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Abstract—The goal of this work is to improve the efficiency and 

the reliability of the automatic artifact rejection, in particular from the 
Electroencephalographic (EEG) recordings. Artifact rejection is a key 
topic in signal processing. The artifacts are unwelcome signals that 
may occur during the signal acquisition and that may alter the 
analysis of the signals themselves. A technique for the automatic 
artifact rejection, based on the Independent Component Analysis 
(ICA) for the artifact extraction and on some high order statistics such 
as kurtosis and Shannon’s entropy, was proposed some years ago in 
literature. In this paper we enhance this technique introducing the 
Renyi’s entropy. The performance of our method was tested 
exploiting the Independent Component scalp maps and it was 
compared to the performance of the method in literature and it 
showed to outperform it. 
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I. INTRODUCTION 

HE goal of this work is to improve the efficiency and the 
reliability of the automatic artifact rejection, in particular 

from Electroencephalographic signals (EEG) recordings. EEG 
is a technique for monitoring the electrical activity of the 
brain: the brain cells communicate by producing electrical 
impulses and, by means of some electrodes holded on the 
scalp over multiple areas of the brain, we can detect and record 
patterns of this electrical activity. Some flat metal discs 
(electrodes) are applied in different positions on the scalp (see 
Fig. 1), these discs are held in places with a sticky paste, the 
electrodes are connected by wires to an amplifier and a 
recording machine.  

 
Fig. 1 The EEG electrode montage (32-channels) 
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EEG monitoring helps to diagnose the presence and type of 

seizure disorders, to look for causes of confusion, and to 
evaluate head injuries, tumors, infections, degenerative 
diseases and metabolic disturbances that affect the 
brain.Artifacts are disturbances caused by eye movement, eye 
blink, electrode movement, muscle activity, movements of the 
head, sweating, breathing, earth beat, electrical line noise and 
so on. The occurrence of the artifacts may alter the analysis or 
completely obscure the EEG waves. When an artifact occurs 
during the acquisition of a signal, it generates some 
unwelcome signals that may overlap to the signals that we 
want to analyse, therefore it may undermine the results of the 
analysis. In this paper we focus on the automatic artifact 
rejection from EEG signals.  

Many efforts have been devoted to artifact cancellation and 
in general two approaches have been adopted so far: the 
cancellation of the entire data segment affected by artifacts (in 
the following named artifact-laden trials), which implies 
throwing away both the useful and the artifactual information 
or, when we cannot afford to lose any information from the 
recorded data, the second approach consists in isolating the 
artifactual signals and then in cancelling them. In this paper 
we focus on the second approach. 

It is well accepted that an artifact is independent from the 
rest of the signals, this is clear when the artifact is “external” 
(electrical line noise), it is also well accepted if it is “internal” 
(muscle activity, eye blink, etc.) because even though the 
triggering event starts from a brain area (for example the 
motor cortex) the time course of the artifact carries no 
information about the triggering event signal. The spectrum of 
the signals related to muscle activity contains high frequencies 
and it can spread from low frequencies to high frequencies; 
therefore, it can be overlapped to the spectrum of the brain 
waves, which goes from 0.5 up to 35 Hz, sometimes up to 50 
Hz, this high frequency contribution can be weakened by a 
lowpass filtering. 

Since it is accepted that the artifactual signals are 
independent from the rest, it is also well accepted that the 
artifactual signals can be extracted by Independent Component 
Analysis (ICA). ICA has been widely exploited as a tool for 
artifactual signals extraction, since it was proposed by 
Cichocki et al. [1] and Jung et al. [2]. The artifactual signal is 
isolated by ICA as a component independent from the rest. 

In order to make the artifacts rejection procedure automatic 
we need some markers capable to measure how much an 
independent component (IC) is likely to be an artifactual 
signal. Delorme et al. [3] proposed the joint use of kurtosis and 
entropy as markers, while Vorobyov et al. [4] proposed the 
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Hurst exponent. Delorme et al. [3] proposed the joint use of 
kurtosis and entropy, in particular the Shannon’s entropy, for 
the detection of the artifactual signals, once they have been 
isolated by means of ICA. This method had shown to be 
promising and, since we were interested in automatic artifact 
rejection, we decided to test and try to enhance it. The test 
showed some failures of the procedure in detecting some 
artifactual signals, thus we wondered whether another entropy 
definition could improve the performance of the method and 
we decided to introduce the Renyi’s entropy. At first, the 
artifactual signals are isolated, by means of Extended-
INFOMAX algorithm for ICA, then the joint use of kurtosis 
and Renyi’s entropy, rather than Shannon’s entropy, is 
proposed. 

