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 
Abstract—The biodegradable family of polymers 

polyhydroxyalkanoates is an interesting substitute for convectional 
fossil-based plastics. However, the manufacturing and environmental 
impacts associated with their production via intracellular bacterial 
fermentation are strongly dependent on the raw material used and on 
energy consumption during the extraction process, limiting their 
potential for commercialization. Industrial wastewater is studied in 
this paper as a promising alternative feedstock for waste valorization. 
Based on results from laboratory and pilot-scale experiments, a 
conceptual process design, techno-economic analysis and life cycle 
assessment are developed for the large-scale production of the most 
common type of polyhydroxyalkanoate, polyhydroxbutyrate. 
Intracellular polyhydroxybutyrate is obtained via fermentation of 
microbial community present in industrial wastewater and the 
downstream processing is based on chemical digestion with 
surfactant and hypochlorite. The economic potential and 
environmental performance results help identifying bottlenecks and 
best opportunities to scale-up the process prior to industrial 
implementation. The outcome of this research indicates that the 
fermentation of wastewater towards PHB presents advantages 
compared to traditional PHAs production from sugars because the 
null environmental burdens and financial costs of the raw material in 
the bioplastic production process. Nevertheless, process optimization 
is still required to compete with the petrochemicals counterparts. 
 

Keywords—Circular economy, life cycle assessment, 
polyhydroxyalkanoates, waste valorization.  

I. INTRODUCTION 

IO-BASED polymer production accounts only for 1.5% 
of the overall current polymer production capacity [1]. A 

crucial aspect in the shift from a petrochemical towards a bio-
based economy is the development of a large-scale process to 
produce biodegradable alternatives to the conventional fossil-
based polymers. 

Polyhydroxyalkanoates (PHAs) is a family of polyesters 
which are an interesting potential substitute to traditional 
plastics because of their natural origin, biodegradability and 
functionality. Nevertheless, PHAs have high production costs, 
due to the energy required in the sterilization of the fermenters 
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[2], the PHA yield on the substrate, and the efficiency of the 
Down Stream Processing (DSP) [3] which has delayed their 
wide commercialization.  

From an environmental point of view, their benefits with 
respect to fossil-based polymers are still questioned [4]. 
Glucose, methanol or acetic acid, are traditional substrates in 
PHA production from a pure culture. Because of the crop 
cultivation, these raw materials extensively contribute to the 
environmental impact of the overall production process [5].  

The biotechnological process, based on microbial 
community engineering for PHA production, has been 
proposed as an alternative strategy to address the 
aforementioned problems [6]. Instead of traditional pure 
culture bacterial fermentation using expensive feedstock, the 
novel process is based on the selection of a population of a 
variety of microorganisms with an enhanced PHA producing 
capacity (77% dry weight), using mixed substrates present in 
wastewater. Costless substrates and non-aseptic process 
conditions are applied, thus reducing environmental impacts 
and production costs. The concept has been proven at 
laboratory and pilot-plant scale using wastewater from paper 
mill and food industry, respectively [7], [8]. However, a large 
scale process has not been developed yet.  

Besides from issues related with fermentation, the 
intracellular PHA needs to be extracted in a competitive DSP 
to further enhance economics and sustainability. Chemical 
digestion with surfactant and hypochlorite is one of the most 
common procedures, yielding a final product with a purity of 
98% and 86% of recovery [9].  

In the present study, the techno-economic and 
environmental performance, represented as energy use and 
greenhouse emissions, of the industrial production of one of 
the most common types of PHA, polyhydroxybutyrate (PHB), 
are investigated in an ex-ante sustainability analysis. The 
assessment was comprised of the conceptual process design, 
techno-economic evaluation and environmental Life Cycle 
Assessment (LCA). Fermentation was carried out by mixed 
bacterial culture present in industrial wastewater. The process 
here developed integrates the wastewater treatment with PHB 
production. It is assumed that the water effluent produced is at 
the same quality standards of the existing wastewater 
treatment process. Therefore, the wastewater treatment costs 
can be accounted as economic credits and deducted from the 
total processing costs.  
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II. PROCESS DESCRIPTION  

A. Fermentation 

The fermentation process, as shown in Fig. 1 (a), is carried 
out in three consecutive fermenters. The first fermenter is the 
acidification reactor R-101, where the organic material present 
in the wastewater is converted into volatile fatty acids with a 
yield of 0.91 g COD/g COD (Table I, [7]). 

