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Abstract—This paper presents a four-dimensional computational
model, k-neighborhood template A-type three-dimensional bounded
cellular acceptor (abbreviated as A-3BCA(k)), and discusses the
hierarchical properties. An A-3BCA(k) is a four-dimensional
automaton which consists of a pair of a converter and a
configuration-reader. The former converts the given four-dimensional
tape to the three- and two- dimensional configuration and
the latter determines the acceptance or nonacceptance of given
four-dimensional tape whether or not the derived two-dimensional
configuration is accepted. We mainly investigate the difference of the
accepting power based on the difference of the configuration-reader.
It is shown that the difference of the accepting power of the
configuration-reader tends to affect directly that of the A-3BCA(k)
for the case when the converter is deterministic. On the other hand,
results are not analogous for the nondeterministic case.
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finite automaton, four-dimension, on-line tessellation acceptor,
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I. INTRODUCTION AND PRELIMINARIES

THE growth of the the processing of pictorial information

by computer was rapid in 1960’s. Therefore, the

problem of computational complexity was also arisen in the

two-dimensional information processing. Blum and Hewitt

first proposed two-dimensional automata as a computational

model of two-dimensional pattern processing, and investigated

their pattern recognition abilities [1]. Many researchers in

this field have investigated the properties of automata on a

two- or three-dimensional tape since their paper was presented

[2], [3], [8]-[30]. On the other hand, the question of whether

processing four-dimensional digital patterns is more difficult

than processing two- or three-dimensional ones is of great

interest from both theoretical and practical standpoints. Thus,

the study of four-dimensional automata as the computational

model of four-dimensional pattern processing has been

meaningful. From this point of view, we are interested in

four-dimensional automata [21], [22]. In the multi-dimensional

pattern processing, designers often use a strategy whereby

features are extracted by projecting high-dimensional space

on low-dimensional space.

In this paper, from this viewpoint, we present a computational

model, k-neighborhood template A-type three-dimensional
bounded cellular acceptor (abbreviated as A-3BCA(k)) on

four-dimensional tapes, and discuss some basic properties.
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An A-3BCA(k) consists of a pair of a converter
and a configuration-reader. The former converts the given

four-dimensional tape to the three- and two-dimensional

configuration and the latter determines the acceptance or

nonacceptance of given four-dimensional tape whether or not

the derived two-dimensional configuration is accepted [22],

[25]. When an input four-dimensional tape is presented to the

A-3BCA(k), a three-dimensional cellular automaton as the

converter first reads it to the future direction at unit speed

(i.e., one three-dimensional rectangular array per unit time),

and a two-dimensional cellular automaton as the converter next

reads a converted three-dimensional configuration downward

at unit speed (i.e., one plane per unit time). From this process,

the four-dimensional tape is converted to a configuration of

the converter which is a state matrix of a two-dimensional

cellular automaton. Second, two-dimensional automaton as the

configuration-reader, reads the configuration and determines

its acceptance. We say that an input four-dimensional tape is

accepted by the A-3BCA(k) if and only if the configuration is

accepted by the configuration-reader. Therefore, the accepting

power of the A-3BCA(k) depends on how to combine the

converter and the configuration-reader.

An A-3DBCA(k) (A-3NBCA(k)) is called a

k-neighborhood template A-type three-dimensional

deterministic bounded cellular acceptor (k-neighborhood

template A-type three-dimensional nondeterministic bounded

cellular acceptor). A DA [1] (NA, DB [23], NB, DO [6],

NO, DOP [5], [16], NOP , DP [5], [16], NP , DTM
[4], [9], NTM ) is called a two-dimensional deterministic

finite automaton (two-dimensional nondeterministic finite

automaton, deterministic one-dimensional bounded cellular

acceptor, nondeterministic one-dimensional bounded cellular

acceptor, two-dimensional deterministic on-line tessellation

acceptor, two-dimensional nondeterministic on-line

tessellation acceptor, deterministic one-way parallel/sequential

array acceptor, nondeterministic one-way parallel/sequential

array acceptor, deterministic two-way parallel/sequential array

acceptor, nondeterministic two-way parallel/sequential array

acceptor, two-dimensional deterministic Turing machine,

two-dimensional nondeterministic Turing machine). Let

T (M ) be the set of four-dimensional tapes accepted by a

machine M , and let L(A-3DBCA(k)) = {T |T=T (M ) for

some A-3DBCA(k) M}. L(A-3NBCA(k)), etc. are defined

in the same way as L(A-3DBCA(k)).

