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Abstract—The aim of this paper is to introduce the concepts of the
(A, w)-intuitionistic fuzzy subgroups and (A, p)-intuitionistic fuzzy
normal subgroups of groups with operators, and to investigate their
properties and characterizations based on M-group homomorphism.
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1. INTRODUCTION

HE fuzzy set is an effective generalization of the classical

set. In 1965, Zadeh [1] first raised the fuzzy set. In 1986,
the Bulgarian Scholar K. Atannassov [2] introduced the
intuitionistic fuzzy sets (IFS). After that, the two theories were
extensively applied to many mathematical fields. Based on the
two theories, W. X. Gu [3] raised the definition of fuzzy group
with operators; [4]-[6] researched intuitionistic fuzzy relations,
martingale theory and topological spaces; [7]-[10] studied
intuitionistic fuzzy subgroups and some properties are
discussed; [11] gave the definition of (A, x)— intuitionistic

fuzzy subgroups; [12] defined the (A, u) — intuitionistic fuzzy

implicative ideals of BCI-algebras.

At first, this paper gives the concepts of the (A,
W-intuitionistic fuzzy subgroups and (A, p)-intuitionistic fuzzy
normal subgroups of groups with operators. Secondly, it is
proven that A is a (A, p)-intuitionistic fuzzy subgroup or (A,
W-intuitionistic fuzzy normal subgroup of a group G with
operators if and only if cut sets of A are subgroup or normal
subgroup of G. Thirdly, some properties are discussed. Finally,
in the sense of M-group homomorphism between two classical
groups, the image and the preimage of the (A, p)-intuitionistic
fuzzy subgroups and (A, p)-intuitionistic fuzzy normal
subgroups of groups with operators are studied, which enriches
and expands the theory of the IFS and group.

II. PRELIMINARIES

In this paper, we always assume 0 <A<y <1.
Let IFG[G] and IFNG[G] be the intuitionistic fuzzy

subgroups and intuitionistic fuzzy normal subgroups of G .

Shaoquan Sun is with the College of Mathematics and Physics, Qingdao
University of Science and Technology, Qingdao, China (phone: 185-61681686;
e-mail: qdsunsaoquan@163.com).

Chunxiang Liu is with the College of Mathematics and Physics, Qingdao
University of Science and Technology, Qingdao, China (phone: 178-54204165;
e-mail: 15864025070@163.com).

Definition 1. [13] Let A: X —[0,1] be a mapping. If there
exist a € (0,1] and x € A such that

A y=x
A( )_ 0, y#Xx.

Then A is called a fuzzy point, and denoted by X, .

Definition 2. [2] Let X be any nonempty set. An intuitionistic
fuzzy subset A of X is an object of the following form

A= {<x,pA(x),vA(x)>\x E X}.

where 4, :X —[0,1] and v, :X —[0,1] define the degree of

membership and the degree of non-membership of the element
x € X respectively and for every x € X,

0< s, (X)+v,(x)<1.

Let IFS[X] be the IFS of X .
Definition 3. [2] Let X be any nonempty set, A,B € IFS[X]

and

A= {(x,yA(x),vA (x)>|x c X},
B= {<x,,uB (%).vg (x))[x e X}.

The rules and operations are as follows:
X)>|X IS X} ;

(
2. AUB = (%t (X) v 15 (%) v (x) Ave (x))x < x};
(% 5 i (). v, v, () e
<x, J_\E/J Ha, (X)’,QJ Va, (x)>|x € X}.
X

where A = {<X,ij (X),VAj (X)>|X € } e IFS[ X1,
j=1,2,---, J is the index sets.

Definition 4. [8] Let X, Y be any two nonempty sets and
f: X =Y beamapping. Let Ae IFS[X] and

A= {<x,,uA (x),vA (x)>|x € X}.
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Then F; : IFS[X | > IFS[Y ] and F, (A) are also the IFS of
Y, and

F ()= {0 R () 0).Fy () () v ¥}

where
F, (yA)(y):{sup{ﬂA(xﬂff:):y xex} :‘18;?2,
F, (VA)(y)_{inf{VA(X)|f (:): y,X € X}, :18;:&2,

Definition 5. [8] Let X, Y be any two nonempty sets and
f: X =Y beamapping. Let B € IFS[Y] and

B ={(¥. 5 (¥).vs (¥))|y €Y},

Then Fy' 1 IFS[Y]— IFS[X] and F{' (B) are also the IFS
of X , and

w7 (8) =i () (0.7 () (e ).