 
TABLE I 

FERMENTATION CONDITIONS 

Fermenter Parameter Value Units 

Acidification 
 

CODout 26.3 kg/m3

SRT 1 day

Conversion 50 kgCOD/m3d

Yield 0.91 gCOD/gCOD

Selection 
 

SRT 1 day

Cycle length 0.5 day

OTRmax 0.5 kgCOD/m3h

Yield 0.34 gX/gCOD

qO2 1 gO2/gXh

Accumulation 

Cycle length 0.5 day 

OTRmax 0.5 kgO2/m
3h 

Yield 0.44 gPHA/gCOD 

COD:  Chemical Oxygen Demand 
SRT:   Solids Retention Time 
OTR:  Oxygen Transfer Efficiency 
qO2:   Oxygen Uptake Rate 
 
The second fermenter is the selector R-102. The selector is 

fed with a split fraction of the acidification product, which is 
rich in substrate and contains the amount of COD needed for 
the bacterial growth. The selector is a sequencing batch 
reactor, with a cycle length of 0.5 days and a solids retention 
time of 1 day. Therefore, in every batch one half of the 
selector volume is replaced, whereas the other half of the 
volume remains inside the fermenter. PHA producing bacteria 
are enriched with a yield of 0.34 g X/g COD, [8] while a 
maximal biomass concentration in the selector is maintained 
under 0.5 kg/m3, based on a biomass oxygen uptake rate (qO2) 
of 1 kg O2/m

3h and a maximal oxygen transfer capacity 
(OTRmax) of 0.5 kg/m3h, as observed in the laboratory. To 
avoid overpassing the maximal allowed biomass 
concentration, dilution water is also fed into the selector.  

The third and last step of the fermentation is the fed-batch 
accumulation reactor R-103, where the content of intracellular 
PHB on biomass is maximized up to 70%wt [7], [8]. The 
accumulator is fed with the biomass rich replacement volume 
from the selector and the substrate rich remaining fraction 
from the acidification reactor. The maximal allowed substrate 
concentration is 0.25 kg/m3 to avoid inhibition, thus, the 
acidification product is dosed continuously during the entire 
batch length. At the end of the batch, the accumulator reactor 
contains the replacement volume from the selector and the 
corresponding fraction from the acidification product with a 
total suspended solids (TSS) concentration of 2.7 kg TSS/m3. 
At the end of the cycle the solids settle down during 30 
minutes to concentrate the product stream. The clarified 
fraction outflows via the top of the settler and is used as 

dilution stream to the selector. The settled product flows 
through the buffer tank T-101 before is continuously fed to the 
DSP for the recovery of the intracellular PHB. 

B. Downstream Processing 

Cell disruption by chemical digestion can be carried out 
using surfactant and hypochlorite [9], see Fig. 1 (b). In the 
reactor R-201, sodium dodecyl sulfate (SDS) solubilizes the 
non-PHB cell material (NPCM) present in the wastewater 
after the fermentation. A mass ratio of 3:1 SDS:NPCM, a 
temperature of 55°C, and a residence time of 15 minutes were 
identified as optimal conditions in the laboratory.  

After 88% of the intracellular PHB is recovered in the SDS 
treatment [9], the next step is PHB concentration in the 
hydrocyclone C-201 and the centrifuge C-202. The liquid 
phase is rich in SDS and 80% of it is crystallized at 9°C in R-
301 [10]. The second chemical treatment for further extraction 
of PHB is carried out at R-401, with the addition of 
hypochlorite (NaOCl. Mass ratio of 8:1 NaOCl:NPCM), 
during 10 minutes at 30°C. 95% of the remaining PHB is 
recovered in this step. Further PHB purification is done by 
counter current washing process with water to remove the 
impurities, which comprise 9% of the solid phase. 99% of the 
contaminants are removed after the treatment in two mixing 
tanks (M-501 and M-502) with 5 minutes of residence time 
each and two centrifuges (C-501 and C-502) in series. PHB is 
concentrated discharging extra water at centrifuge C-601 and 
in a last air drying step (D-601).  

 

 

 

Fig. 1 Process flow diagrams: (a) Fermentation (b) DSP 

III. METHODS 

A. Process Design 

Typically, PHB production capacity at industrial level 
ranges from 0.05 to 50 kt/a PHB [9]. In the waste-based PHA 
production process the availability of the raw material can 
limit the production of PHA at large scale. Depending on the 
waste streams used, the production capacity ranges between 1 
to 5 kt PHA/a [6]. Based on the COD availability from 
wastewater, the production capacity in this study was fixed at 
1.5 kt/a PHB, equal to 6.8 kt/a of COD demand in the 

(a) 

(b) 
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fermentation. 
The conceptual process design of the operation units and 

mass and energy balances were based on process 
flowsheeting. Laboratory and pilot scale data [7], [8], were 
integrated with process modelling in ASPEN Plus software.  