Let
∑

be a finite set of symbols. A four-dimensional tape
over

∑
is a four-dimensional rectangular array of elements of∑

. The set of all four-dimensional tapes over
∑

is denoted

by
∑

(4). Given a tape x ∈ ∑
(4), for each integer j(1 ≤ j ≤
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Fig. 1 Four-dimensional Input Tape

4), we let lj(x) be the length of x along the jth axis. The set

of all x ∈ ∑(4)
with l1(x) = n1, l2(x) = n2, l3(x) = n3,

and l4(x) = n4 is denoted by
∑(n1,n2,n3,n4). When 1 ≤ ij ≤

lj(x) for each j(1 ≤ j ≤ 4), let x(i1, i2, i3, i4) denote the

symbol in x with coordinates (i1, i2, i3, i4), as shown in Fig.

1. Furthermore, we define

x[(i1, i2, i3, i4), (i
′
1, i

′
2, i

′
3, i

′
4)],

when 1 ≤ ij ≤ i′j ≤ lj(x) for each integer j(1 ≤ j ≤ 4),
as the four-dimensional input tape y satisfying the following

conditions:

(i) for each j(1 ≤ j ≤ 4), lj(y) = i′j − ij + 1;

(ii) for each r1, r2, r3, r4(1 ≤ r1 ≤ l1(y), 1 ≤ r2 ≤
l2(y),
1 ≤ r3 ≤ l3(y), 1 ≤ r4 ≤ l4(y)), y(r1, r2, r3, r4)
= x(r1+ i1− 1, r2+ i2− 1, r3+ i3− 1, r4+ i4− 1).
(We call x[(i1, i2, i3, i4), (i

′
1, i

′
2, i

′
3, i

′
4)] the

[(i1, i2, i3, i4), (i
′
1, i

′
2, i

′
3, i

′
4)]-segment of x.)

We let each sidelength of each input tape of these automata

be equivalent in order to increase the theoretical interest.

II. MAIN RESULTS

This section investigates how the difference of

configuration-reader affects the accepting powers of

A-3BCA(k)’s. First, we start to investigate the case

when the converter is deterministic.

Lemma 1. Let T1 = {x∈{0,1,2}(4)|∃n ≥ 1 [l1(x) = l2(x)

= l3(x) = l4(x) = n+1 & ∃i(1≤i≤n)[x(i,n+1,n+1,n+1) =

2 & (each symbol on the remaining parts is “0” or “1”)

& x[(i,1,n+1,n+1), (i,n,n+1,n+1)]�=x[(n+1,1,n+1,n+1),

(n+1,n,n+1,n+1)]]]}. Then,

(1) T1∈L(NA-3DBCA(1)),
(2) T1 /∈L(DA-3DBCA(9)).

Proof: It is easily seen that there exists a nondeterministic

two-dimensional finite automaton accepting the set of

two-dimensional tapes which are obtained by extracting the

bottom plane from the tape contained in T1. Therefore, (1)

holds. On the other hand, the proof of (2) is similar to that of

Lemma 2(2) in [1]. �
Lemma 2. Let T2 = {x ∈ {0,1}(4) | ∃ n ≥ 1 [l1(x) = l2(x)

= l3(x) = l4(x) = 2n & [x[(1,1,2n,2n), (2n,n,2n,2n)] =

x[(1,n+1,2n,2n),(2n,2n,2n,2n)]]}. Then,

(1) T2 ∈ L(DOP -3DBCA(1)),

(2) T2 /∈ L(NO-3DBCA(9)).

Proof: (1) Note that there exists a deterministic one-way

parallel sequential array acceptor accepting the set of

two-dimensional tapes obtained by extracting the bottom plane

of the last cube from the tape contained in T2 [7]. It is

easily seen from this fact that (1) holds. (2) The proof is

similar to that of Lemma 2(1). Suppose that there exists an

NO-3DBCA(9) M = (R, B) accepting T2. Let K be the set

of each cell of B ∈ NO, and |K| = s.

For each n ≥ 1, let V (n)={x{0,1}(4) | l1(x)=l2(x) = l3(x)

= l4(x)= 2n & x[(1,1,1,1), (2n, 2n, 2n, 2n-1)] ∈ {0}(4) },

V ′(n) = V (n) ∩ T2, W (n) = {w ∈ K(2)+ | l1(w) = 2n &
l2(w) = 1 } (K(2) means the set of all two-dimensional tapes

over
∑

.). For each x ∈ V (n), let ρ(x) ≡ the configuration

of R just after reading x, ρW (x) = the west half of ρ(x), and

ρE(x) ≡ the east half of ρ(x). Further, for each x ∈ V ′(n), let

Run(x) = {z ∈ K(2) | z is a run of B on ρ(x) whose lower

right corner symbol is an accepting state of B.} and r(x) = {
z[(1,n,2n,2n),(2n,n,2n,2n)] | z ∈ Run(x) } ⊆ W (n). Then,

the following proposition must hold.

