
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:3, 2017

353


Abstract—This paper presents an approach to reduce some of its

current flaws in the requirements phase inside the software
development process. It takes the software requirements of an
application, makes a conceptual modeling about it and formalizes it
within JSON documents. This formal model is lodged in a NoSQL
database which is document-oriented, that is, MongoDB, because of
its advantages in flexibility and efficiency. In addition, this paper
underlines the contributions of the detailed approach and shows some
applications and benefits for the future work in the field of automatic
code generation using model-driven engineering tools.

Keywords—Conceptual modeling, JSON, NoSQL databases,
requirements engineering, software development.

I. INTRODUCTION

OFTWARE development has a lot of methodologies, both
traditional and agile [1] and the most popular one

nowadays is Scrum [2], an agile methodology. However, all of
them have the same processes:
1) Requirements analysis resulting in a software

requirements specification.
2) Software design. In this step, the system architecture is

designed in order to guide its development.
3) Implementation. The code of the application is written.
4) Testing of the implementation in order to make sure that it

fits with the specification given.
5) Integration, if there are multiple subsystems.
6) Deployment (or Installation).
7) Maintenance of the system: Fixing errors and developing

improvements.
All of these processes have a huge impact on the final

product. They are also dependent on each other: A proper
software design cannot be done without a concise
requirements specification; a good implementation cannot be
carried out without the proper software design; and so far and
so forth. As a result, we may agree that the first step is the
most important one since nothing successful can be built
without it.

With regards to Requirements Engineering (RE), the most
accurate definition could be the one given by [3] which says:
‘Requirements engineering is the branch of software

Aitana Alonso-Nogueira, PhD candidate, is with the Universidad de León,
Spain.

Helia Estévez-Fernández, PhD candidate, is with the Universidad de León,
Spain (e-mail: helia.estevez@unileon.es).

Isaías García, PhD, is with the Dept. of Electrical and Systems
Engineering, Universidad de León, Spain.

engineering concerned with the real-world goals for, functions
of, and constraints on software systems. It is also concerned
with the relationship of these factors to precise specifications
of software behaviour, and to their evolution over time and
across software families’.

RE is usually divided into six activities: Elicitation or
discovery, analysis and reconciliation, specification, modeling
or representation, verification and validation and management.
These activities should be carried out in sequential order and
all of them must be taken into account in the software
development.

Some of the biggest problems that we face working in RE
fields are the ambiguity, inconsistency and incompleteness of
the requirements; integration between them and the
architecture of a system; communication of requirements; and
model interoperability [4].

There are many works in RE, most of which study the
elicitation of requirements from natural language [5], [4].
Nevertheless, the research community has made a great effort
trying to fix the ambiguity errors that arise when trying to
merge the requirements specified by different people. Most
solutions to this problem are based on ontologies like [6] or
[7]. But deep down there is still the same problem, merging
different requirements specifications causes ambiguity
problems in each of the applications that are developed. To
reduce this problem, we propose to use an Open Data Model
(ODM) [8] that could be used as a software design for all
applications. ODM is described in Section II C.

This paper aims to describe the tool that we have
developed. It might help us to create and manage the model.
Due to the quick evolution of the RE needs, where documents
have become less important, new RE tools should be
lightweight and user-friendly [9] to lighten the improvements
and changes of the system. This tool has been developed using
JavaScript and it stores the data in JavaScript Object Notation
(JSON) documents. Those technologies are also briefly
described in this paper.

The paper is structured as follows: Section II provides a
short introduction to the different subjects we need to know
before introducing the approach: modeling methods, JSON,
ODM and MongoDB. Section III shows how the approach
formalises a model in JSON to be used as an ODM. Section
IV illustrates how the approach can be applied to a concrete
case study of a library. Finally, Section V contains the
conclusions and Section VI provides some future lines.

JREM: An Approach for Formalising Models in the
Requirements Phase with JSON and NoSQL

Databases
Aitana Alonso-Nogueira, Helia Estévez-Fernández, Isaías García

S

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:3, 2017

354

II. BACKGROUND

This section presents different subjects to help the reader
understand the rest of the paper better.

A. Modeling Methods

The first activity in RE is to collect the requirements of the
software from users, customers and other stakeholders. This
process is well known as elicitation and it results in the
specifications of the requirements. Then these specifications
are modeled using certain tools and modeling languages.

