ISSN: 2517-9934 Vol:10, No:9, 2016

# (λ, μ)-Intuitionistic Fuzzy Subgroups of Groups with Operators

Shaoquan Sun, Chunxiang Liu

**Abstract**—The aim of this paper is to introduce the concepts of the  $(\lambda, \mu)$ -intuitionistic fuzzy subgroups and  $(\lambda, \mu)$ -intuitionistic fuzzy normal subgroups of groups with operators, and to investigate their properties and characterizations based on M-group homomorphism.

**Keywords**—Intuitionistic fuzzy group,  $(\lambda, \mu)$ -intuitionistic fuzzy subgroup of groups with operators,  $(\lambda, \mu)$ -intuitionistic fuzzy normal subgroup of groups with operators, M-group homomorphism.

### I. INTRODUCTION

THE fuzzy set is an effective generalization of the classical set. In 1965, Zadeh [1] first raised the fuzzy set. In 1986, the Bulgarian Scholar K. Atannassov [2] introduced the intuitionistic fuzzy sets (IFS). After that, the two theories were extensively applied to many mathematical fields. Based on the two theories, W. X. Gu [3] raised the definition of fuzzy group with operators; [4]-[6] researched intuitionistic fuzzy relations, martingale theory and topological spaces; [7]-[10] studied intuitionistic fuzzy subgroups and some properties are discussed; [11] gave the definition of  $(\lambda, \mu)$  – intuitionistic fuzzy subgroups; [12] defined the  $(\lambda, \mu)$  – intuitionistic fuzzy implicative ideals of BCI-algebras.

At first, this paper gives the concepts of the  $(\lambda, \mu)$ -intuitionistic fuzzy subgroups and  $(\lambda, \mu)$ -intuitionistic fuzzy normal subgroups of groups with operators. Secondly, it is proven that A is a  $(\lambda, \mu)$ -intuitionistic fuzzy subgroup or  $(\lambda, \mu)$ -intuitionistic fuzzy normal subgroup of a group G with operators if and only if cut sets of A are subgroup or normal subgroup of G. Thirdly, some properties are discussed. Finally, in the sense of M-group homomorphism between two classical groups, the image and the preimage of the  $(\lambda, \mu)$ -intuitionistic fuzzy subgroups and  $(\lambda, \mu)$ -intuitionistic fuzzy normal subgroups of groups with operators are studied, which enriches and expands the theory of the IFS and group.

## II. PRELIMINARIES

In this paper, we always assume  $0 \le \lambda < \mu \le 1$ .

Let IFG[G] and IFNG[G] be the intuitionistic fuzzy subgroups and intuitionistic fuzzy normal subgroups of G.

Shaoquan Sun is with the College of Mathematics and Physics, Qingdao University of Science and Technology, Qingdao, China (phone: 185-61681686; e-mail: qdsunsaoquan@163.com).

Chunxiang Liu is with the College of Mathematics and Physics, Qingdao University of Science and Technology, Qingdao, China (phone: 178-54204165; e-mail: 15864025070@163.com).

**Definition 1.** [13] Let  $A: X \rightarrow [0,1]$  be a mapping. If there exist  $a \in (0,1]$  and  $x \in A$  such that

$$A(y) = \begin{cases} a, & y = x; \\ 0, & y \neq x. \end{cases}$$

Then A is called a fuzzy point, and denoted by  $x_a$ .

**Definition 2.** [2] Let X be any nonempty set. An intuitionistic fuzzy subset A of X is an object of the following form

$$A = \left\{ \left\langle x, \mu_A(x), \nu_A(x) \right\rangle \middle| x \in X \right\}.$$

where  $\mu_A: X \to [0,1]$  and  $\nu_A: X \to [0,1]$  define the degree of membership and the degree of non-membership of the element  $x \in X$  respectively and for every  $x \in X$ ,

$$0 \le \mu_A(x) + \nu_A(x) \le 1$$
.

Let IFS[X] be the IFS of X.

**Definition 3.** [2] Let X be any nonempty set,  $A, B \in IFS[X]$  and

$$A = \left\{ \left\langle x, \mu_A \left( x \right), \nu_A \left( x \right) \right\rangle \middle| x \in X \right\},$$

$$B = \left\{ \left\langle x, \mu_B \left( x \right), \nu_B \left( x \right) \right\rangle \middle| x \in X \right\}.$$

The rules and operations are as follows:

1. 
$$A \cap B = \left\{ \left\langle x, \mu_A(x) \wedge \mu_B(x), \nu_A(x) \vee \nu_B(x) \right\rangle \middle| x \in X \right\};$$

2. 
$$A \cup B = \left\{ \left\langle x, \mu_A(x) \lor \mu_B(x), \nu_A(x) \land \nu_B(x) \right\rangle \middle| x \in X \right\};$$

3. 
$$\bigcap_{j \in J} A_j = \left\{ \left\langle x, \bigwedge_{j \in J} \mu_{A_j}(x), \bigvee_{j \in J} \nu_{A_j}(x) \right\rangle \middle| x \in X \right\};$$

4. 
$$\bigcup_{j \in J} A_j = \left\{ \left\langle x, \bigvee_{j \in J} \mu_{A_j}(x), \bigwedge_{j \in J} \nu_{A_j}(x) \right\rangle \middle| x \in X \right\}.$$

where 
$$A_j = \left\{ \left\langle x, \mu_{A_j}(x), \nu_{A_j}(x) \right\rangle \middle| x \in X \right\} \in IFS[X],$$

 $j = 1, 2, \dots, J$  is the index sets.