Proposition 1. For any two different tapes x and y in V ′(n),

r(x) ∩ r(y) = φ.

[Proof: The proof is similar to that of Proposition 4. in [27]]

Proof of Lemma 2 (continued): As is easily seen,

|V ′(n)| = 22n
2

and | W (n)| ≤ s2n.

Therefore, it follows for large n that

|V ′(n)| > |W (n)|.
Consequently, ii follows for such large n that there must

be two different tapes x and y in V ′(n) such that r(x) ∩ r(y)

�= φ. This contradicts Proposition 1. �

Lemma 3. Let T3 = {x∈{0,1}(4) | ∃n≥ 1[l1(x) = l2(x)

= l3(x) = l4(x) = 2n & x[(1,1,2n,2n), (n,2n,2n,2n)] =

x[(n+1,1,2n,2n), (2n,2n,2n,2n)]]}. Then,

(1) T3 ∈ L(DP -3DBCA(1)),

(2) T3 /∈L(NOP -3DBCA(9)).

Proof: (1) Note that [7] there exists a deterministic two-way

parallel sequential array acceptor accepting the set of

two-dimensional tapes which are obtained by extracting the

bottom plane of the last cube from the tape contained in T3.

It is easily seen, from this fact, that (1) holds.

(2) Suppose that there exists an NOP -3DBCA(9) M
= {R,B} accepting T3. Let s be the number of states

of each cell of B∈NOP . For each n≥1, let V (n) =

{x∈{0, 1}(4) l1(x) = l2(x) = l3(x) = l4(x) = 2n & x[(1,1,1,1),

(2n,2n,2n,2n-1)]∈{0}(4)}, V ′(n) = V (n) ∩ T3. For each x ∈
V (n), let ρ(x) ≡ the configuration of R just after reading x,

ρN (x) ≡ the north half of ρ(x), and ρS(x) ≡ the south half of
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ρ(x). Furthermore, for each x ∈ V ′(n), let conf(x) ≡ the set

of possible configuration of B just after ρN (x) is read, when

ρ(x) is accepted by B. (Note that ρ(x) is accepted by B since

each tape in V ′(n) is accepted by M .) Then, the following

two propositions must hold. (The proofs are omitted here. If

necessary, see proofs of Lemmas 7 and 8 in [26].)

Proposition 2.
(i) For any two tapes x and y in V ′(n) such that their [(1,

1, 2n, 2n), (n, 2n, 2n,2n)]-segments are identical,

ρN (x) = ρN (y).

(ii) For any two tapes x and y in V ′(n) such that their

[(n + 1, 1, 2n, 2n), (2n, 2n, 2n, 2n)]-segments are

identical, ρS(x) = ρS(y).

Proposition 3. For any two different tapes x and y in V ′(n),

conf(x) ∩ conf(y) = φ.

Proof of Lemma 3 (continued): As is easily seen,

|V ′(n)| = 22n
2

.

Let t(n) be the total number of different configurations of

R just after reading north halves of configurations of R just

after reading tapes in V ′(n). Clearly,

t(n)≤s2n.

Therefore, it follows for large n that

|V ′(n)| > t(n).

Consequently, it follows for such large n that there must be

two different tapes x and y in V ′(n) such that conf(x)∩conf(y)

�= φ. This contradicts Proposition 3. �
Lemma 4. Let T4 be the set of three-dimensional tapes

described in Lemma 1 in [1]. Then,

(1) T4 ∈L(NB-3DBCA(1)),

(2) T4 /∈L(DOP -3DBCA(9)).

Proof: (1) It is easily seen that there exists a nondeterministic

one-dimensional bounded cellular automaton accepting the set

of two-dimensional tapes which are obtained by attracting the

bottom plane from the tape contained in T4. Therefore, (1)

holds. On the other hand, the proof of (2) is shown from

Lemma 1 in [1]. �
Lemma 5. Let T5 = {x ∈ {0,1}(4) | ∃ n ≥ 1 [l1(x) =

l2(x) = l3(x) = l4(x) = 2n & [x(1,1,2n,2n), (n,n,2n,2n)] �=
x[(n+1,n+1,2n,2n),(2n,2n,2n,2n)]]}. Then,

(1) T5 ∈L(NB-3DBCA(1)),

(2) T5 /∈L(NA-3DBCA(9)).

