 1.0655 1.1034  
1.0 1.0980 1.1586  

    

 
The same comparison has been conducted in the case of 

circular functionally graded plate. As expected, the frequency 
ratios obtained with the present model are higher than those 
obtained in [5].especially for large vibration amplitudes for 
which the contribution of axial displacement becomes 
significant.   
 

 
 
Fig. 2 Effect of the elastic foundation stiffness on the frequency ratio 

It can be shown from Fig. 2 that an increase in the value of 
linear elastic foundation stiffness leads to a decrease in the 
nonlinear to linear frequency ratio. On the other hand, this 
ratio enhances with an increase in nonlinear elastic foundation 
stiffness. 

V. CONCLUSION 
The present study deals with the problem of geometrically 

nonlinear free vibrations of a clamped-clamped CFGP resting 
on Winkler elastic foundations. A homogenization procedure 
has been proposed which reduces the problem studied here to 
that of isotropic homogeneous plate. The main feature of the 
present contribution is the fact that the existing analytical 
solutions, numerical techniques and software developed over 
the years for the nonlinear analysis of isotropic circular plates 
can be easily used for CFGP case. On the other hand, the 
influence of the foundation parameters on the nonlinear 
fundamental frequency has been studied. The effect of the 

linear foundation is to soften the nonlinear dynamic behavior 
of the CFGP, whereas the effect of the nonlinear foundation 
stiffness is to stiffen the plate response. It’s expected in future 
work to complete the present model by taking into account the 
contribution of the axial displacement in the axial strain 
energy expression.  
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