Definitions 4 and 5 are called the extension principle of IFS.
Denote (1) = {(a,b): a,be[0,1]}.
Definition 6. [12] Let A={<x,yA(x),vA(x)>:XE S} be an IFS
in a set S. For (a,p) (1), the set
A, =1xeS: 1, (X) 2 a,v,(x) < B} is called a cut set of A

Definition 7. [8] Let G be a group and

A={{xu0(x)v4(x))xex} € IFS[G].

If for VX,y € G,
1. yA(xy)z,uA(x)/\yA(y), vA(xy)st(x)va(y),
2. yA(X_l)Z ,uA(X), Va (X_I)S VA(X).

Then A is called the intuitionistic fuzzy subgroup of G .
Definition 8. [11] Let A= {<X, U (X),VA (x)>|x € G} be the
intuitionistic fuzzy subgroup of G. If for Vx,y € G,
1. yA(xy)v A= (yA(x)/\yA (y))Aﬂ,

va(xy)nu< (VA (X)vva (y))v 4,

—1 -1
2. ,uA(X )vﬂZIuA(X)/\,u, VA(X )/\ySVA(X)V/L
Then A is called the (A, 1) — intuitionistic fuzzy subgroup of
G.

Definition 9. [11] Let A={(x, 1, (x).v, (x))|x « G} be the
(A, u) — intuitionistic fuzzy subgroup of G . If for Vx,y € G,

N (ny_l)v A=, (y) AL, Va (ny_l)A UV, (y)v A.
Then A is called the (A, u)— intuitionistic fuzzy normal

subgroup of G.

Definition 10. [3] A group with operators in an algebraic
system consisting of a group, aset M and a function defined in
the product set M xG and having values in G such that, if
ma denotes the element in G determined by the element a of
G and the element m of M , then

m(ab) = (ma)(mb),

Holds for any a,b in G, m in M . We shall usually use the
phrase “Gis an M — group” to a group with operators.
Definition 11. [14] A subgroup A of M — group is said to be
an M — subgroup if mx in A for every m in M and X in
A.

Definition 12. [14] Let G, and G, bothbe M — groups, f be

a homomorphism from G, onto G,
f (mx):mf (x),me M,x eG,

Then f iscalled a M — homomorphism.
Proposition 1. [10] Let G be a M — group, e be the identity
element of G, and Ae IFG [G] Then for Vx € G,

Hp (X) < Up (e), VA(X) 2V, (e)

Proposition 2. [11] Let A:{<x,,uA(X),VA(X)>|XeG} be

the (A, ) — intuitionistic fuzzy subgroup of G and e be the
identity element. Then

,uA(e)V/IZ,uA(X)/\/J, VA(e)/\,uSvA(X)V/l.

Proposition 3. [11] Let A be the intuitionistic fuzzy subset.
Then A isa (A, u)— intuitionistic fuzzy subgroup of G iff for
VX, y eG,

2 (X7y)v A= (1 (%) n 224 (v)) A
VA(X’ly)/\,u < (VA (X)va(y))vﬂ.

Proposition 4. [11] Let A be the intuitionistic fuzzy subset.
Then A isa (A4, ) — intuitionistic fuzzy subgroup of G iff for

Va,p e (4, pw), A<aﬁ> is the subgroup when A<0lﬁ> # & , where
{@.p) € (1).
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Proposition 5. [11] Let f:G -G,

homomorphism of groups. If A be a (4, u)—

be a surjective
intuitionistic
fuzzy subgroup of G,, then f (A) is a (A, u) — intuitionistic
fuzzy subgroup of G, .

