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Abstract—The rate of production of main products of the 

Fischer-Tropsch reactions over Fe/HZSM5 bifunctional catalyst in a 
fixed bed reactor is investigated at a broad range of temperature, 
pressure, space velocity, H2/CO feed molar ratio and CO2, CH4 and 
water flow rates. Model discrimination and parameter estimation 
were performed according to the integral method of kinetic analysis. 
Due to lack of mechanism development for Fisher – Tropsch 
Synthesis on bifunctional catalysts, 26 different models were tested 
and the best model is selected. Comprehensive one and two 
dimensional heterogeneous reactor models are developed to simulate 
the performance of fixed-bed Fischer – Tropsch reactors. To reduce 
computational time for optimization purposes, an Artificial Feed 
Forward Neural Network (AFFNN) has been used to describe intra 
particle mass and heat transfer diffusion in the catalyst pellet. It is 
seen that products' reaction rates have direct relation with H2 partial 
pressure and reverse relation with CO partial pressure. The results 
show that the hybrid model has good agreement with rigorous 
mechanistic model, favoring that the hybrid model is about 25-30 
times faster. 
 

Keywords—Fischer-Tropsch, Heterogeneous modeling, Kinetic 
study. 

I. INTRODUCTION 
N Fischer-Tropsch (FT) process, the synthesis gas, i. e. a 
mixture of predominantly CO and H2, obtained from coal, 

biomass or natural gas is converted to a multicomponent 
mixture of hydrocarbons. Currently, a promising field in 
energy utilization is the conversion of natural gas to 
environmentally clean fuels, specialty chemicals and waxes.  

Fuels produced from the FT process are of high quality due 
to a very low aromaticity and absence of sulfur. However, due 
to the limitation of Schulz – Flory distribution [1], the yield of 
the hydrocarbons within the range of those presented in 
gasoline is low. At the same time, the octane number of FT 
gasoline is lower than that of the gasoline obtained from the 
crude oil processing, as the FT gasoline is mainly consisted of 
n-paraffin. To improve the yield and quality of the gasoline 
from the FT synthesis, the bifunctional catalysts have received 
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extensive attention in the recent years [2], [3].  
Various types of reactors (including fixed bed, fluidized – 

bed and slurry) have been considered during the FTS process 
development. The fixed – bed Fischer Tropsch process, being 
one of the most competing reactor technologies, occupies a 
special position in FTS industrial practices, as persuasively 
exemplified by the large scale commercial operations of Sasol 
[4] and Shell [5]. 

The new GTL process based on one staged fixed bed FT 
synthesis was developed in the Research Institute of 
Petroleum Industry (RIPI) to produce high octane, low sulfur 
Gasoline [6]. In this process the modified Bifunctional Fe – 
HZSM5 catalyst has been used [3], [7], [8]. Such a process 
removes the need for the cumbersome upgrading unit for GTL 
plants. 

To achieve an optimum performance for the complete 
process, the catalyst and the reactor should be 
comprehensively optimized. Evidently, due to the complexity 
of FTS reaction system, a proper kinetic study, from which the 
selectivity information can be determined in a quantitative 
fashion, has to be presented. 

The kinetics of the Fischer–Tropsch synthesis have been 
studied extensively to describe the reaction rate using a power 
law rate equation or an equation based on certain mechanistic 
assumptions [9-12]. Literature reviews indicate a few reports 
on the kinetic study on bifunctional catalysts and also 
product's reaction rates determination. 

It seems that the effects of bifunctional catalysts on the 
selectivity of products and performance of the reactor and 
mass and heat transfer in 2D have not been yet considered. 

In order to develop comprehensive two-dimensional 
heterogeneous modeling of FTS reactor, we studied the one 
and two dimensional pseudo homogeneous steady state 
behavior of fixed bed FT catalytic reactor over bifunctional 
catalyst [13]. 