In our context, modeling can be defined as the process that
aims to express the requirement specification in a structure
defined by a consistent set of rules. This structure is called
model and is built using modeling languages. Some of them
are: Ecore [10], AADL [11], SPEM [12] or SYSML [13].
However, the most used language to represent object-oriented
models is Unified Modeling Language [14] which is a
standard. Moreover, it can be aided by Object Constraint
Language (OCL) and the meta-models generated with Ecore
can be applied to UML models.

There are many solutions to elicit software specifications
captured in natural languages (NL); some of them follow the
Object-Oriented Analysis and Design (OOAD) [15] to design
class models. Examples of these approaches are: UMGAR
[16] can generate the Use-case diagram, the analysis class
model, the collaboration diagram and the design class model.
RAUE [17] makes requirement analysis and UML diagram
extraction. SUGAR [18] is a static UML model generator
from analysis of requirements. RAPID [19] assists analysis by
providing an efficient and fast way to produce the class
diagram from their requirements. LOLITA [20] generates
object models. LIDA tool [21] helps analysts to identify type
elements in the object-oriented model like classes, attributes,
roles etc.. NL2UMLviaSBVR [22] generates an SBVR
representation and then, a UML diagram. All these
frameworks, tools, approaches or methods identify use-cases,
actors, classes with its attributes and methods and the relations
among classes: Associations, generalizations or aggregations
from NL. Some of them use these results to build a model,
commonly UML, others only return them.

B. JavaScript Object Notation (JSON)

JSON is a lightweight data-interchange format. It is
processable by machines and understandable by humans.
JSON is built on two structures: collection of name-value
pairs and ordered list of values. In most languages, the former
structure is realised as an object while the latter is realised as
an array. An example of a JSON document is depicted in Fig.
1.

Fig. 1 Different values in a JSON document

JSON has five types of values: String, number, array, object
and literal name. String is a sequence of characters; number is
a number written in decimal or exponential notation; array is a
sequence of values that do not have to be the same type; object
is a sequence of properties; and literal name is one of the three
special values null, true and false. Properties of an object are a
name-value pair. To have more detailed information, the
specification is in [23]

The approach presented here takes advantage of certain
benefits from [24], such as:
1) JSON is simpler than other formats like XML, so it makes

possible for people who are less experienced to
understand it.

2) It is the preferred format for exchangeable data because it
is faster, which is useful with requirements considering
that they must be shared between different stakeholders
and applications.

3) There is no need for a parser as the interpreter decodes the
data like native JavaScript object, which is good because
our model is object oriented.

C. Open Data Model

ODM ensures a standard format for the application’s data
structures which makes the data easy to share (Fig. 2).
Reference [5] proves that there is a lack of open data
mechanisms in the literature and some of the studies use a
specific API instead.

Fig. 2 All of the applications of an organisation can use the ODM

The well-known benefits of using ODM are:
1) The transparency of the data. Being open makes it

accessible by all the members of the organization with
access to the database.

2) Improving effectiveness of services. It would avoid
duplicated fields, naming conflicts, and other semantical
ambiguities which will cause problems in the software
development.

3) Improving efficiency of services. Due to the fact that
everyone uses the same model, concepts that often appear
in different systems have to be defined only once. It could
improve the efficiency of the process considerably.

D. MongoDB

MongoDB [25] is the main database of the NoSQL
databases. These databases do not store the data in tables as
relational databases do. MongoDB stores the data within

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:3, 2017

355

JSON documents so it is known as a document-oriented
database. In fact, it stores BSON (Binary JSON) which is the
binary form for representing simple data structures. BSON
makes MongoDB more efficient in storage and scan-speed.

NoSQL database is used instead of relational database
because of its flexibility - which allows storing scheme-less
data and easy expanding, its low cost, and because reading and
writing is quicker than in relational databases. Although it is
not concerned about high-performance reading and writing
concurrent, it ensures a good query performance [26] that will
be useful in multiple usages of the formalised model.

As a brief overview of MongoDB we must know that it
stores BSON documents in collections and the collections in
databases. These collections are analogous to tables in
relational databases.

III. OUR APPROACH

Taking into consideration the problems associated with RE
in Software Engineering, we present an approach whose goal
is to minimize its problems effects, such as time-consuming
difficulty and ambiguity.

We intend to save the requirements extracted in the
elicitation phase in a data model which will be common to all
applications within an organization. In the elicitation process,
existing tools previously presented in Section II A are used.