**Definition 4.** [8] Let X, Y be any two nonempty sets and  $f: X \to Y$  be a mapping. Let  $A \in IFS[X]$  and

$$A = \left\{ \left\langle x, \mu_{A}(x), \nu_{A}(x) \right\rangle \middle| x \in X \right\}.$$

ISSN: 2517-9934 Vol:10, No:9, 2016

Then  $F_f: IFS[X] \to IFS[Y]$  and  $F_f(A)$  are also the IFS of Y, and

$$F_f(A) = \left\{ \left\langle y, F_f(\mu_A)(y), F_f(\nu_A)(y) \right\rangle y \in Y \right\}.$$

where

$$F_{f}(\mu_{A})(y) = \begin{cases} \sup \left\{ \mu_{A}(x) \middle| f(x) = y, x \in X \right\}, & f^{-1}(y) \neq \emptyset; \\ 0, & f^{-1}(y) = \emptyset. \end{cases}$$

$$F_{f}(\nu_{A})(y) = \begin{cases} \inf \left\{ \nu_{A}(x) \middle| f(x) = y, x \in X \right\}, & f^{-1}(y) \neq \emptyset; \\ 1, & f^{-1}(y) = \emptyset. \end{cases}$$

**Definition 5.** [8] Let X, Y be any two nonempty sets and  $f: X \to Y$  be a mapping. Let  $B \in IFS[Y]$  and

$$B = \left\{ \left\langle y, \mu_B \left( y \right), \nu_B \left( y \right) \right\rangle \middle| y \in Y \right\}.$$

Then  $F_f^{-1}:IFS\big[Y\big]\to IFS\big[X\big]$  and  $F_f^{-1}\big(B\big)$  are also the IFS of X , and

$$F_f^{-1}\left(B\right) = \left\{\left\langle x, F_f^{-1}\left(\mu_B\right)\left(x\right), F_f^{-1}\left(\nu_B\right)\left(x\right)\right\rangle \middle| x \in X\right\}.$$

Definitions 4 and 5 are called the extension principle of IFS. Denote  $\langle I \rangle = \{\langle a,b \rangle: a,b \in [0,1]\}$ .

**Definition 6.** [12] Let  $A = \{\langle x, \mu_A(x), \nu_A(x) \rangle : x \in S \}$  be an IFS in a set S. For  $\langle \alpha, \beta \rangle \in \langle I \rangle$ , the set  $A_{\langle \alpha, \beta \rangle} = \{x \in S : \mu_A(x) \geq \alpha, \nu_A(x) \leq \beta \}$  is called a cut set of A.

**Definition 7.** [8] Let G be a group and

$$A = \left\{ \left\langle x, \mu_A(x), \nu_A(x) \right\rangle \middle| x \in X \right\} \in IFS[G].$$

If for  $\forall x, y \in G$ ,

$$1. \ \mu_{A}\left(xy\right) \geq \mu_{A}\left(x\right) \wedge \mu_{A}\left(y\right), \ \nu_{A}\left(xy\right) \leq \nu_{A}\left(x\right) \vee \nu_{A}\left(y\right),$$

2. 
$$\mu_A(x^{-1}) \ge \mu_A(x), \nu_A(x^{-1}) \le \nu_A(x).$$

Then A is called the intuitionistic fuzzy subgroup of G.

**Definition 8.** [11] Let  $A = \{\langle x, \mu_A(x), \nu_A(x) \rangle | x \in G\}$  be the intuitionistic fuzzy subgroup of G. If for  $\forall x, y \in G$ ,

1. 
$$\mu_A(xy) \lor \lambda \ge (\mu_A(x) \land \mu_A(y)) \land \mu$$
,

$$v_A(xy) \wedge \mu \leq (v_A(x) \vee v_A(y)) \vee \lambda,$$

2. 
$$\mu_A\left(x^{-1}\right) \lor \lambda \ge \mu_A\left(x\right) \land \mu, \ \nu_A\left(x^{-1}\right) \land \mu \le \nu_A\left(x\right) \lor \lambda.$$

Then A is called the  $(\lambda, \mu)$  – intuitionistic fuzzy subgroup of G .

**Definition 9.** [11] Let  $A = \{\langle x, \mu_A(x), \nu_A(x) \rangle | x \in G \}$  be the  $(\lambda, \mu)$  – intuitionistic fuzzy subgroup of G. If for  $\forall x, y \in G$ ,

$$\mu_{A}\left(xyx^{-1}\right) \lor \lambda \ge \mu_{A}\left(y\right) \land \mu, \ \nu_{A}\left(xyx^{-1}\right) \land \mu \le \nu_{A}\left(y\right) \lor \lambda.$$

Then A is called the  $(\lambda, \mu)$  – intuitionistic fuzzy normal subgroup of G .

**Definition 10.** [3] A group with operators in an algebraic system consisting of a group, a set M and a function defined in the product set  $M \times G$  and having values in G such that, if ma denotes the element in G determined by the element a of G and the element m of M, then

$$m(ab) = (ma)(mb),$$

Holds for any a,b in G, m in M. We shall usually use the phrase "G is an M – group" to a group with operators.

**Definition 11.** [14] A subgroup A of M – group is said to be an M – subgroup if mx in A for every m in M and x in A.

**Definition 12.** [14] Let  $G_1$  and  $G_2$  both be M – groups, f be a homomorphism from  $G_1$  onto  $G_2$ 

$$f(mx) = mf(x), m \in M, x \in G,$$

Then f is called a M – homomorphism.