Proof: (1) It is easily seen that there exists a nondeterministic

one-dimensional bounded cellular automaton accepting the set

of two-dimensional tapes which are obtained by extracting the

bottom plane from the tape contained in T5. Therefore, (1)

holds. On the other hand, the proof of (2) is similar to that of

Lemma 2 in [1]. �
From the foregoing lemmas, we can obtain the following

theorem when the converter is deterministic.

Theorem 1. For each k ∈ {1, 5, 9},

(1) L(DA-3DBCA(k)) � L(NA-3DBCA(k)) �

L(NB-3DBCA(k)) = L(NO-3DBCA(k)) �

L(NOP -3DBCA(k)) � L(NP -3DBCA(k)),

(2) L(DB-3DBCA(k)) � L(NB-3DBCA(k)),

(3) L(DO-3DBCA(k)) � L(NO-3DBCA(k)),

(4) L(DB-3DBCA(k)) � L(DOP -3DBCA(k)) �

L(DP -3DBCA(k)),

(5) L(DO-3DBCA(k)) � L(DOP -3DBCA(k)) �

L(NOP -3DBCA(k)).

Proof: It is clear from Proposition 1 in [1] that the inclusion

relations hold. Therefore, below, we show that the proper

inclusion relations held for each k ∈ {1,5,9}.

(1): It is obvious from Proposition l in [1] that

L(NB-3DBCA(k)) = L(NO-3DBCA(k)). From Lemma

1, L(DA-3DBCA(k)) � L (NB-3DBCA(k)) holds, and

from Lemma 5, L (NB-3DBCA(k)) � L(NB-3DBCA(k))

holds. In addition, it is obvious from Proposition 1 in

[1] that L(DOP -3DBCA(k)) ⊆ L(NP - 3DBCA(k)). It

follows from this and Lemma 2 that L(NO-3DBCA(k))

� L(NOP -3DBCA(k)) holds. Further, it is also obvious

from Proposicion 1 in [1] that L(DP -3DBCA(k)) ⊆
L(NP -3DBCA(k)). It follows from this and Lemma 3 that

L(NOP -3DBCA(k)) � L(NP -3DBCA(k)) holds.

(2) and (3): These are easily proved from Lemma 4 and

Proposition 1 in [1].

(4) and (5): These are also easily proved from Lemmas 4,5,6

and Proposition 1 in [1]. �
Next, we investigate the case when the converter is

nondeterministic.

Lemma 6. For each k ∈ {1,5,9},

(1) L(NO-3NBCA(k)) ⊆ L(DA-3NBCA(k)),

(2) L(NO-3NBCA(k)) ⊆ L(DB-3NBCA(k)),

(3) L(NO-3NBCA(k)) ⊆ L(DO-3NBCA(k)).

Proof: (1) We prove only L(NO-3NBCA(1)) (The other

cases are proved similarly.) Let M= (R, B) be an arbitrary

NO-3NBCA(1), and let KR and KB be the set of states

of R and B, respectively. Further, let M ′ = (R′, B′)
be a DO-3NBCA(1) which acts as follows for a given

four-dimensional tape x with each sidelength is n (n ≥ 1).

(i) Actions of the converter R′

At each time, each (i, j, k, l)-cell (1 ≤ i, j , k, l, ≤ n) of

R′ simulates the action of the corresponding cell of R on x
at the same time. In parallel to this action, the cell selects

nondeterministically a state in KB (we let q(i, j, k, l) be the

state) and stores the state in its state, when the cell reads a

symbol on the top plane of the first cube of x. Here, q(i,j,k,l)
is a guessed state of B which the (i, j, k, l)- cell of B will

enter by reading the configuration of R just after reading x;

q(i, j, k, l) will have been stored in the state of the cell until

x is completed to read.

(ii) Actions of the configuration reader B′

For each i, j, k, l(1 ≤ i, j , k, l≤ n), let ρ(i, j, k, l) be a state

in KR which the (i, j, k, l)-cell of R′ continues to simulate

the action of corresponding cell of R and enters. B′ accepts

a configuration of R′ just after reading x if and only if the

following two conditions are satisfied.

1© For each i, j, k, l(1 ≤ i, j, k, l ≤ n), the (i, j, k, l)-cell

can enter q(i, j, k, l) when it reads ρ(i, j, k, l).
2©q(n,n,n,n) is an accepting state of B.
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It is easily seen that T (M ′) = T (M ) for M = (R′,B′). This

completes the proof of the lemma. �
Remark 1. Lemma 6 has been proved by using a

property such that not a cell of the two-dimensional on-line

tessellation acceptor makes two of more state transitions.