The model created with our JREM tool will be an ODM
that will be formalised in JSON due to the advantages
mentioned in Section II B. To facilitate the access to these
documents, they will be lodged in a NoSQL database; in
particular a document-oriented database called MongoDB and
explained in Section II D. Our model will be lodged in
MongoDB because is the main NoSQL document-oriented
database and many organizations are considering using it
instead of relational databases.

As we have already said, our database is structured in a
collection of class models (Fig. 3 (a)), so each class model is a
document in the database, with the structure shown in Fig. 3
(b).

Fig. 3 (a) Structure in MongoDB of stored class models

Fig. 3 (b) Structure of each class model

To prove our approach we have developed an online tool
which is a middleware, where the user through a user-friendly
interface can introduce these resulted elements, obtained using
previous elicitation and modeling methods, and generates a
formalization class model in JSON following the Class
Diagram Guidelines [27].

The tool has been built to be an online application, which
makes it accessible by all users connected to the net. Hence,
the languages of the web are used, such as JavaScript, HTML
and CSS. The principal advantage of using JavaScript with
JSON is that JSON is based on features that are inherent in the
JavaScript language [24] which makes the whole process
faster and more direct.

It has been developed using the MEAN Stack [28]. MEAN
stands for MongoDB, Express [29], AngularJS [30] and
Node.js [31]. The front-end of the application uses AngularJS.
AngularJS is a JavaScript framework that helps building
dynamic views in web-applications and eases the control of
the data. On the server side, the tool uses Node.js as an
interpreter that is designed to build scalable applications. It is
used along with Express, a minimal Node.js web application
framework which facilitates its management. Finally, the
server-side connects the application with a database
MongoDB, already described in Section II D. In order to use
MongoDB within the application, we choose Mongoose [32]
as a tool for modeling objects and inserting them into the
database.

Speaking of the User Interface (UI), we have used
Bootstrap [33], an HTML, CSS and JavaScript framework
which allows programmers to develop responsive and mobile
projects on the web. The UI of the tool is shown in Figs. 4 and
6.

So far, only the manual part is implemented and the human
intervention is necessary. However, it will be possible in the
near future to develop a parser tool or plug-in from other
formats to JSON. Moreover, due to the fact that JSON is an
automatic format that can be processed, it is possible to create
a translation from the model in JSON to another language or
model. Hence, we could use a method to extract the model
elements, and then we use our tool to formalize and transform
them to UML or other models.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:3, 2017

356

IV. A CASE STUDY

This paper shows the tool working with a case study
presented originally in [34] and then solved in [35], [23], [36].
Its statement is as follows:

A library issues loan items to customers. Each
customer is known as a member and is issued a
membership card that shows a unique member number.
Along with the membership number other details on a
customer must be kept such as a name, address, and date
of birth. The library is made up of a number of subject
sections. Each section is denoted by a classification mark.
A loan item is uniquely identified by a bar code. There
are two types of loan items, language tapes, and books. A
language tape has a title language (e.g. French), and level
(e.g. beginner). A book has a title, and author(s). A
customer may borrow up to a maximum of 8 items. An
item can be borrowed, reserved or renewed to extend a
current loan. When an item is issued the customer's
membership number is scanned via a bar code reader or
entered manually. If the membership is still valid and the
number of items on loan less than 8, the book bar code is
read, either via the bar code reader or entered manually.
If the item can be issued (e.g. not reserved) the item is
stamped and then issued. The library must support the

facility for an item to be searched and for a daily update
of records.
The different approaches we have mentioned do the object-

oriented analysis and give the results shown in Table I. Once
we have obtained these results, they are used as an input to our
tool. The first step is to create a new model whose name could
be LibraryModel (Fig. 4).

TABLE I

OBJECT ORIENTED ANALYSIS RESULTS

Type Names

Classes Library, Loan_item, Member, Member_number,
Customer, Book, Language_tape, Barcode_Reader,
Subject_section, Membership_Card

Attributes name, address, date-of-birth, barcode,
classification_mark, title, author, level,
membership_number, valid

Methods issue(), show(), denote(), identify(), extend(), scan(),
enter(), read_barcode(), stamp(), search(), update()

Associations

Library issues Loan_items; Membership_Card issued to
Member; Library made up of Subject_section; Customer
borrrow Loan_item; Customer renew Loan_item;
Customer reserve Loan_item; Library support facility

Generalizations Loan_item is type-of Language_tape; Loan_item is type
of Books

Aggregations -

Instances -

Fig. 4 Creating a new model

The formalization of an initialization model would be

similar to Fig. 5. As the figure shows, name attribute is a
String and relations and classes attributes are arrays. The _id
attribute is an object identifier auto generated by MongoDB. It
is a hexadecimal number of 12 bytes which can be replaced by
the user at any time. The _v key contains the internal revision
of the document; it is stored and generated by mongoose.