**Proposition 1.** [10] Let G be a M – group, e be the identity element of G, and  $A \in IFG[G]$ . Then for  $\forall x \in G$ ,

$$\mu_A(x) \le \mu_A(e), \ \nu_A(x) \ge \nu_A(e).$$

**Proposition 2.** [11] Let  $A = \{\langle x, \mu_A(x), \nu_A(x) \rangle | x \in G\}$  be the  $(\lambda, \mu)$  – intuitionistic fuzzy subgroup of G and e be the identity element. Then

$$\mu_{A}\left(e\right)\vee\lambda\geq\mu_{A}\left(x\right)\wedge\mu,\,\nu_{A}\left(e\right)\wedge\mu\leq\nu_{A}\left(x\right)\vee\lambda.$$

**Proposition 3.** [11] Let A be the intuitionistic fuzzy subset. Then A is a  $(\lambda, \mu)$  – intuitionistic fuzzy subgroup of G iff for  $\forall x, y \in G$ ,

$$\mu_{A}\left(x^{-1}y\right) \vee \lambda \geq \left(\mu_{A}\left(x\right) \wedge \mu_{A}\left(y\right)\right) \wedge \mu,$$

$$\nu_{A}\left(x^{-1}y\right) \wedge \mu \leq \left(\nu_{A}\left(x\right) \vee \nu_{A}\left(y\right)\right) \vee \lambda.$$

**Proposition 4.** [11] Let A be the intuitionistic fuzzy subset. Then A is a  $(\lambda, \mu)$  – intuitionistic fuzzy subgroup of G iff for  $\forall \alpha, \beta \in (\lambda, \mu), \ A_{\langle \alpha, \beta \rangle}$  is the subgroup when  $A_{\langle \alpha, \beta \rangle} \neq \emptyset$ , where  $\langle \alpha, \beta \rangle \in \langle I \rangle$ .

Vol:10, No:9, 2016

**Proposition 5.** [11] Let  $f: G_1 \to G_2$  be a surjective homomorphism of groups. If A be a  $(\lambda, \mu)$  – intuitionistic fuzzy subgroup of  $G_1$ , then f(A) is a  $(\lambda, \mu)$  – intuitionistic fuzzy subgroup of  $G_2$ .

**Proposition 6.** [11] Let  $f:G_1 \to G_2$  be a homomorphism of groups. If B be a  $(\lambda, \mu)$  – intuitionistic fuzzy subgroup of  $G_2$ , then  $f^{-1}(B)$  is a  $(\lambda, \mu)$  – intuitionistic fuzzy subgroup of  $G_1$ . **Proposition 7.** [11] Let A be a  $(\lambda, \mu)$  – intuitionistic fuzzy subgroup of G. Then A is a  $(\lambda, \mu)$  – intuitionistic fuzzy normal subgroup of G iff for  $\forall x, y \in G$ ,

$$\mu_A(xy) \lor \lambda \ge \mu_A(yx) \land \mu, \ \nu_A(xy) \land \mu \le \nu_A(yx) \lor \lambda.$$

**Proposition 8.** [11] Let  $f: G_1 \to G_2$  be a surjective homomorphism of groups. If A be a  $(\lambda, \mu)$  – intuitionistic fuzzy normal subgroup of  $G_1$ , then f(A) is a  $(\lambda, \mu)$  – intuitionistic fuzzy normal subgroup of  $G_2$ .

**Proposition 9.** [11] Let  $f:G_1 \to G_2$  be a homomorphism of groups. If B be a  $(\lambda,\mu)$  – intuitionistic fuzzy normal subgroup of  $G_2$ , then  $f^{-1}(B)$  is a  $(\lambda,\mu)$  – intuitionistic fuzzy normal subgroup of  $G_1$ .

# III. $(\lambda,\mu)$ – Intuitionistic Fuzzy Subgroups of Groups with Operators

**Definition 13.** Let G be a M – group and A be a  $(\lambda, \mu)$  – intuitionistic fuzzy subgroup. If for  $\forall x \in G, m \in M$ ,

$$\mu_{A}\left(mx\right)\vee\lambda\geq\mu_{A}\left(x\right)\wedge\mu,\ \nu_{A}\left(mx\right)\wedge\mu\leq\nu_{A}\left(x\right)\vee\lambda.$$

Then A is called a  $(\lambda, \mu)$  – intuitionistic fuzzy subgroup of a group G with operators, and denoted by a  $(\lambda, \mu)$  – M – intuitionistic fuzzy subgroup.

Let  $(\lambda, \mu)$  – IFMG[G] be the  $(\lambda, \mu)$  – M – intuitionistic fuzzy subgroups of M – group G.

**Proposition 10.** Let G be a M – group,  $A \in (\lambda, \mu)$  – IFMG[G] and e be the identity element of G. Then

$$\mu_A(me) \lor \lambda \ge \mu_A(x) \land \mu, \ v_A(me) \land \mu \le v_A(x) \lor \lambda.$$

**Proof.** For  $\forall x \in G, m \in M$ .

$$\mu_{A}(me) \lor \lambda \ge \mu_{A}(e) \land \mu \ge \mu_{A}(x) \land \mu,$$

$$v_{A}(me) \land \mu \le v_{A}(e) \lor \lambda \le v_{A}(x) \lor \lambda.$$

**Proposition 11.** Let A be a  $(\lambda, \mu)$  – intuitionistic fuzzy subgroup of M – group G. Then  $A \in (\lambda, \mu)$  – IFMG[G] iff for  $\forall x, y \in G, m \in M$ ,

$$\mu_{A}\left(m\left(x^{-1}y\right)\right) \vee \lambda \geq \left(\mu_{A}\left(mx\right) \wedge \mu_{A}\left(my\right)\right) \wedge \mu,$$

$$\nu_{A}\left(m\left(x^{-1}y\right)\right) \wedge \mu \leq \left(\nu_{A}\left(mx\right) \vee \nu_{A}\left(my\right)\right) \vee \lambda.$$