The paper is organized as follows: Section II describes the 
application of ICA to the EEG data and the Extended 
INFOMAX algorithm [5], Section III introduces the 
parameters for automatic detection and Section IV presents the 
results. 
 

II. INDEPENDENT COMPONENT ANALYSIS 

A. ICA and EEG Data 

 Independent component analysis was originally developed 
to deal with problems that are closely related to the cocktail-
party problem. Since many real observations can be assumed 
to be a mixing of “sources”, ICA was exploited for a lot of 
applications, for example for EEG data. The EEG data are 
presumably generated by mixing some underlying brain 
activity related signals and artifacts. This situation is quite 
similar to the cocktail-party problem: we would like to find the 
original components of the brain activity, but we can only 
observe mixtures of the components. 
 It is worth to wonder whether there are independent sources 
in the EEG data or not, we told above that it is a shared 
opinion that at least the artifacts can be considered 
independent from the rest. The second assumption for standard 
ICA is that each channel collects a linear combination of the 
sources, this assumption is well accepted for the EEG sensors, 
because the different electrical sources (brain activations, 
muscle activations) are supposed to sum linearly at the scalp 
electrodes. 

 
B. The Extended-INFOMAX Algorithm 

 Given an input data vector x, we consider it generated as a 
mixture of n statistically independent sources (s1,...,sn):  
 

( )sfx =  (1) 
 
If f is a linear function, we deal with the linear ICA problem:  
 

Asx =  (2) 
 
ICA is a tool for multivariate data analysis which yields 
(y1,...,yn) components as independent as possible so that 

Wxy = , and W is close to A-1. 
 
 Here we focus on the Bell-Sejnowski INFOMAX algorithm 
[5]. The input of the network is the observed data x, the output 

is y, whose elements are the estimated independent 
components (y1,...,yn). 

The marginal entropy of each estimated component is 
defined as follows: 
 

( ) ( ){ }ii ypEyH log−=  (3) 
 

The joint entropy has the following expression:  
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The mutual information is defined as: 
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The relationship between marginal entropy, joint entropy 

and mutual information is: 
 

( ) ( ) ( ) ( )NN yyIyHyHH ,...,... 11 −++=y  (6) 
 

Therefore the components of y are as independent as 
possible when their mutual information is minimum. The 
marginal entropies are constant when (y1,...,yn) have uniform 
distribution and are amplitude bounded random variables, so 
while minimizing mutual information we maximize joint 
entropy. Maximizing joint entropy leads to the INFOMAX 
learning rule [5]: 
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is called score function and p is the joint probability density 

function of y. 
INFOMAX has the limitation to assume that the sources 

have super-gaussian distributions and at most one source is 
normally distributed, therefore, Extended-INFOMAX was 
introduced to separate sources with a variety of distributions. 
Since Renyi’s entropy, as we will describe in Section III, 
depends on sources distribution, we needed to know whether a 
source was sub-gaussian or super-gaussian, therefore we used 
the extended version of INFOMAX. A way of generalizing the 
learning rule is to consider an approximation of the estimated 
pdf of the sub-gaussian and the super-gaussian sources, this 
leads to extended learning rule is [5]: 
 

( )[ ]WyyyyKIW TT −−∝Δ tanh  (9) 
 



International Journal of Medical, Medicine and Health Sciences

ISSN: 2517-9969

Vol:2, No:9, 2008

346

There are two different learning rules for sub-gaussian and 
super-gaussian sources, the switching criterion between the 
two rules is given by K: it is a N-dimensional diagonal matrix 
whose elements are: 
 

⎩
⎨
⎧
−

=
1

1
iik  

 
these elements are estimated as part of the algorithm. 

Extended-INFOMAX yields the independent components and 
the unmixing matrix W, to reconstruct the observed signals we 
compute:  
 

yWx 1~ −=  (10) 
 
in order to reconstruct the cleaned signals, we have to suppress 
the alleged artifactual components and to compute the (10). 

 
III. AUTOMATIC ARTIFACT DETECTION 

 Artifacts are outlier data, in other words transient and 
unexpected events; therefore we need some markers to 
measure this oddness to detect outlier trials or outlier 
independent components (ICs) once we have extracted them 
by ICA. The markers proposed by Delorme et al. [3] are 
kurtosis and entropy, which are both related to the distribution 
of the signals.  
 