As a continuing parts of these preliminary efforts, in the 
present study, the one and two-dimensional heterogeneous 
models for Fischer – Tropsch fixed bed reactors have been 
developed. The proposed models have been validated by the 
experimental data. 

In order to calculate the global reaction rates at each point 
of the reactor, the mass and energy balances inside the pellet 
must be performed. This procedure may be time consuming. 
In this regard, a hybrid model included mechanistic pseudo 
homogeneous model for the gas phase and AFFNN (Artificial 
Feed Forward Neural Network) for solid phase has been 
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developed. Over 2000 data points that have been obtained 
from mechanistic one dimensional heterogeneous model 
results have been used to train AFFNN. 

In the present study, the basic kinetic features of 
functioning of this type of catalyst for purpose of further 
development and optimization of the reactor model were 
studied. 

II.  ARTIFICIAL NEURAL NETWORKS 
Artificial neural networks (NN) consist of a number of 

simple interconnected processing units, also called neurons, 
which are analogous to the biological neurons. An NN is an 
oriented graph in which the neurons represent a set of 
processing units and the arches (or connections) represent the 
information flow channels. Each connection between two 
neurons has an associated value called weight (wij) which 
specifies the strength of the connection from unit j to unit i.  
The schematic diagram of a single neuron is shown in Fig. 1. 
The input to each neuron consists of an N-dimensional vector 
X and a single bias (threshold) b. 

  
Fig. 1 Schematic diagram of a single neuron. 

 
One of the most well known structures of neuronal 

networks for supervised learning is the multi-layer perceptron, 
which is generally used for classification and prediction 
problems [14]. In the multi-layer perceptron, neurons are 
grouped into layers. An example of a layered network is 
shown in Fig. 2. In this network an input layer, two hidden 
layers and an output layer can be seen. The output of the jth 
hidden unit is obtained by first forming a weighted linear 
combination of the d input values, giving: 

∑
=

=
d

i
ijij xwa

0
                         (1) 

Here, wji denotes a weight going from input i to hidden unit 
j and xi denotes the input i of the neuron. Then, using an 
activation function g, final output of neurons are obtained: 

)( jj agz =                        (2) 

In this paper, we have used the most common type of ANN 
(Artificial Neural Network) with multiple layers and 
supervised learning called Feed Forward (AFFNN) or back 
propagation network [15].  

Sigmoidal activation functions are widely applied in NNs. 

In this work, logistic and tangential sigmoidal functions have 
been employed for the hidden units. 
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Fig. 2 Structure of an AFFNN. 

 
Two important features of neural networks are the ability of 

supplying fast answers to a problem and the capability of 
generalizing their answers, providing acceptable results for 
unknown samples. In this way, they need to learn about the 
problem under study and this learning is commonly named 
training process. This process usually starts with random 
values for the weights of the NN. Then, NN are supplied with 
a set of samples belonging to the problem domain and they 
establish mathematical correlation between the samples [20], 
modifying the values of their weights. 

Two main modelling strategies employing neural networks 
may be distinguished: the first one called ‘the black-box 
approach’, when the entire process is represented with the 
appropriate neural net, and ‘the hybrid approach’, which is a 
combination of both; traditional modelling of the process and 
a neural network representing the less known phenomena of 
the process. In the former case a generalization of the obtained 
results to other systems, e.g. differing in size or operating 
conditions is hardly possible, while the latter approach gives 
an exciting opportunity for knowledge generalization. This 
hybrid approach, since its introduction by Psichogios and 
Ungar [16], has been found to be smart and efficient to model 
complex reacting systems with unknown kinetics [16] and 
heterogeneous modeling [17].  

III. EXPERIMENTAL 
For kinetic study on the RIPI’s catalyst, 53 different 

experiments were performed in an isothermal integral fixed 
bed reactor and in no diffusion limitation conditions. Based on 
the design of experiments, concentrations of CO, H2, CH4, 
CO2 and H2O and temperature, pressure and GHSV at the 
inlet of reactor has been changed and the reactor output was 
analyzed. The primary products’ rate of production was tested 
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with different kinetic models and best model and parameters 
were developed. 