**Proof.** For  $\forall x, y \in G, m \in M$ ,

$$\mu_{A}\left(m\left(x^{-1}y\right)\right) \vee \lambda = \left(\mu_{A}\left(\left(mx^{-1}\right)\left(my\right)\right) \vee \lambda\right) \vee \lambda$$

$$\geq \left(\left(\mu_{A}\left(mx^{-1}\right) \wedge \mu_{A}\left(my\right)\right) \wedge \mu\right) \vee \lambda$$

$$= \left(\mu_{A}\left(mx^{-1}\right) \vee \lambda\right) \wedge \mu_{A}\left(my\right) \wedge \mu$$

$$= \left(\mu_{A}\left(mx\right)^{-1} \vee \lambda\right) \wedge \mu_{A}\left(my\right) \wedge \mu$$

$$\geq \left(\mu_{A}\left(mx\right) \wedge \mu\right) \wedge \mu_{A}\left(my\right) \wedge \mu$$

$$= \left(\mu_{A}\left(mx\right) \wedge \mu\right) \wedge \mu_{A}\left(my\right) \wedge \mu$$

$$= \left(\mu_{A}\left(mx\right) \wedge \mu\right) \wedge \mu_{A}\left(my\right) \wedge \mu$$

$$\begin{aligned} v_{A}\left(m\left(x^{-1}y\right)\right) \wedge \mu &= \left(v_{A}\left(\left(mx^{-1}\right)\left(my\right)\right) \wedge \mu\right) \wedge \mu \\ &\leq \left(\left(v_{A}\left(mx^{-1}\right) \vee v_{A}\left(my\right)\right) \vee \lambda\right) \wedge \mu \\ &= \left(v_{A}\left(mx^{-1}\right) \wedge \mu\right) \vee v_{A}\left(my\right) \vee \lambda \\ &= \left(v_{A}\left(mx\right)^{-1} \wedge \mu\right) \vee v_{A}\left(my\right) \vee \lambda \\ &\leq \left(v_{A}\left(mx\right) \vee \lambda\right) \vee v_{A}\left(my\right) \vee \lambda \\ &= \left(v_{A}\left(mx\right) \vee v_{A}\left(my\right)\right) \vee \lambda. \end{aligned}$$

Conversely, for  $\forall x \in G, m \in M$ , let y = e,

$$\mu_{A}(m(xe)) \vee \lambda = \left(\mu_{A}\left(m\left(\left(x^{-1}\right)^{-1}e\right)\right) \vee \lambda\right) \vee \lambda$$

$$\geq \left(\left(\mu_{A}\left(mx^{-1}\right) \wedge \mu_{A}\left(me\right)\right) \wedge \mu\right) \vee \lambda$$

$$= \left(\mu_{A}\left(me\right) \vee \lambda\right) \wedge \left(\mu_{A}\left(mx^{-1}\right) \wedge \mu\right)$$

$$\geq \left(\mu_{A}\left(e\right) \wedge \mu\right) \wedge \left(\mu_{A}\left(x^{-1}\right) \wedge \mu\right)$$

$$\geq \left(\mu_{A}\left(e\right) \wedge \mu\right) \wedge \left(\mu_{A}\left(x\right) \wedge \mu\right)$$

$$= \mu_{A}(x) \wedge \mu,$$

ISSN: 2517-9934

Vol:10, No:9, 2016

$$\begin{split} v_{A}\left(m\left(xe\right)\right) \wedge \mu &= \left(v_{A}\left(m\left(\left(x^{-1}\right)^{-1}e\right)\right) \wedge \mu\right) \wedge \mu \\ &\leq \left(\left(v_{A}\left(mx^{-1}\right) \wedge v_{A}\left(me\right)\right) \vee \lambda\right) \wedge \mu \\ &= \left(v_{A}\left(me\right) \wedge \mu\right) \vee \left(v_{A}\left(mx^{-1}\right) \vee \lambda\right) \\ &\leq \left(v_{A}\left(e\right) \vee \lambda\right) \vee \left(v_{A}\left(x^{-1}\right) \vee \lambda\right) \\ &\leq \left(v_{A}\left(e\right) \vee \lambda\right) \vee \left(v_{A}\left(x\right) \vee \lambda\right) \\ &= v_{A}\left(x\right) \vee \lambda. \end{split}$$

Thus,  $A \in (\lambda, \mu) - IFMG[G]$ .

**Proposition 12.** Let A be a  $(\lambda, \mu)$  – intuitionistic fuzzy subgroup of M – group G. Then  $A \in (\lambda, \mu)$  – IFMG[G] iff for  $\forall \alpha, \beta \in (\lambda, \mu)$ ,  $A_{(\alpha, \beta)}$  is M – subgroup of G when  $A_{\langle \alpha, \beta \rangle} \neq \emptyset$ , where  $\langle \alpha, \beta \rangle \in \langle I \rangle$ .