Proposition 6. [11] Let f : G, — G, be a homomorphism of
groups. If B bea (4, 1) — intuitionistic fuzzy subgroup of G,,
then ' (B) isa (A, u) — intuitionistic fuzzy subgroup of G, .
Proposition 7. [11] Let A be a (4, u)—
subgroup of G .Then A is a (A, u)— intuitionistic fuzzy

intuitionistic fuzzy
normal subgroup of G iff for Vx,y € G,

,uA(Xy)v/IZ,uA(yX)/\,u, VA(Xy)/\,uSvA(yX)vﬂ

Proposition 8. [I11] Let f:G, — G, be a surjective

homomorphism of groups. If A be a (A, 1) — intuitionistic
fuzzy normal subgroup of G, , then f(A) is a (4, u)-
intuitionistic fuzzy normal subgroup of G, .

Proposition 9. [11] Let f : G, - G, be a homomorphism of
groups. If B be a (A,u)— intuitionistic fuzzy normal
subgroup of G, , then f_l(B) is a (A, u)— intuitionistic

fuzzy normal subgroup of G, .

III. (A, u) — INTUITIONISTIC FUZZY SUBGROUPS OF GROUPS
WITH OPERATORS
Definition 13. Let G be a M — group and A be a (4, u) -
intuitionistic fuzzy subgroup. If for VX e G, me M,

,uA(mX)V/lz,uA(x)/\y, VA(mX)/\,uSVA(X)\/ﬂ.

Then A is called a (A4, ) — intuitionistic fuzzy subgroup of a
group G with operators, and denoted by a (4,u)— M —
intuitionistic fuzzy subgroup.

Let (4, u)— IFMG[G] be the (4, 4)— M — intuitionistic
fuzzy subgroups of M — group G.
Proposition 10. Let G be a M — group, Ae(4,u)—
IFMG[G] and e be the identity element of G . Then

,uA(me)v/lz;zA(X)/\,u, VA(me)/\,uSVA(X)V/l.

Proof. For Vxe G, me M,

Proposition 11. Let A be a (A, x)— intuitionistic fuzzy
subgroup of M — group G. Then A e (4, u)—- IFMG[G] iff
for Vx,ye G, me M,

my))v 4)v 2

/\,uA(my))/\,u)vl

Hp ( v/1 ,uA(mx

o (m(x”

Conversely, for Vxe G, me M, lety =e,

))vl)vﬂ
((ﬂ (mx") /\,uA(me))/\,u)v/l
(125 (me) v 2) A (12 (mx™") 2 1)
(tta (&) ) A (11a (x") 2 )
(&) A t2) (1 () A 1)

A
=ty (X) A p,

pa(m(xe))v 4= (#

\%

v

v
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Thus, Ae (4, u)— IFMG[G].
Proposition 12. Let A be a (A, u)— intuitionistic fuzzy
subgroup of M — group G. Then A e (4, x)—- IFMG[G] iff
for Ya,p e (4,u), A<a,ﬁ>
&m@ #, where (a,8) e (l).
Proof. For Va,p e (4, ),

is M — subgroup of G when

Xe A< when '%n/f) = .

a,ﬁ>
Therefore, 1, (X) Za, v, (X) < f. Then,

Hp ( ) ANUZa> A,
v ( )v/1<ﬂ<,u

We have u, (mx) >a, v, (mx) < p. Therefore, mx € A<a )"
Thus, A<{lﬁ> is M — subgroup of G when QW» .

Conversely, for Va,f € (4,u), we get the information
from Proposition 4 that A is a (A, u)— intuitionistic fuzzy
subgroup of group G . for VxeG, let
a =, (X)/\ U, p=v, (X)v A. Therefore, s, (X) > a,
va(x)< B, and xe A, .. And A, is M

G when A, ,#QD . Thus, mXeA<a!ﬁ,>.

Besides,

— subgroup of
We have
Hp (mx) Za, v, (mx) < f. And

yA(mX)viZazyA(X)/\y,
VA(mX)/\,uSﬂ:VA(X)V/I.

Thus, Ae (4, u)— IFMG[G].