Fig. 5 Model JSON document

In order to build the model, we should add inside
LibraryModel all the different classes and relationships

between classes. The classes will be added with its attributes
and methods. For example, we add the class Costumer with its
attributes: name, address and date-of-birth (Fig. 6). In the
same way we will add the class Loan_item and the relation
between them: Customer borrrow Loan_item.

Another advantage of the approach is that the tool saves live
models in a MongoDB database and as a result those models
are ready to be shared between different clients.

V. CONCLUSION

Software development is in steady progress and there is a
lot of work to do in the field. In the requirements phase, the
main problem that we identify is the diversity of methods and
tools used and the ambiguity that is generated when we try to
mix them. We believe that by using an ODM, the problem is
solved. Besides, the time that is spent processing the same
requirements for different applications or for different
organization could be avoided using a common database.
Moreover, we have developed a tool that, given certain

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:3, 2017

357

requirements of an application, formalises them in JSON and
stores them in a MongoDB. The tool is online, so it could be
used by anyone with authorization to do it, and the generated
data are securely stored and shared. The tool has an easy user

interface to facilitate its use and it has been developed with the
latest technologies which allow it to be responsive and
adaptive.

Fig. 6 Inserting Costumer class with the tool

VI. FUTURE LINES

The approach presented in this paper is still improving. We
aim to develop a completely independent and automatic tool
that helps developers and engineers in their work.

In the near future we hope to join this approach with the
Model Driven Architecture. Therefore, having stored the
formalized requirements in an ODM, we will be able to
generate the code automatically. This code could be written in
any language: Java, C, and so on.

ACKNOWLEDGMENT

The authors of this paper thank the “Instituto de Automática
y Fabricación” of the Universidad de León, and Prof. Ángel
Álonso Álvarez for the essential support given.

REFERENCES
[1] Jovanovich, D., & Dogsa, T. “Software Development: Agile vs.

Traditional”. In Proceedings of the 7th International Conference on pp.
11-13, 2003.

[2] Schwaber, K. “Scrum development process”. In Business Object Design
and Implementation. Springer London. pp. 117-134, 1997.

[3] Zave, P. “Classification of research efforts in requirements
engineering”, ACM Computing Surveys, pp. 315-321, 1997.

[4] Dermeval, D., Vilela, J., Bittencourt, I. I., Castro, J., Isotani, S., Brito,
P., & Silva, A. “Applications of ontologies in requirements engineering:
a systematic review of the literature.” Requirements Engineering, pp. 1-
33, 2015.

[5] De Gea, J. M. C., Nicolás, J., Alemán, J. L. F., Toval, A., Ebert, C., &
Vizcaíno, A. “Requirements engineering tools: Capabilities, survey and
assessment.” Information and Software Technology, 54(10), 1142-1157,
2012.

[6] Boukhari, I., Bellatreche, L., & Jean, S. “An ontological pivot model to
interoperate heterogeneous user requirements.” In International
Symposium on Leveraging Applications of Formal Methods, Verification
and Validation Springer Berlin Heidelberg. pp. 344-358, 2012.

[7] Cardei, I., Fonoage, M., & Shankar, R. “Model based requirements
specification and validation for component architectures.” In Systems
Conference, 2nd Annual IEEE (pp. 1-8). IEEE, 2008.

[8] Myers, B. A. “The case for an open data model” (No. CMU-CS-98-153).
Carnegie-Mellon Univ Pittsburgh PA School of Computer Science,
1998.

[9] de Gea, J. M. C., Nicolás, J., Alemán, J. L. F., Toval, A., Ebert, C., &
Vizcaíno, A. Requirements engineering tools. IEEE software, 28(4), 86-
91, 2011.

[10] Zhang, J., Brand, M. V. D., Şutîi, A. M., & Hamilton, M. “Pattern
specification and application in meta-models in Ecore”. In Proceedings
of the 1st Industry Track on Software Language Engineering (pp. 3-12).
ACM. 2006.