A. Experimental system 
The experimental setup was designed and constructed based 

on fixed bed reactor (Fig. 3). It has 4 main sections including: 
1) Feed  section 

Flow rates of H2 (99.999%), CO (99.5%), N2 (99.999%), 
CO2 (99.95%), CH4 (99.99%) were controlled through MFCs 
(Mass Flow Controller) and then entered to a Gas Mixing 
Chamber for better mixing. Water was mixed as vapor with 
the gases and the mixture entered the reactor section. 
2) Reactor section 

There was a 2 parts reactor (Fig. 4). The first part was a 
stainless steel tube with internal diameter of 0.635 cm and 
length of 40 cm. This part was used for preheating the feed 
that is passed to the reaction section. In the second part, the 
catalyst was loaded in a stainless steel tube with internal 
diameter of 1.12 cm and length of 30 cm. 

 
 

 Fig. 3. Experimental setup. V: Valve, MFC: Mass Flow Controller, 
CV: Check Valve, SV: Safety Valve, MFM: liquid Mass Flow Meter, 
CEM: Control, Evaporation, Mixture for liquid, PC: Pressure 
Controller 
 
3) Separation section 

The liquid product was collected in an ice trap (Ca. 273.2 
oC) at system pressure. After system pressure was released 
through a back pressure regulator, the tail gas leaving the ice 
trap is measured by a wet gas flow meter. 

 
4) Product analysis 

The product stream was split into two parts: gas phase and 
liquid phase. The liquid products collected in the ice trap were 
then separated into the water and oil phases. Hence, the 

 
Fig.  4. The reactor schematic diagram 
 

Ficher-Tropsch products consist of gaseous, aqueous and 
oil phases. The corresponding chromatography analysis 
conditions for determining the composition of the tail gas, oil 
and water phases are summarized in Table 1. The products in 
the gaseous and oily phases are identified by spiking a sample 
with standard compounds. 

 
TABLE I CHROMATOGRAPHY OPERATING CONDITIONS FOR PRODUCT 

ANALYSIS 

 

B. Experimental procedure 
Experiments were carried out by using catalyst particles 

with a diameter between 50-60 ASTM mesh. In this range of 
catalyst diameter, no internal diffusion was detected. 1.5 g of 
catalyst was diluted at a 1:8 ratio (catalyst to inert, v/v) with 
quartz sand of the same mesh size range. To match the 
conditions of the exclusion of external diffusion limitation, the 
kinetic experiments were performed by using high space 
velocities. The space velocities of 3000 – 6000 h-1 were 
adopted in our work. For confirming isothermal conditions, 
the maximum temperature difference between reactor center 
and surface along the bed was reported as 1 oC. The maximum 
temperature difference of 0.5 oC is reported along the reactor 
bed. 

By optimal design method, a total of 53 sets of 
experimental data were obtained for detailed kinetic study. 
The reactor and catalyst characteristics are shown in Table 2.  

The main components for the rate of production study was 
selected as: CH4, CO2, C2H4, C2H6, C3H8, n-C4, i-C4 (as the 
main products of gas phase), H2O (as one of the main 
products) and C5

+ (as the oily product plus gas phase products 
of i-C5, n-C5, i-C6, n-C6, Benzene and Toluene).  