B. Economic Evaluation 

Total capital investment and material and energy 
consumption were calculated to analyze the economic 
potential of the designed process. The capital costs were 
estimated based on typical factors for delivered equipment 
costs [11], and the delivered equipment costs were estimated 
from correlations based on the characteristic size parameter of 
the equipment [12]. The costs were updated to 2013 prices 
with the Chemical Engineering Plant Cost Index (CEPCI). 
Annual depreciation (ܦܣ, see (1)) was calculated based on the 
total capital ( ூ݂) and the startup material costs (݉ௌ௎). An 
interest rate (݅) of 5% and a payout time (POT) of 20 years 
were assumed: 

 

        11/1  POTPOT
SUI iiimfAD       (1) 

 
The utilities costs were estimated based on the energy 

consumption, from the energy balances, and assumed utilities 
unity costs [13]. Labor costs (L) were assumed as 10% of the 
total annual costs (TAC) and maintenance (M) was assumed as 
3% of the total fixed capital costs. Eventually, the total annual 
costs were composed by the annual depreciation, utilities, 
materials, maintenance, and labor costs as shown in (2): 

 

MLmUADTAC                     (2) 
 
The otherwise required wastewater treatment (WWT) was 

assumed to provide credits to the PHB production process. 
The credits from the avoided treatment were estimated based 
on the wastewater flow and treatment costs [13]. No extra 
WWT expenses were included since the water discharged 
from the process was already treated in the upstream 
fermentation. 

C. Life Cycle Assessment 

In order to address potential environmental impacts (energy 
use and greenhouse gas emissions) during the product lifetime, 
a LCA according to ISO 14040 and ISO 14044 standards [14], 
[15], and supported by EcoInvent 2.2 database was performed. 
The system boundaries were defined following a cradle-to-
gate approach as shown in Fig. 2. The raw material industrial 
wastewater and the PHB production process were inside the 
system boundaries, whereas the product use and end-of-life 
treatment were outside the system boundaries. System 
expansion was applied to include the clean wastewater after 
the fermentation inside the system boundaries. The functional 
unit was 1 kilogram of PHB final product. 

 

 

Fig. 2 System boundaries 
 
After the system definition, the second phase of the LCA is 

the Life Cycle Inventory (LCI) including the input and output 
flows of material and energy from and to the environment. 
The inventory was derived from the mass and energy balances 
obtained in the conceptual process design and the models 
developed in ASPEN Plus. The inventory included the 
nutrients of the fermentation, the chemicals employed in the 
DSP, the utilities, and the waste treatment. Moreover, the 
avoided wastewater treatment and the biogenic carbon 
embodied in the final product were deducted from the gross 
energy use and greenhouse gas emissions, correspondingly 
[16], [17].  

Following the inventory, the environmental impacts are 
assessed in the third phase of the LCA. The impact categories 
comprised in this study are the greenhouse gas emissions 
(GHG) and the non-renewable energy use (NREU). The 
individual impacts for the materials and energy carriers were 
taken from EcoInvent v2.2 database and combined with the 
normalized inventory provided the overall impacts for the 
entire process. The interpretation of the results is the last phase 
of the LCA and covers the conclusions, recommendations and 
identification of the process benefits and drawbacks.  

D. Sensitivity Analysis 

The extraction efficiencies assumed in the process design 
for the chemical treatments with surfactant and hypochlorite 
were rather high, 88-95%, respectively. Although these values 
were based on laboratory experiments, in order to assess the 
robustness of the process against changes during the scale-up 
and practical implementation, additional case studies were 
investigated with reduced extraction efficiencies. The same 
approach and methodology as in the base case were followed 
to obtain economic and environmental results of the extra 
cases studied.  

IV. RESULTS AND DISCUSSION 

A. Process Design 

A schematic flow diagram of the fermentation and DSP 
designed are shown in Fig. 1. The global PHB recovery yield 
was 75.8% with a final product purity of 99.9%wt. 
Temperatures higher than 65°C were avoided in the process 
design because they may cause PHB degradation [18]. 
Consequently, air drying for water evaporation was considered 
as an alternative processing step.  
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