A. Kurtosis as a Marker for Artifacts 

 In some trials, the distribution of the components is very 
peaky, for instance during a transient strong muscle activity, 
so the kurtosis can help us to detect these artifacts. Given a 
scalar random variable x, kurtosis has the following 
expression: 
 

2
24 3mmk −=  (11) 

( ){ }n
n mxEm 1−=  (12) 

 
where nm  is the n-order central moment of the variable and 

1m  is the mean. Kurtosis is positive for “peaked” activity 
distributions, typical of eye blink and cardiac artifacts; kurtosis 
is negative for “flat” activity distributions, typical of noise [3].  
 In order to detect artifactual components, kurtosis was 
computed for each trial and for all the ICs and it was 
normalized, to 0-mean and standard deviation 1, with respect 
to all the ICs, the threshold was set at 64.1±  [6], if a 
component exceeded the threshold in more than 20% of the 
trials, the component was marked for rejection because it was 
very likely to be an artifact. 
 Kurtosis can also be exploited to detect the components 
which were very likely to account for gaussian noise: we 
estimated the kurtosis of the pdf of each component (global 
kurtosis), the IC with the minimum positive coefficient was 
marked as gaussian noise. 
 
 

B. Entropy as a Marker for Artifacts 

 As a second marker we used the differential entropy: 
 

( ) ( ) ( )( ) ξξξ dppxH xx∫−= log  (13) 

 
The entropy can be interpreted as a measure of randomness: 

if the random variable is concentrated on small temporal 
intervals, its differential entropy is small, indeed the variables 
whose probability densities take large values give a strong 
contribution to the integral in the (13), so their entropy is 
small. This feature of the entropy helps us to identify the 
signals which are concentrated in small temporal intervals 
with high probabilities and, therefore, which are very likely to 
be artifacts. 
 An approximation of the (13) was used: 
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∈

−=
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j
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which is the entropy of the ICi in the trial j, and ( )xf i

j  is the 

pdf of the component ICi during trial j.  
 In order to detect the artifactual components, entropy was 
computed for each trial and for all the ICs and it was 
normalized, to 0-mean and standard deviation 1, with respect 
to all the ICs, the threshold was set at 64.1± [6], if a 
component exceeded the threshold in more than 20% of the 
trials, the component was marked for rejection because it was 
very likely to be an artifact. 
 We want to compare the performances of the Shannon’s 
entropy (14) and the Renyi’s entropy. Renyi’s entropy depends 
on a parameter α and, for a random variable y with a pdf 

( )yf y , it is defined as: 
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The Parzen window pdf estimate of a random variable y for 

which only the samples { }Nyy ,,1 K  are given, is defined by: 
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where i = 1...N and σk is the gaussian kernel, whose size is 
specified by σ (we chose 25.0=σ ) . 

When we substitute the real pdf with the approximation (16) 
in the (15) we have: 
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when yi is super-gaussian 

when yi is sub-gaussian 
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The pdf’s were estimated by the Parzen windowing method 
in both the Shannon’s entropy and the Renyi’s entropy 
computation. 

All the properties stated in Section III.B are for both 
Shannon’s entropy and Renyi’s entropy and therefore they 
help us to identify the signals which are concentrated in small 
temporal intervals with high probabilities, for both artifact-
laden trials and artifactual components. The automatic 
detection procedure, described in the Section III.B, was used 
for Renyi’s entropy and each trial coincides with a Parzen 
window. We tested the automatic detection of the artifactual 
components for 2=α  in order to study the behaviour of the 
Renyi’s entropy because we know that, for super-Gaussian 
sources, entropy orders 2≥  should be preferred, whereas for 
sub-Gaussian sources, entropy orders smaller than 2, perhaps 
closer to 1 or even smaller than 1, should be preferred [7]. 
 Entropy orders larger than 2 emphasize samples in 
concentrated regions of data, whereas smaller orders 
emphasize the samples in sparse regions of data. If the 
mixtures belong to different kurtosis classes, the quadratic 
entropy can be employed as it puts equal emphasis on all data 
points regardless of their probability density. 
 

IV. RESULTS 

 We used a benchmark [8] to test the procedure, it consists 
on 32-channels EEG data (Fig. 2) sampled at 128 Hz, we 
extracted the first 24 seconds data segment because it is 
known that INFOMAX algorithm provides N reliable 
components (for N channel data) if we process at least 23N  
data samples, in this case 32=N , therefore we have to process 
at least 3072 samples (24 seconds) [8]. We removed the 
electrical line noise by a notch filter at 60Hz and we set the 
width of each Parzen window at 200, therefore we had 15 data 
segments (trials). Thus, we had to reject an IC if the markers 
computed for that IC exceeded the fixed threshold in more 
than 20% of the trials, therefore in at least 4 trials. 
 The ICs and the scalp maps of the projection of the ICs on 
the electrode sites were obtained by EEGLAB [8]. 
 