 
 
 

GC 
mode
l 

Stationary 
phase 

Column 
temperature (K) Detector Carrier 

(ml/min) 
Sample 
size Components 

4CPTF Propack Q Room temperature TCD Ar (25) 0.6 ml CO2, CH4, C2H4 

4CPTF Molecular seive Room temperature TCD Ar (25) 0.6 ml H2, CH4, CO 

CP-
3800 Chromosorb 340-400 TCD He (15) 0.6 ml C1-C5 hydrocarbons 

CP-
3800 Fused Capillary  450-580 FID He (15) 0.4 µl C5-C22 hydrocarbons  

1.12 

30 cm

40 cm

0.635 
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TABLE II CATALYST AND REACTOR SPECIFICATION 

Reactor ID (cm) 1.12 Bed porosity 0.4 

Bed length (cm) 18 Bed density 
(kg/m3) 

84.65 

IV. MODEL DISCRIMINATION AND PARAMETER ESTIMATION 
As there has not been developed any mechanism for Fischer 

– Tropsch reactions on bifunctional Fe-HZSM5 catalyst, the 
major kinetic models developed for iron catalyst has been 
tested. To find the best model for bifunctional catalyst, some 
extra models derived from the main kinetic models of the iron 
catalyst. The total number of 26 kinetic models (Table 3) has 
been optimized based on the experimental results.  

For parameter estimation of each model, the kinetic 
parameters were optimized to satisfy the experimental result 
by using one dimensional isothermal modeling of the reactor. 
The flow chart of the parameter estimation program is shown 
in Fig 5. 

 

A. One dimensional isothermal modeling of the reactor 
The reactions for producing main components in the kinetic 

study are as follow: 

 OHCHHCO R
242

13 +⎯→⎯+                                     (3) 

OHHCHCO R
2422 242 2 +⎯→⎯+                              (4) 

OHHCHCO R
2622 252 3 +⎯→⎯+                               (5) 

OHHCHCO R
2832 373 4 +⎯→⎯+                               (6) 

OHHCnHCO R
21042 494 5 +−⎯→⎯+                      (7) 

OHHCiHCO R
21042 494 6 +−⎯→⎯+                       (8) 

OHCHCHCO R
2536.1205.62 05.6)(23.1205.6 7 +⎯→⎯+ +

   (9) 

222
8 HCOOHCO R +⎯→⎯+                                       (10) 

In this model, the following assumptions have been made: 
1. The reactor is taken to be under steady state 

conditions. 

2. The model is pseudo homogeneous (i.e. there is no 
concentration and temperature gradients within the 
catalyst pellet) 

3. There is no radial concentration and temperature 
gradients in the reactor (i. e. one dimensional model 
in axial direction). 

4. There is no gas radial velocity in the reactor. 

5. The radial and axial dispersion has been ignored. 

6. There is no temperature gradient across the bed 
(isothermal reactor). 

The mass and energy equations for the bulk gas phase 
(pseudo homogeneous model) can be written as follows: 

NCiR
dl

Cud
ip

is ...,,2,1
)(

==− ρ
                     (11) 
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For the pressure drop, the following equation is used 
(Ergun Equation): 
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(13) 
The initial conditions for the bulk phase are given as: 

l=0,  Ci = Ci,0; P = Pin;  T = Tin                                          (14) 
 

B. Results and discussion 
 

For parameter estimation of each model, the following 
criteria had to be satisfied: 

( ) .)()( 2
,exp, TolCC

j i
caloutijoutij p∑∑ −=θ

       (15) 
In which i and j denote to component and experiment 

numbers respectively; C, component concentration; exp. and 
cal., experimental and calculated results. Tolerance (Tol.) of 
10-10 was being used.    

The results of parameter estimation for different models are 
being shown in Table 4. 

By these results, the model discrimination is being 
performed. Kinetic model No. 12 gives the least goal function 
(θ). The selected model and its parameters are shown in Table 
5. 

The model discrimination results show that: 
 
Deleting of Water partial pressure from kinetic model 

enhances the model results to the experimental one 
(comparison between results of models No. 1 & 3). 

CO2 partial pressure does not have an important effect on 
rate of production of the main products (comparison between 
results of models No. 14, 16, 17 & 18). 

Methane partial pressure is not being an important factor in 
rate of production of the main products (comparison between 
results of models No. 14, 24, 25 & 26). 