[11] Feiler, P. H., Gluch, D. P., & Hudak, J. J. “The architecture analysis &
design language (AADL): An introduction (No. CMU/SEI-2006-TN-
011)”. Carnegie-Mellon Univ Pittsburgh PA Software Engineering Inst.
2006.

[12] OMG, S., & Notation, O.M.G. “Software & Systems Process
Engineering Meta-Model Specification”. OMG Std., Rev, 2. 2008.

[13] Friedenthal, S., Moore, A., & Steiner, R. “A practical guide to SysML:
the systems modeling language”. Morgan Kaufmann. 2014.

[14] “UML” (Online: http://www.uml.org). Accessed on 31/01/2017.
[15] Bennett, S., McRobb, S., & Farmer, R. “Object-oriented systems

analysis and design using UML”. McGraw Hill Higher Education.
2005.

[16] Deeptimahanti, D. K., & Babar, M. A. “An automated tool for
generating UML models from natural language requirements”.
IEEE/ACM International Conference on Automated Software
Engineering, pp. 680-682, 2009

[17] Joshi, S. D., & Deshpande, D. “Textual requirement analysis for UML
diagram extraction by using NLP”. International Journal of Computer
Applications, 50(8), 2012.

[18] Kumar, D. D., & Sanyal, R. “Static UML model generator from analysis
of requirements (SUGAR)”. In Advanced Software Engineering and Its
Applications, pp. 77-84, 2008.

[19] More, P., & Phalnikar, R. “Generating UML Diagrams from Natural
Language Specifications”. International Journal of Applied Information
Systems, Foundation of Computer Science, 1(8), 2012.

[20] Mich, L., & Garigliano, R. “A linguistic approach to the development of
object oriented systems using the NL system LOLITA”. In Object-
Oriented Methodologies and Systems. Springer Berlin Heidelberg, pp.
371-386, 1994.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:3, 2017

358

[21] Overmyer, S. P., Lavoie, B., & Rambow, O. “Conceptual modeling
through linguistic analysis using LIDA”. In Proceedings of the 23rd
international conference on Software engineering. IEEE Computer
Society, pp. 401-410, 2001.

[22] Bajwa, I. S., & Choudhary, M. A. “From natural language software
specifications to UML class models”. In International Conference on
Enterprise Information Systems. Springer Berlin Heidelberg, pp. 224-
237, 2011.

[23] Bray, T. (2014). “The JavaScript Object Notation (JSON)” Data
Interchange Format (No. RFC 7158).

[24] Benson, T., & Grieve, G. “Principles of health interoperability:
SNOMED CT, HL7 and FHIR.” Springer, pp. 74–81, 2016.

[25] “MongoDB”. (Online: https://www.mongodb.com). Accessed on
31/01/2017.

[26] Han, J., Haihong, E., Le, G., & Du, J. “Survey on NoSQL database.”
Pervasive computing and applications (ICPCA), 6th international
conference on. IEEE, pp. 363-366, 2011.

[27] Amber S.W.: “UML 2 Class diagram Guidelines”, (Online:
http://www.agilemodeling.com/style/classDiagram.htm), 2016.
Accessed on 20/12/2016

[28] “Mean Stack”, (Online: http://www.mean.io). Accessed on 31/01/2017.
[29] “Express”, (Online: http://www.expressjs.com). Accessed on

31/01/2017.
[30] “AngularJS”, (Online: https://angularjs.org). Accessed on 31/01/2017.
[31] “Node.js”, (Online: http://nodejs.org). Accessed on 31/01/2017.
[32] “Mongoose”, (Online: http://mongoosejs.com). Accessed on 31/01/2017.
[33] “Bootstrap”, (Online: https://getbootstrap.com). Accessed on

31/01/2017.
[34] Callan. R.E. “Building Object-Oriented Systems: An introduction from

concepts to implementation in C++.” In Computational Mechanics
Publications, 1994.

[35] Harmain, H. M., Gaizauskas R. “CM-Builder: A Natural Language-
Based CASE Tool for Object- Oriented Analysis.” Automated Software
Engineering. 10(2):157-181, 2003.

[36] Sharma, R., Srivastava, P. K., & Biswas, K. K. “From natural language
requirements to UML class diagrams”. Second International Workshop
on Artificial Intelligence for Requirements Engineering (AIRE). IEEE.
pp. 1-8, 2015.