 
Fig. 2 The EEG data. During trial 3 (highlighted) the early channels 

are affected by ocular artifacts 
 

We processed the data by Extended-INFOMAX and the ICs 
are plotted in Fig. 3. The scalp map projection of the ICs was 
estimated thanks to EEGLAB and is depicted in Fig. 4, this 
map helps us in localizing the activation of the ICs and in 
detecting those ICs whose activation is concentrated on one 

electrode, as the activation of the ocular artifacts is. Looking at 
the distribution of the activation of each IC, we can realize that 
IC10 has the typical eye blink artifact projection, IC9 has the 
typical eye movement projection. IC14 and IC20 seem to 
account for eye movement too. The ocular artifact can be 
identified thanks to scalp maps because the intensity of their 
activation is high in the frontal electrodes, in particular, the 
activation of the eye blink artifact is concentrated in a spot 
whereas the activation of the eye movement is a bit more 
spread. 

Once the ICs were extracted, kurtosis, Shannon’s entropy 
and Renyi’s entropy were computed for each trial for each IC, 
as described in Section III, they are plotted in Fig. 5. Table I 
summarizes the automatic detection. 

Kurtosis detected IC10, Shannon’s entropy detected IC2, 
IC10, IC17, IC21, IC24, Renyi’s entropy detected IC1, IC2, 
IC9, IC10, IC17, IC21, IC24. Global kurtosis detected IC14 
which accounts for an amount of the eye movement artifact. 
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Fig. 3 The Independent Components. By a visual inspection we can 
realize that IC9 has the typical eye movement artifact shape and that 

IC10 surely accounts for eye blink 
 
 

 
Fig. 4 The scalp map of the projection of the ICs. IC9 accounts for 

eye movement artifact, IC10 accounts for eye blink artifact, IC14 and 
IC20 are likely to account for a bit of the eye movement too 
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 Thus, the joint use of kurtosis and Shannon’s entropy 
detected IC2, IC10, IC14, IC17, IC21, IC24, whereas the joint 
use of kurtosis and Renyi’s entropy detected IC1, IC2, IC9, 
IC10, IC14, IC17, IC21, IC24. IC9 was detected only by our 
method, and it is certainly an eye movement artifact. IC1 was 
detected only by our method too, and it looks like a muscular 
artifact. IC19 which accounts for a little amount of the eye 
movement too, but it was not detected by any of the two 
methods. 
 In Fig. 6, the cleaned dataset is depicted, it was 
reconstructed cancelling the ICs detected by the joint use of 
kurtosis and Renyi’s entropy, the artifacts appear suppressed. 
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Fig. 5 The automatic artifact detection. Kurtosis detected IC10, which 
accounts for eye blink artifact. Shannon’s entropy detected IC2, IC10, 

IC17, IC21, IC24. Renyi’s entropy detected IC1, IC2, IC9, IC10, 
IC17, IC21, IC24. Global kurtosis detected IC14. IC9 was detected 
only by the proposed method, and it is certainly an eye movement 

artifact. IC1 was detected only by our method too, and it looks like a 
muscular artifact 

 

 
Fig. 6 The reconstructed EEG data. The ICs marked according to 

kurtosis and Renyi  were suppressed and the data reconstructed by the 
Eq (10). Trial 3 appears free from the artifacts 

 
V. CONCLUSIONS 

 Artifact rejection is a key topic in biomedical signal 
processing and in literature, Independent Component Analysis 
(ICA) has shown to be a suitable tool for extracting the 
artifactual signals and some higher order statistics, kurtosis 
together with Shannon’s entropy, have been used as markers 
for the automatic artifact detection. In this paper we have 
proposed the joint use of kurtosis and Renyi’s entropy, rather 
than Shannon’s entropy, and we have tested the reliability of 
the procedure comparing its results with the results of the 
visual inspection of the shape of the independent components 
and of the component scalp maps. The joint use of kurtosis 
and Renyi’s entropy showed to outperform the joint use of 
kurtosis and Shannon’s entropy. Future efforts will be devoted 
to enhance the reliability of the procedure focusing on 
artifactual signal extraction. 
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