**Proof.** For  $\forall \alpha, \beta \in (\lambda, \mu)$ ,  $x \in A_{\langle \alpha, \beta \rangle}$  when  $A_{\langle \alpha, \beta \rangle} \neq \emptyset$ . Therefore,  $\mu_A(x) \ge \alpha$ ,  $\nu_A(x) \le \beta$ . Then,

$$\mu_{A}(mx) \lor \lambda \ge \mu_{A}(x) \land \mu \ge \alpha > \lambda,$$
  
$$\nu_{A}(mx) \land \mu \le \nu_{A}(x) \lor \lambda \le \beta < \mu.$$

We have  $\mu_A(mx) \ge \alpha$ ,  $\nu_A(mx) \le \beta$ . Therefore,  $mx \in A_{(\alpha,\beta)}$ . Thus,  $A_{(\alpha,\beta)}$  is M – subgroup of G when  $A_{(\alpha,\beta)} \neq \emptyset$ .

Conversely, for  $\forall \alpha, \beta \in (\lambda, \mu)$ , we get the information from Proposition 4 that A is a  $(\lambda, \mu)$  – intuitionistic fuzzy subgroup of group G. Besides, for  $\forall x \in G$ , let  $\alpha = \mu_A(x) \wedge \mu$ ,  $\beta = \nu_A(x) \vee \lambda$ . Therefore,  $\mu_A(x) \ge \alpha$ ,  $\nu_{A}\left(x\right) \leq \beta$ , and  $x \in A_{\langle \alpha, \beta \rangle}$ . And  $A_{\langle \alpha, \beta \rangle}$  is M – subgroup of G when  $A_{(\alpha,\beta)} \neq \emptyset$  . Thus,  $mx \in A_{(\alpha,\beta)}$ . We have  $\mu_A(mx) \ge \alpha, v_A(mx) \le \beta$ . And

$$\mu_{A}(mx) \lor \lambda \ge \alpha = \mu_{A}(x) \land \mu,$$
  
$$\nu_{A}(mx) \land \mu \le \beta = \nu_{A}(x) \lor \lambda.$$

Thus,  $A \in (\lambda, \mu) - IFMG[G]$ .

**Proposition 13.** Let G be a M – group and  $A, B \in (\lambda, \mu)$  – IFMG[G]. Then  $A \cap B \in (\lambda, \mu) - IFMG[G]$ .

Proof. Let

$$A = \left\{ \left\langle x, \mu_A(x), \nu_A(x) \right\rangle \middle| x \in G \right\},$$

$$B = \left\{ \left\langle x, \mu_B(x), \nu_B(x) \right\rangle \middle| x \in G \right\}.$$

$$A \cap B = \left\{ \left\langle x, \mu_A(x) \wedge \mu_B(x), \nu_A(x) \vee \nu_B(x) \right\rangle \middle| x \in G \right\}.$$

$$\mu_{A \cap B}(x) = \mu_A(x) \wedge \mu_B(x), \ \nu_{A \cap B}(x) = \nu_A(x) \vee \nu_B(x).$$

First, we provide that  $A \cap B$  is  $(\lambda, \mu)$  – intuitionistic fuzzy subgroup of M – group G. For  $\forall x, y \in G$ , on the one hand,

$$\begin{split} \mu_{A \cap B} \left( xy \right) \vee \lambda &= \left( \mu_{A} \left( xy \right) \wedge \mu_{B} \left( xy \right) \right) \vee \lambda \\ &= \left( \left( \mu_{A} \left( xy \right) \wedge \mu_{B} \left( xy \right) \right) \vee \lambda \right) \vee \lambda \\ &= \left( \mu_{A} \left( xy \right) \vee \lambda \right) \wedge \left( \mu_{B} \left( xy \right) \vee \lambda \right) \\ &\geq \left( \left( \mu_{A} \left( x \right) \wedge \mu_{A} \left( y \right) \right) \wedge \mu \right) \wedge \left( \left( \mu_{B} \left( x \right) \wedge \mu_{B} \left( y \right) \right) \wedge \mu \right) \\ &= \left( \mu_{A} \left( x \right) \wedge \mu_{B} \left( x \right) \right) \wedge \left( \mu_{A} \left( y \right) \wedge \mu_{B} \left( y \right) \right) \wedge \mu \\ &= \left( \mu_{A \cap B} \left( x \right) \wedge \mu_{A \cap B} \left( y \right) \right) \wedge \mu. \end{split}$$

Similarly,  $v_{A \cap B}(xy) \wedge \mu \leq (v_{A \cap B}(x) \vee v_{A \cap B}(y)) \vee \lambda$ . On the other hand,

$$\mu_{A \cap B} \left( x^{-1} \right) \vee \lambda = \left( \mu_A \left( x^{-1} \right) \wedge \mu_B \left( x^{-1} \right) \right) \vee \lambda$$

$$= \left( \left( \mu_A \left( x^{-1} \right) \wedge \mu_B \left( x^{-1} \right) \right) \vee \lambda \right) \vee \lambda$$

$$= \left( \mu_A \left( x^{-1} \right) \vee \lambda \right) \wedge \left( \mu_B \left( x^{-1} \right) \vee \lambda \right)$$

$$\geq \left( \mu_A \left( x \right) \wedge \mu \right) \wedge \left( \mu_B \left( x \right) \wedge \mu \right)$$

$$= \left( \mu_A \left( x \right) \wedge \mu_B \left( x \right) \right) \wedge \mu$$

$$= \mu_{A \cap B} \left( x \right) \wedge \mu.$$

Similarly,  $v_{A \cap B}(x^{-1}) \wedge \mu \leq v_{A \cap B}(x) \vee \lambda$ . Thus,  $A \cap B$  is  $(\lambda, \mu)$  – intuitionistic fuzzy subgroup of M – group G. Then for  $\forall x \in G$ ,  $m \in M$ ,  $A, B \in (\lambda, \mu)$  – IFMG[G].