That is, its state-transition is guessed first by the converter

nondeterministically, and then the configuration-reader checks

whether or not this guess is correct. Therefore, the same

idea as in the proof of Lemma 6 cannot apply directly to

whether or not for each K ∈ {1, 5, 9}, L(NOP -3NBCA(k))

⊆ L(DO-3NBCA(k)), and so on. However, we can

show by using this idea that for each k ∈ {1,5,9},

L(NOPL-3NBCA(k)) ∈ L(DO-3NBCA(k)), where we let

NOPL be the class of nondeterministic one-way parallel

sequential array acceptors which operate on each row at most

constant time.

From Lemma 6 and from Proposition 1 in [1], we can

obtain directly the following theorem when the converter is

nondeterministic.(The proof is omitted here.) It is of great

interest to compare the following Theorem 2 with Theorem

1 mentioned for the deterministic case.

Theorem 2. For each k ∈ {1, 5, 9},

L(DA-3NBCA(k)) = L(NA-3NBCA(k)) =

L(DB-3NBCA(k)) = L(NB-3NBCA(k)) =

L(DO-3NBCA(k)) = L(NO-3NBCA(k))

III. CONCLUSION

In this paper, we have investigated how the difference

of neighborhood template of the converter or the

configuration-reader affects the accepting powers of

k-neighborhood template A-type three-dimensional bounded

cellular acceptor (abbreviated as A-3BCA(k)). Generally

speaking, when the converter is deterministic, the accepting

power of the A-3BCA(k) tends to be more powerful as

the number of neighborhood cells of the converter increases

or the accepting power of the configuration-reader is more

powerful. However, this tendency is not always true when the

converter is nondeterministic.

We will attempt to compare the results in this paper with

those for the (k, l)-neighborhood template A-type bounded

cellular acceptor (A-BCA(k,l)) operating on two-dimensional

tapes to inspect whether or not this tendency is a property of

A-3BCA(k). Especially, we concentrate on determining when

the converter is nondeterministic.

While the five-neighbor can simulate any neighbor for

the four-dimensional case, (1,0)- or (9,1)-neighbor is such a

neighbor for the two-dimensional case. In addition, for the

two-dimensional case, it is shown that the accepting powers

of the A-BCA(k,l) has a neighborhood template except (0,0).

On the other hand, in this paper, we show that not only

five-neighbor and nine-neighbor but also one-neighbor has the

forementioned property. The one-neighbor is a neighborhood

template without communication with others. From this

viewpoint, this theorem is of great interest.

By the way, tape sets from T1 to T5 used in this

paper are sets of four-dimensional tapes which are obtained

by embedding well-known two-dimensional tapes to their

bottom planes of the last cubes. Therefore, it seems to be

obvious for the reader that lemmas using these tape sets

hold. However, we emphasize that these lemmas are never

derived immediately from the results on two-dimensional case.

Even if it is well known that the set of bottom planes

of the last cubes are not accepted by these cubic tapes

may be accepted by an A-3BCA(k) using the foregoing

two-dimensional automaton as the configuration-reader. This

fact follows since the configuration-reader can have the same

operating time as the side-length of four-dimensional tapes.

Now consider, for example, the set of all two-dimensional

tapes whose center symbol is “1.” It is well known in [1] that

the set is not accepted by any two-dimensional deterministic

finite automaton. However, it is easily seen that the set

of four-dimensional tapes embedded the two-dimensional

tapes to the bottom planes of the last cube accepted by a

DA-3DBCA(5)).

Further, although we can show only that five-neighbor is

more powerful than one-neighbor, by using the accepting

powers of two-dimensional automata as a complexity

measures, this paper in fact estimates how different are the

accepting powers between one-neighbor and five-neighbor.

Since we can show that there exists a set of four-dimensional

tapes accepting by a DA-3DBCA(5) but not by any

DTM -3DBCA(1), it follows that the difference between

the accepting powers of one-neighbor and five-neighbor is

so great that it cannnot be measured by the accepting

powers of two-dimensional automata. Similarly, it is easily

seen that the difference between the accepting powers of

five-neighbor and nine-neighbor is not less than log n
which is measured by the tape amount of nondeterministic

tape-bounded two-dimensional Turing machines.

We conclude this paper by giving a few open problems.

(1) For each A ∈ {DOP , NOP , DP , NP , DTM , NTM},

L(A-3DBCA(5)) � L(A-3DBCA(9))?

(2)L(NO-3NBCA(5)) � L(DOP -3NBCA(5))?
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