C5
+ partial pressure does not have an important effect on 

rate of production (comparison between results of models No. 
14 & 19). 
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TABLE III KINETIC MODELS USED FOR MODEL DISCRIMINATION 

No
. 

Referenc
e 

Kinetic Model (Ri) No
. 

Referenc
e 

Kinetic Model (Ri) 

1 8 
COHOH

COH

PPKP
PP

TR
EK

22

2

2

2
1

1 )exp(
+

−
 14 This 

research 
CO

H

P
P

TR
EK

2
1

1
2)exp(−

 

2 This 
research 

COHOH

COH

PPKP

PP
TR
EK

22

2

2
2

2
1

1 )exp(
+

−
 15 This 

research 2

2
1

1
2)exp(

CO

H

P

P
TR
EK −

 

3 4 2
)exp( 1

1 HP
TR
EK −

 16 This 
research 

2

2

2

2
1

1 )exp(
COCO

H

PPK
P

TR
EK

+
−

 

4 This 
research 

COHOH

COH

PPKP

PP
TR
EK

22

2

2

2
1

1 10
)exp(

+
−

17 This 
research 2

2

2
1

1
2

2)exp(
COCO

H

PPK

P
TR
EK

+
−

 

5 8 
COOH

COH

PKP

PP

TR
EK

2

1
1

2

2)exp(
+

−
 18 This 

research 2
2

2
1

1
2

2

10
)exp(

COCO

H

PPK

P
TR
EK

+
−

 

6 
This 

research 
21

1 2
)exp( HP

TR
EK −

 19 This 
research ++

−

5

2

2

2
1

1 )exp(
CCO

H

PPK
P

TR
EK  

7 
This 

research 2

2
)exp( 1

1
K

HP
TR
EK −

 20 This 
research COP

TR
EK )exp( 1

1
−

 

8 
This 

research CO
K

H PP
TR
EK 2

2
)exp( 1

1
−

 21 This 
research 

2

)exp( 1
1

H

CO
P
P

TR
EK −

 

9 
This 

research 

CO

K
H

P

P

TR
EK

2

2)exp( 1
1

−
 22 This 

research 
21

1 )exp( COP
TR
EK −

 

10 
This 

research 
21

1
2

2
)exp( CO

K
H PP

TR
EK −

 23 18 32

2
)exp( 1

1
K

CO
K

H PP
TR
EK −

 

11 This 
research 

221
1 2

)exp( COH PP
TR
EK −

 24 This 
research 

4

2

2

2
1

1 )exp(
CHCO

H

PPK
P

TR
EK

+
−

 

12 This 
research 

CO

H

P
P

TR
EK

2
1

1
2)exp(−

 25 This 
research 2

2

2
1

1
4

2)exp(
CHCO

H

PPK

P
TR
EK

+
−

 

13 This 
research 2

2
1

1
2)exp(

CO

H

P

P
TR
EK −

 26 This 
research 

4

2

10
)exp(

2

2
1

1
CHCO

H

PPK
P

TR
EK

+
−

 

 

C. Neural Network approximation 
As mechanistic two dimensional heterogeneous modeling 

of FT industrial reactor is so complicated and time consuming, 
we are seeking here to obtain a simple expression (by neural 
network) for components’ effectiveness factor as a function of 
partial pressures and temperature in the gas phase. This neural 
network expression must reproduce the complex behavior of 

effectiveness factors. Figure 6 shows this strategy. The reactor 
is simulated in a range of operating conditions by one 
dimensional heterogeneous model; in which simultaneous gas 
and solid phases equation are solved. To produce a reliable 
data for the training of neural network, effectiveness factors 
along the reactor is being calculated by a series of results 
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obtained from different operating conditions. Operating conditions is being changed in the limits as shown in table 6. 
 