The following can be obtained from Definition 15. On the one hand.

$$\mu_{A \cap B}(mx) \vee \lambda = ((\mu_A(mx) \wedge \mu_B(mx)) \vee \lambda) \vee \lambda$$

$$= (\mu_A(mx) \vee \lambda) \wedge (\mu_B(mx) \vee \lambda)$$

$$\geq (\mu_A(x) \wedge \mu) \wedge (\mu_B(x) \wedge \mu)$$

$$= (\mu_A(x) \wedge \mu_B(x)) \wedge \mu$$

$$= \mu_{A \cap B}(x) \wedge \mu.$$

On the other hand,

Vol:10, No:9, 2016

$$\begin{split} v_{A \cap B} \left( mx \right) \wedge \mu &= \left( \left( v_A \left( mx \right) \vee v_B \left( mx \right) \right) \wedge \mu \right) \wedge \mu \\ &= \left( v_A \left( mx \right) \wedge \mu \right) \vee \left( v_B \left( mx \right) \wedge \mu \right) \\ &\leq \left( v_A \left( x \right) \vee \lambda \right) \vee \left( v_B \left( x \right) \vee \lambda \right) \\ &= \left( v_A \left( x \right) \vee v_B \left( x \right) \right) \vee \lambda \\ &= v_{A \cap B} \left( x \right) \vee \lambda. \end{split}$$

Thus,  $A \cap B \in (\lambda, \mu) - IFMG[G]$ .

**Proposition 14.** Let  $G_1$ ,  $G_2$  be M – group,  $f:G_1 \to G_2$  be a M – surjective homomorphism of groups, and  $A \in (\lambda, \mu)$  –  $IFMG[G_1]$ . Then  $f(A) \in (\lambda, \mu) - IFMG[G_2]$ .

**Proof.** Let  $A = \{\langle x, \mu_A(x), \nu_A(x) \rangle | x \in G_1 \}$ . We get the information from Definition 4 that

$$f\left(A\right) = \left\{ < y, \mu_{f\left(A\right)}\left(y\right), \nu_{f\left(A\right)}\left(y\right) > y \in G_2 \right\}.$$

It is can be obtained from Proposition 5 that f(A) is  $(\lambda, \mu)$  – intuitionistic fuzzy subgroup of  $G_2$ .

Because f is M – surjective homomorphism, we have  $f^{-1}(y) \neq \emptyset$  for  $\forall y \in G_2, m \in M$ . For  $\forall x \in f^{-1}(y)$ , then

$$x^{-1} \in f^{-1}(y^{-1}), f(mx) = mf(x) = my, x \in f^{-1}(y).$$

The following can be obtained from Definition 15. On the one hand.

$$\mu_A(mx) \lor \lambda \ge \mu_A(x) \land \mu$$

and

$$\mu_{f(A)}(my) \vee \lambda = \sup_{x \in f^{-1}(my)} \mu_A(x) \vee \lambda$$

$$= \sup_{f(x)=my} \mu_A(x) \vee \lambda$$

$$\geq \sup_{f(mx')=my} \mu_A(mx') \vee \lambda$$

$$= \sup_{mf(x')=my} \mu_A(mx') \vee \lambda$$

$$\geq \sup_{mx' \in G_1} \mu_A(x') \wedge \mu$$

$$= \sup_{f(x')=y} \mu_A(x') \wedge \mu$$

$$= \mu_{f(A)}(y) \wedge \mu.$$

On the other hand,

$$v_{A}\left(mx\right)\wedge\mu\leq v_{A}\left(x\right)\vee\lambda,$$

and

$$v_{f(A)}(my) \wedge \mu = \inf_{x \in f^{-1}(my)} v_A(x) \wedge \mu$$

$$= \inf_{f(x)=my} v_A(x) \wedge \mu$$

$$\leq \inf_{f(mx')=my} v_A(mx') \wedge \mu$$

$$= \inf_{mf(x')=my} v_A(mx') \wedge \mu$$

$$= \inf_{mf(x')=my} v_A(x') \wedge \mu$$

$$\leq \inf_{f(x')=y} v_A(x') \wedge \lambda$$

$$= v_{f(A)}(y) \vee \lambda.$$

Thus,  $f(A) \in (\lambda, \mu) - IFMG[G_2]$ .

**Proposition 15.** Let  $G_1$ ,  $G_2$  be M – group,  $f:G_1 \to G_2$  be a M – surjective homomorphism of groups, and  $B \in (\lambda, \mu)$  –  $IFMG[G_2]$ . Then  $f^{-1}(B) \in (\lambda, \mu)$  –  $IFMG[G_1]$ .

**Proof.** Let  $B = \{\langle y, \mu_B(y), \nu_B(y) \rangle | y \in G_2 \}$ . We get the information from Definition 5 that

$$f^{-1}\left(B\right) = \left\{\left\langle x, \mu_{f^{-1}\left(B\right)}\left(x\right), \nu_{f^{-1}\left(B\right)}\left(x\right)\right\rangle \middle| x \in G_{1}\right\}.$$

It is can be obtained from Proposition 6 that  $f^{-1}(B)$  is  $(\lambda, \mu)$  – intuitionistic fuzzy subgroup of  $G_1$ .