Proposition 13. Let G be a M — group and A,B € (4, u) -

IFMG[G]. Then AN B e (4, 1)~ IFMG[G].
Proof. Let

VA(X)>|X I= G},
Vg (x)>|x € G}.

Then
ANB= {<X,,uA(X)/\,uB (X),VA(X)VVB

(X)>|X€G}‘
Let
Hpre (¥) = 11 (X) 1 115, (X). Vg (X) = v (X) v v ().

First, we provide that AN B is (A, ) — intuitionistic fuzzy
subgroup of M — group G . For VX, Yy € G, on the one hand,

,uA(Xy /\,uB )\//1
(yA(Xy A Ug Xy))vl)\//l
INCIN ) (#B (xy) v /1)

(
(
(
((oan ()~ 00 (9)) 2 22) A (1 () 5 15 () 2 1)
(#2a (
=(

/‘AmB V A=

I\

X)) (aa () 7 15 () 7 2

Hp~B ( A HpnB y)) A M-

pp (X) A g (

Similarly, Vg (XY) A 12 < (Vg (X)V Vi (V) V 4.
On the other hand,

Similarly, v,-g (X71 ) AUSVa g (X) v A. Thus, ANnB is
(A, u) — intuitionistic fuzzy subgroup of M — group G .Then
for vxe G, meM, ABe (4 u)- IFMG[G].

The following can be obtained from Definition 15. On the
one hand,

Harp (mx)vl = ((y (mx)/\yB (mx))vl)vl
(

On the other hand,
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Vang (MX) A p = ((vA(mx Vg mX))/\ﬂ)/\,u
(mx) 1) v (v (mx) A )

(va () v 2)v (v (x) v 2)
(x) X))M

(VA mx)

IN

va(x

Vane (X) v 2

Thus, AN B € (4, 1)~ IFMG[G].

Proposition 14. Let G,, G, beM —group, f :G, > G, be a
M — surjective homomorphism of groups, and A e (A4, i) —

IFMG[G,]. Then f (A) e (4, 1) - IFMG([G, |.

Proof. Let A= {<x,,uA (x),vA (x

information from Definition 4 that

)>|X€Gl}. We get the

f (A): {< y’/uf(A)(y)’Vf(A)(y) >Yye Gz}'

It is can be obtained from Proposition 5 that f (A) is (A, 1) —
intuitionistic fuzzy subgroup of G, .
Because f is M — surjective homomorphism, we have

f_l(y);t@ for Vy € G,, me M.For Vx e f_l(y), then

e f’l(y’l), f(mx): mf (x):my, X € f’l(y).

The following can be obtained from Definition 15. On the
one hand,

yA(mX)vl > yA(X)/\,u,

and

Hyny (my) v 2 = fS‘}I(’ )"‘A(X)V}L
xef~!(my

|

x 2
s
S
>
/\
v
g

\

A
f(;;;zmy s (M) v

= sup yA(mx')vﬂ

mf (x')=my
mx'eG,

[\

sup  fi, (x') AU
f(x)=y

X'eG,

= Hin) (y) s

On the other hand,

and

Thus, f(A)e (A 1)-IFMG[G,].
Proposition 15. Let G,, G, be M —group, f :G, - G, bea

M — surjective homomorphism of groups, and B € (4, u) —

IFMG[G, . Then f ' (B) e (4, 4) - IFMG[G, ].

Proof. Let B:{<y,,u5(y),VB(y

information from Definition 5 that

7 (8)={ (a1 (X)o7, 1

)>|yer}. We get the

)>|XEG1}.

It is can be obtained from Proposition 6 that £ (B) is
(A, ) — intuitionistic fuzzy subgroup of G, .

Because B € (4, i) — IFMG [Gz] , we have for Vx e G,
meM,
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Thus, ™' (B) e (4, 1)~ IFMG[G, ].

IV. (A, u) — INTUITIONISTIC FUZZY NORMAL SUBGROUPS OF
GROUPS WITH OPERATORS

Definition 14. Let G be aM — group, A e (4, ) — IFMG[G]
and A be a (A4, )— intuitionistic fuzzy normal subgroup.
Then A is called a (A4, u)— intuitionistic fuzzy normal

subgroup of a group G with operators, denoted by a
(A, #)— M — intuitionistic fuzzy normal subgroup.