 
 

Initial Estimates f or K1, E1, K2 (totally  24 parameters)

Solv ing the Reactor Model
Equations

Calculating Rate of  Reactions

Selecting Kinetic
Model

Calculating Outlet Components
Molar Flow (C ij,Out  )cal

Input Conditions of
Experiments (Tj;GHSVj; Pco,j;

PH2,j; PCO2,j;PCH4,j:PH2O,j)

Experimental Outlet
Components Molar

Flow (C ij,Out )exp

.2)),(),(( exp Tol
j i calOutijCOutijC <∑ ∑ −

Optimum Values
for K1, E1, K2

Iteration No. >
Max. Iteration No.

Final Values f or
K1, E1, K2

NO

New Values f or
K1, E1, K2

The End

Start

NO

Yes

Yes

i: Component No.
j: Experiment No.
exp: Experimental
cal: Calculated

 
 

Fig. 5 The flow chart of the program for parameter estimation of the kinetic models. 
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The effectiveness factors are gathered in 35 points along the 

reactor for each simulation. Totally, 2520 series of data are 
being produced to be used for network training and validation. 
1680 and 840 points were chosen respectively for network 
training and validation. 

For training the networks, a variation of the back 
propagation algorithm is used: the Levenberg – Marquardt 
algorithm.  

To find the suitable network, two different network 
structures are being tested. The networks consist of one input 
layer (13 neurons, 11 neurons for component mass fractions 
and two neurons for temperature and pressure); one or two 
hidden layer and one output layer (containing 8 neurons for 
component’s effectiveness factors). The transfer functions of 
Sigmoid and Linear were chosen respectively for hidden and 
output layers. The two different Sigmoid transfer functions 
(tansig and logsig1) has been applied for hidden layers. The 
training was carries on during 500 epochs, in each case. 

 
At the end, different networks are compared. Training 

Mean Square Error (MSE) comparison shows that the best 
successful network found to learn the problem has two hidden 
layers with tansig transfer function and 9 and 8 neurons in the 
first and second hidden layers respectively. 

 
 
 
 
 
 
 
 
 

TABLE IV GOAL FUNCTION FOR MODEL DISCRIMINATION 
Kinetic 
model No. 

Goal function 
(θ) 

Kinetic 
model No. 

Goal function 
(θ) 

1 5.8277 10-09 14 9.91363 10-10 
2 5.9117 10-09 15 7.45533 10-9

3 5.7936 10-09 16 9.91363 10-10 
4 5.9042 10-09 17 9.91363 10-10 
5 7.4553 10-09 18 9.91363 10-10 
6 5.5298 10-09 19 5.16151 10-9 
7 5.4172 10-09 20 ---------------- 
8 5.8473 10-09 21 7.45533 10-9 
9 7.4553 10-09 22 ---------------- 
10 6.3673 10-09 23 5.87014 10-9 
11 6.5233 10-09 24 9.91363 10-10

12 5.2439 10-09 25 9.91363 10-10 
13 7.4553 10-09 26 9.91363 10-10 

 

 
 
1 Logsig (n)= 1/(1+exp(-n)); Tansig (n)= 2/(1+exp(-2n))-1  

TABLE V KINETIC PARAMETERS DATA
))exp()((

2
1

1
11 2

CO

H
cati P

P
TR
EKkgsmolR −

=−−
  

Reaction No. K1 
(mol s-1 kgcat-1 kPa-1) 

E1 
(J mol-1) 

1 3.168 10-5 738.78 
2 2.044 10-2 15693 

3 6.255 10-5 20.384 
4 3.423 10-4 1.5607 
5 5.972 10-6 164.06 

6 6.482 10-6 86.934 
7 610.482 10-6 81.753 
8 4.285 10-3 5532.9 

 
 

TABLE VI OPERATING CONDITIONS RANGE FOR PRODUCING TRAINING DATA 
Parameter Minimum Maximum No. of 

Points 
Cooling Temperature (K) 530 570 4 
Reactor Pressure (kPa) 1300 2100 3 

Feed Molar Ratio of H2 / CO   0.7 1.5 6 
 

 
Fig 6. Effectiveness factors Neural network mechanism. 
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