Because  $B \in (\lambda, \mu) - IFMG[G_2]$ , we have for  $\forall x \in G_1$ ,  $m \in M$ ,

$$\mu_{f^{-1}(B)}(mx) \vee \lambda = \mu_{B}(f(mx)) \vee \lambda$$

$$= \mu_{B}(mf(x)) \vee \lambda$$

$$\geq \mu_{B}(f(x)) \wedge \mu$$

$$= \mu_{f^{-1}(B)}(x) \wedge \mu.$$

$$v_{f^{-1}(B)}(mx) \wedge \mu = v_{B}(f(mx)) \wedge \mu$$

$$= v_{B}(mf(x)) \wedge \mu$$

$$\leq v_{B}(f(x)) \vee \lambda$$

$$= v_{f^{-1}(B)}(x) \vee \lambda.$$

ISSN: 2517-9934 Vol:10, No:9, 2016

Thus, 
$$f^{-1}(B) \in (\lambda, \mu) - IFMG[G_1]$$
.

IV.  $(\lambda, \mu)$  – Intuitionistic Fuzzy Normal Subgroups of Groups with Operators

**Definition 14.** Let G be a M – group,  $A \in (\lambda, \mu)$  – IFMG[G] and A be a  $(\lambda, \mu)$  – intuitionistic fuzzy normal subgroup. Then A is called a  $(\lambda, \mu)$  – intuitionistic fuzzy normal subgroup of a group G with operators, denoted by a  $(\lambda, \mu)$  – M – intuitionistic fuzzy normal subgroup.

Let  $(\lambda, \mu)$  – IFMNG[G] be the  $(\lambda, \mu)$  – M – intuitionistic fuzzy normal subgroups of M – group G.

**Proposition 16.** Let G be a M – group and  $A \in (\lambda, \mu)$  – IFMG[G]. Then  $A \in (\lambda, \mu)$  – IFMNG[G] iff for  $\forall x, y \in G$ ,  $m \in M$ ,

$$\mu_{A}\left(m\left(xy\right)\right) \vee \lambda \geq \mu_{A}\left(m\left(yx\right)\right) \wedge \mu,$$

$$\nu_{A}\left(m\left(xy\right)\right) \wedge \mu \leq \nu_{A}\left(m\left(yx\right)\right) \vee \lambda.$$

**Proof.** For  $\forall x, y \in G, m \in M$ ,

$$\begin{split} \mu_{A}\left(m\left(xy\right)\right) \vee \lambda &= \mu_{A}\left(m\left(x(yx)x^{-1}\right)\right) \vee \lambda \\ &= \mu_{A}\left((mx)\left(m(yx)\right)(mx)^{-1}\right) \vee \lambda \\ &\geq \mu_{A}\left(m\left(yx\right)\right) \wedge \mu, \end{split}$$

$$v_{A}(m(xy)) \wedge \mu = v_{A}(m(x(yx)x^{-1})) \wedge \mu$$
$$= v_{A}((mx)(m(yx))(mx)^{-1}) \wedge \mu$$
$$\leq v_{A}(m(yx)) \vee \lambda.$$

Conversely, for  $\forall x \in G$ ,  $m \in M$ , let y = e. We get the information from Proposition 7 that A is a  $(\lambda, \mu)$  – intuitionistic fuzzy normal subgroup of G.  $A \in (\lambda, \mu)$  – IFMG[G], thus  $A \in (\lambda, \mu)$  – IFMNG[G].

**Proposition 17.** Let A be a  $(\lambda, \mu)$  – intuitionistic fuzzy subgroup of M – group G. Then  $A \in (\lambda, \mu)$  – IFMNG[G] iff for  $\forall x, y \in G, m \in M$ ,

1. 
$$\mu_{A}\left(m\left(x^{-1}y\right)\right) \lor \lambda \ge \left(\mu_{A}\left(mx\right) \land \mu_{A}\left(my\right)\right) \land \mu,$$

$$\nu_{A}\left(m\left(x^{-1}y\right)\right) \land \mu \le \left(\nu_{A}\left(mx\right) \lor \nu_{A}\left(my\right)\right) \lor \lambda.$$

2. 
$$\mu_A(m(xy)) \lor \lambda \ge \mu_A(m(yx)) \land \mu$$
,  
 $\nu_A(m(xy)) \land \mu \le \nu_A(m(yx)) \lor \lambda$ .

**Proposition 18.** Let A be a  $(\lambda, \mu)$  – intuitionistic fuzzy subgroup of M – group G. Then  $A \in (\lambda, \mu)$  – IFMNG[G] iff

for  $\forall \alpha, \beta \in (\lambda, \mu)$ ,  $A_{\langle \alpha, \beta \rangle}$  is M – normal subgroup of G when  $A_{\langle \alpha, \beta \rangle} \neq \emptyset$ , where  $\langle \alpha, \beta \rangle \in \langle I \rangle$ .

**Proof.** We get the information from Proposition 12 that for  $\forall \alpha, \beta \in (\lambda, \mu)$ ,  $A_{\langle \alpha, \beta \rangle}$  is M – subgroup of G when  $A_{\langle \alpha, \beta \rangle} \neq \emptyset$ . For  $\forall x \in G$ ,  $\forall y \in A_{\langle \alpha, \beta \rangle}$ , we have  $\mu_A(y) \ge \alpha$ ,  $\nu_A(y) \le \beta$ . Therefore,

$$\begin{split} \mu_{A}\left(xyx^{-1}\right) \vee \lambda &\geq \mu_{A}\left(y\right) \wedge \mu \geq \alpha \wedge \mu > \lambda, \\ \nu_{A}\left(xyx^{-1}\right) \wedge \mu &\leq \nu_{A}\left(y\right) \vee \lambda \leq \beta < \mu. \end{split}$$

Then,  $\mu_A\left(xyx^{-1}\right) \geq \alpha$ ,  $\nu_A\left(xyx^{-1}\right) \leq \beta$ , and  $xyx^{-1} \in A_{\left\langle \alpha,\beta\right\rangle}$ . Thus,  $A_{\left\langle \alpha,\beta\right\rangle}$  is M – normal subgroup of G when  $A_{\left\langle \alpha,\beta\right\rangle} \neq \varnothing$ .