Let (4, u4)— IFMNG[G] be the (4, ) — M — intuitionistic
fuzzy normal subgroups of M — group G.
Proposition 16. Let G be a M — group and Ae (4, u) -

IFMG[G]. Then A e (4, u)— IFMNG[G] iff for Vx,y e G,
meM,

yA(m Xy))v/i > 11, (m(yx))/\,u,
Va ANUSV,

(m(yx))v .

Proof. For VX,y e G, me M,

U (m (Xy)) VA=, (m(x(yx)x’l)) vA
= st ((mx)(m(yx)) () v 2

ZﬂA(m(yX))/\ﬂa

Va (m(xy)) A=V, (m(x(yx)x’l)) AU
= v ((mo)(m(y)) ()" A 1

< VA(m(yx))V/i.

Conversely, for Vxe G, me M, let y=e. We get the
information from Proposition 7 that A is a (4,u)—
intuitionistic fuzzy normal subgroup of G. Ae(4,u)-
IFMG[G], thus A e (4, ) - IFMNG[G].

Proposition 17. Let A be a (A, u)— intuitionistic fuzzy
subgroup of M — group G. Then A e (4, 1) — IFMNG[G] iff
for VX,ye G, me M,

1. yA(m(X_ly))V/IZ(,uA(mX)/\,uA(my))A,u,
VA(m(x’ly))/\,uS(VA(mX)va(my))vﬂ,.
2. py (m(xy))le,uA(m(yx))/\,u,

Va (m(xy)) AUESV, (m (yx)) v A
Proposition 18. Let A be a (A, x)— intuitionistic fuzzy
subgroup of M —group G. Then A e (4, u)— IFMNG[G] iff

for Va, e (4, p), A<W,> is M — normal subgroup of G
when '%-@ # &, where (a,4)(l).

Proof. We get the information from Proposition 12 that for
Va,p e (4, ), A<mﬂ> is M — subgroup of G when

'%Lﬂ) = . For VxeG, Vye A<aﬁ>, we have ,uA(y) >a,
Va (y) < f .Therefore,

yA(XyX*I)V/IZ,uA(y)/\,uZa/\,u>/1,

VA(nyil)/\,uSVA(y)VﬂSﬂ<,u.

Then, u, (xyx’l) >a, v, (xyx’l) < B, and xyx_1 € A<a,ﬁ>.

Thus, A<a 5

Conversely, we get the information from Proposition 12 that
Ae (A, u)— IFMG[G]. And for VX,y € G, me M, we have

is M —normal subgroup of G when A<(lﬁ> .

Ay (m(x’ly))v/l > (1 (mX) A 2 (my)) A 2,

Va (m(x’ly)) A< (VA (mx)v Va (my))v A.
If exist X, Y, € G, satisfying

,UA(X()yox(;l)\//1 < ,UA(VO)/\#,

VA(XOyOX(;l)/\/J 2V, (yo)v/l.

Let o= ,uA(yO)/\,u, p= VA(yO)v/l. Then y, e A<a’ﬂ>.
But XOyOX(;1 2 A<a 5)° it is in contradiction with A p is M -

normal subgroup of G . Therefore, for Vx,y € G,

/U/.\(ny_l)v/1 2 ,LIA(y)/\/l,

Va (xyx’l)/\y < vA(y)v/l.

Thus, Ae (4, x)— IFMNG[G].

The following proposition can be easily proved.
Proposition 19. Let G, ,G, be M —group, f:G, > G, be a
M — surjective homomorphism of groups, and A e (A4, i) —
IFMNGI[G, ]. Then f (A)e (4, 1) - IFMNG[G,].
Proposition 20. Let G,,G, beM —group, f :G, - G, be a
M — surjective homomorphism of groups, and B e (A4, i) —

IFMNGIG,]. Then ' (B) e (4, 4)— IFMNG[G, ].
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