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Abstract—As the global climate changes, the threat from 

landslides and debris flows increases. Learning how a watershed 
initiates landslides under abnormal rainfall conditions and predicting 
landslide magnitude and frequency distribution is thus important. 
Landslides show a power-law distribution in the frequency-area 
distribution. The distribution curve shows an exponent gradient 1.0 in 
the Sandpile model test. Will the landslide frequency-area statistics 
show a distribution similar to the Sandpile model under extreme 
rainfall conditions? The purpose of the study is to identify the extreme 
rainfall-induced landslide frequency-area distribution in the Laonong 
River Basin in southern Taiwan. Results of the analysis show that a 
lower gradient of landslide frequency-area distribution could be 
attributed to the transportation and deposition of debris flow areas that 
are included in the landslide area. 
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I. INTRODUCTION 
HE term “extreme rainfall” has no widely accepted 
definition. Extreme rainfall events could be defined in 

several ways. For example, the mean annual number of days on 
which daily (24hrs) rainfall amount exceeds a given amount, 
the value associated with a specific daily rainfall percentile, or 
the annual maximum daily rainfall associated with a specific 
return period [1]. Defining extreme rainfall events as the total 
of 24 hrs of precipitation at one or more stations exceeding the 
50 yr recurrence amount is generally consistent with previous 
studies of heavy precipitation and flash floods from the United 
States in 1999-2003 [2]. 

Typhoon Morakot struck Taiwan on 7-10 August, 2009, 
bringing heavy rainfall and serious floods in southern Taiwan. 
These typhoon-induced disasters were attributed to its slow 
velocity, which led to long rainfall duration and high rainfall 
intensity [3]. The Alishan rain gauge station recorded historic 
highs in total cumulative rainfall, 1,624mm in 24hrs, 2,361mm 
in 48hrs, and a total amount of 2,884mm [4]. Typhoon Morakot 
was thus an extreme rainfall event (exceeding a 200yr 
recurrence amount at many rain gauge stations) causing severe 
floods, triggered landslides and debris flows throughout 
southern Taiwan [5].  

Landslides show a power-law distribution [6]–[11]. The 
linear trend of the landslide frequency-area curve for larger 
landslides in a power law (log-log plot) can be found through 
least-squares regression:  
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log N(A) = τlogA + S                               (1) 
 
where N(A) is the number of landslides of area A, τ is the slope 
of the line defining the relationship, and S is the slope intercept. 

The frequency-area distribution of historical landslides is 
calculated based on the derivative of the cumulative number 
(Nc) of landslides with an area greater than or equal to the value 
A and plotted as a function of the landslide area (A) [12]. The 
frequency density function is defined as [13]: 
 

f(A) = dNc/dA                                  (2) 
 

The fitting is performed according to the (−dNc/dA = bA−β) 
relationship, and the best-fit power-law model (log-log plot) is 
obtained by linear regression. 

The purpose of the study is to identify the features of 
rainfall-induced landslides and debris flows and their frequency 
and area distribution under extreme rainfall conditions. 

II. RAINFALL CHARACTERISTICS DURING TYPHOON MORAKOT 
Typhoon Morakot made landfall on August 7, 2009, causing 

severe flooding and landslides throughout southern Taiwan. 
The typhoon brought a maximum rainfall of 1,623mm/day 
during the 24 hours between 14:00, 8 August and 14:00, 9 
August, and a cumulative rainfall of 2,361mm for the 48 hours 
between 18:00 on 7 August to 18:00 on 9 August at the Alishan 
rain gauge station. The heaviest rainfall was distributed across 
Chiayi, Tainan, Kaohsiung, and Pingdong counties in the 
mountainous areas of southern Taiwan (Fig. 1). 

III. STUDY AREA AND METHODOLOGY 
The Laonong River Basin, the study area, is located in 

Kaohsiung County in southern Taiwan. The Laonong River 
itself has a length of 137km with basin area of 1,373km2, 
making it the second largest river watershed in Taiwan. The 
basin’s elevation ranges from 27m to 3,941m and it is divided 
into 76 sub-basins (Fig. 2). The Laonong basin in southern 
Taiwan has been documented by numerous studies [14] [15]. 
The basin experienced 2,300mm of rainfall during Typhoon 
Morakot. 

This study used SPOT 5 images. The river watershed was 
created using GIS and landslide and debris flow induced 
denuded areas were identified. The denuded areas were further 
separated into landslide- or debris flow-induced areas and their 
area calculated using GIS. A statistical analysis was conducted 
of the denuded areas and their frequency (number of landslides 
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The frequency-area distribution for Chi-Chi 
earthquake-induced larger landslides can be expressed as: 
 

ln(f) = -2.06ln(Ac)+5.79 (r2 = 93%) 
(Chi-Chi EQ)                                   (4) 

 

 
Fig. 5 Rain gauge stations, landslides, debris flows, and geologic 

conditions in the Laonong River Basin 
 

The critical exponent for cumulative frequency-area 
distribution is 1.0 in the Sandpile model [18], [19]. The 
exponent of the coseismic landslide frequency-area distribution 
of the Chi-Chi earthquake is 2.06 for the non-cumulative form 
and 1.06 for the cumulative form, both of which exceed the 
critical exponent. 

In general, a debris flow shows a larger denuded area than a 
landslide. The denuded areas interpreted from the SPOT image 
as debris flows include the source, transportation, and 
deposition areas. The debris flow areas displayed a lower 
gradient in the landslide frequency-area distribution. The lower 
gradient was affected by the debris flows (Fig. 6). 

VII. CONCLUSION 
Under extreme rainfall conditions, the landslide 

area-frequency distribution in a basin may be estimated by the 
Sandpile model with the critical slope of 1.0 for larger 
landslides in a power-law distribution. The lower gradient 
distribution is attributed to the compound area of the source 
landslides, transportation, and deposition areas in the debris 
flow affected areas. The type of land movement, landslide, 
debris flow, or rockfall, could affect the trend of the 
area-frequency distribution. The Sandpile model is used for 
landslides. It is thus necessary to separate landslide and debris 
flow areas for area-frequency distribution analysis. The 
landslide area-frequency under extreme rainfall conditions can 

be estimated by the Sandpile model with a critical slope 1.0 for 
larger landslides.   
 

 
Fig. 6 Debris flow interpretation in the study area after Typhoon 

Morakot 
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