Conversely, we get the information from Proposition 12 that  $A \in (\lambda, \mu)$  – IFMG[G]. And for  $\forall x, y \in G, m \in M$ , we have

$$\begin{split} & \mu_{A}\left(m\left(x^{-1}y\right)\right) \vee \lambda \geq \left(\mu_{A}\left(mx\right) \wedge \mu_{A}\left(my\right)\right) \wedge \mu, \\ & \nu_{A}\left(m\left(x^{-1}y\right)\right) \wedge \mu \leq \left(\nu_{A}\left(mx\right) \vee \nu_{A}\left(my\right)\right) \vee \lambda. \end{split}$$

If exist  $x_0, y_0 \in G$ , satisfying

$$\begin{split} &\mu_{A}\left(x_{0}y_{0}x_{0}^{-1}\right) \vee \lambda \leq \mu_{A}\left(y_{0}\right) \wedge \mu, \\ &\nu_{A}\left(x_{0}y_{0}x_{0}^{-1}\right) \wedge \mu \geq \nu_{A}\left(y_{0}\right) \vee \lambda. \end{split}$$

Let  $\alpha = \mu_A (y_0) \wedge \mu$ ,  $\beta = v_A (y_0) \vee \lambda$ . Then  $y_0 \in A_{\langle \alpha, \beta \rangle}$ . But  $x_0 y_0 x_0^{-1} \notin A_{\langle \alpha, \beta \rangle}$ , it is in contradiction with  $A_{\langle \alpha, \beta \rangle}$  is M – normal subgroup of G. Therefore, for  $\forall x, y \in G$ ,

$$\mu_{A}\left(xyx^{-1}\right) \lor \lambda \ge \mu_{A}\left(y\right) \land \mu,$$

$$\nu_{A}\left(xyx^{-1}\right) \land \mu \le \nu_{A}\left(y\right) \lor \lambda.$$

Thus,  $A \in (\lambda, \mu) - IFMNG[G]$ .

The following proposition can be easily proved.

**Proposition 19.** Let  $G_1$ ,  $G_2$  be M – group,  $f:G_1 \to G_2$  be a M – surjective homomorphism of groups, and  $A \in (\lambda, \mu)$  –  $IFMNG[G_1]$ . Then  $f(A) \in (\lambda, \mu)$  –  $IFMNG[G_2]$ .

**Proposition 20.** Let  $G_1$ ,  $G_2$  be M – group,  $f:G_1 \to G_2$  be a M – surjective homomorphism of groups, and  $B \in (\lambda, \mu)$  –  $IFMNG[G_2]$ . Then  $f^{-1}(B) \in (\lambda, \mu)$  –  $IFMNG[G_1]$ .

## International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934 Vol:10, No:9, 2016

#### REFERENCES

- [1] L. A. Zadeh, "Fuzzy sets," Information and Control, vol. 8, 1965, pp. 338-353.
- T.K. Atanassov, "Intuitionistic fuzzy sets," Fuzzy Sets and Systems, vol. [2] 20, 1986, pp. 87-96.
- $W.\ X.\ Gu, \ S.\ Y.\ Li, \ D.\ G.\ Chen, "Fuzzy\ group\ with\ operators,"\ Fuzzy\ Sets$
- and Systems, vol. 66, 1994, pp. 363-371.

  P. Burillo, H. Bustince, "Entropy on intuitionistic fuzzy sets and on interval valued fuzzy sets," Fuzzy Sets and Systems, vol. 78, 1996, pp. 305-316.
- H. Bustince, P. Burillo, "Structures on intuitionistic fuzzy relations," Fuzzy Sets and Systems, vol. 78, 1996, pp. 293-303.
- Dogan Coker. "An introduction to intuitionistic fuzzy topllogic spaces," Fuzzy Sets and Systems, vol. 88, 1997, pp. 81-89.
- Hur K, Kang H W and Song H K, "Intuitionistic fuzzy subgroups and subrings," Honam Math. J., vol. 25, 2003, pp. 19-41.
- [8] X. P. Li, G. J. Wang, "Intuitionistic fuzzy group and homomorphisic image," Fuzzy Systems and Mathematics, vol. 14, 2000, pp. 45-50.
- X. P. Li, J. H. Wang, "Intuitionistic fuzzy normal subgroup and homomorphisic image," Journal of Northeast Normal University.
- [10] L. M. Lei, "The cut subsets of the intuitionistic fuzzy groups and intuitionistic fuzzy normal subgroups," Journal of Zhangzhou Normal University, Natural Science Edition, vol. 18, 2005, pp. 7-9.
- [11] C. X. Bo, F. Zhou, " $(\lambda, \mu)$ -intuitionistic fuzzy subgroups," Journal of Liaocheng University, Natural Science Edition, vol. 27, 2014, pp. 5-9.
- [12] Q. Q. Li, S. Q. Sun, "Intuitionistic Fuzzy Implicative Ideals with Thresholds  $(\lambda, \mu)$  of BCI-Algebras," International Journal of Mathematical, Computational Science and Engineering, vol. 7, 2013, pp. 1093-1097.
- [13] S. K. Bhakat, P. Das, "On the definition of a fuzzy subgroup," Fuzzy Sets and Systems, vol. 51, 1992, pp. 235-241.
- [14] N. Jacbson, Lectures in Abstract Algebra (East West Press, 1951).