
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:7, 2009

1857

JConqurr - A Multi-Core Programming Toolkit for
Java

G.A.C.P. Ganegoda, D.M.A. Samaranayake, L.S. Bandara, K.A.D.N.K. Wimalawarne

Abstract—With the popularity of the multi-core and many-core
architectures there is a great requirement for software frameworks
which can support parallel programming methodologies. In this paper
we introduce an Eclipse toolkit, JConqurr which is easy to use and
provides robust support for flexible parallel progrmaming. JConqurr
is a multi-core and many-core programming toolkit for Java which
is capable of providing support for common parallel programming
patterns which include task, data, divide and conquer and pipeline
parallelism. The toolkit uses an annotation and a directive mechanism
to convert the sequential code into parallel code. In addition to that
we have proposed a novel mechanism to achieve the parallelism
using graphical processing units (GPU). Experiments with common
parallelizable algorithms have shown that our toolkit can be easily
and efficiently used to convert sequential code to parallel code and
significant performance gains can be achieved.

Keywords—Multi-core, parallel programming patterns, GPU, Java,
Eclipse plugin, toolkit,

I. INTRODUCTION

W ITH the advent of multi-core processors, the impor-

tance of parallel computing is significant in the modern

computing era since the performance gain of software will

mainly depend on the maximum utilization across the cores

existing in a system. It is necessary that tools exists to make the

full use of the capabilities offered by the parallel computing.

Though current parallelizing compilers support parallelization

at loop level [1] it is a hard task to detect parallel patterns and

do conversions at the compiler level.

Already there exists languages and libraries like OpenMP

[2], Cilk++ [3], Intel TBB for C++ [4] language to support the

multi-core programming. Also there are few recent develop-

ments of tools for Java language such as JCilk [5], JOMP [6]

and XJava [7]. Among them only a few libraries are capable

of providing the data, task, divide and conquer and pipeline

parallelism pattern [8] in a single toolkit or library.

In this paper we discuss about a multi-core programming

toolkit for Java language which uses annotations and a novel

directive mechanism to provide meta information of the source

code. PAL [9] is one of the tools which use annotations

mechanism to achieve parallelism targeting cluster networks of

G.A.C.P. Ganegoda is with the Department of Computer Science and
Engineering, University of Moratuwa, Katubedda, Sri Lanka (e-mail: gacp-
gane@yahoo.com).

D.M.A. Samaranayake is with the Department of Computer Science and
Engineering, University of Moratuwa, Katubedda, Sri Lanka (e-mail: dmad-
hawie@gmail.com).

L.S. Bandara is with the Department of Computer Science and Engineering,
University of Moratuwa, Katubedda, Sri Lanka (e-mail: lahirusu@gmail.com).

K.A.D.N.K. Wimalawarne is a lecturer at the Department of Computer
Science and Engineering, University of Moratuwa, Katubedda, Sri Lanka (e-
mail: kishanwn@gmail.com).

workstations and grids. Even though we use annotations, com-

pared to it we use a different procedure. With the use of meta

information we were able to provide a source level parallelism

instead of the compiler level parallelism. Our toolkit comes as

a plugin for the Eclipse IDE [10]. The toolkit is capable of

converting a sequential Java project into a new project which

is optimised based on the parallel patterns, using the meta

information passed by the user. In order for Java to work

with many-core processors we have propose a mechanism to

achieve parallelism using the graphical processing unit (GPU)

using the JCUDA [11] binding. With that our toolkit can be

used for both CPU and GPU parallelism.

The rest of the paper is organized as follows. Section II

discusses the design of the JConqurr toolkit. Section III dis-

cusses the annotation and directive approaches used for task,

data, divide and conquer, pipeline and GPU based parallelism.

Section IV discusses the performance of the applications

which are parallelized using the JConqurr toolkit and the

final section talks about conclusions we have arrived in our

research.

II. DESIGN

In this section we present the design of the JConqurr toolkit.

The Fig. 1 shows a high level architectural view of the toolkit.

Eclipse is an IDE based on the plugin based architecture [12].

Also the IDE includes plugins to support in developing Java

development tools (JDT). We have considered the most of the

JDT components in designing of our toolkit. JDT Model [13]

components are used to navigate Java source code elements in

the project. Eclipse Abstract Syntax Tree (AST) API [14] was

used to manipulate sequential code and to generate the code

which enhanced with parallel patterns. Eclipse Build API [15]

was used to build the new project in the workspace.

As the first step the developer has to use our annota-

tion and directive libraries to provide the meta information

of the relevant parallel pattern to be applied to a selected

code segment. Since Java annotations [16] does not support

annotating statements inside a method, we decided to use

a static method library as the directive mechanism. At the

core of the toolkit we traverse through the directory hierarchy

of the project and create a project similar to the existing

one. Then the toolkit goes through the each compilation unit

and analyse annotations types used by the developer. We

use a filtering mechanism with the help of Eclipse AST to

filter the annotated methods. Based on the parallel pattern

developer has specified these filtered methods are directed

to the relevant parallel handler. Each handler manipulates



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:7, 2009

1858

Fig. 1. Architectural design of the JConqurr toolkit

the code according to the type of the parallel pattern and

generates new methods which support the underline multi-

core/many-core architecture. Finally the project builder uses

these modified methods to generate the new compilation unit

and write them back to the relevant packages of the newly

created project. At the end, with just a click of a button the

developer can create a project similar to the current project

which has enhanced with the parallel patterns.

III. ANNOTATIONS AND DIRECTIVE APPROACHES

Our toolkit mainly links with the Eclipse AST API for code

processing. Directives are used to structure the parallel pattern

approach. Using those structures we generalise the patterns so

that it will make easy for the developers to achieve the relevant

parallel pattern. We assume that the developer has the basic

idea of the organization of tasks inside the source code. In

below subsections we discuss about different annotations and

directive structures provided in our toolkit.

A. Task Parallelism

Task parallelism happens when we can execute sets of

independent tasks (set of code segments) on different pro-

cessors simultaneously. The performance gain of the task

parallelism depends on the degree of coarse granularity. The

most effective way to handle the execution of those tasks can

achieve by using a pool of long lived threads. Thread pools

eliminate the overhead of creating and destroying threads.

Java provides a thread pool called an Executor service [17]

which provides the ability to submit tasks, wait for a set

of submitted tasks to complete and cancel incomplete tasks.

Considering these facts we use the Java Executor framework

to reformat the sequential code at the conversion process. In

the source conversion process we submit the created tasks

to Java Executor framework. The Fig. 2 shows an example

of annotation and directive mechanism used to achieve task

parallelism.

In task parallelism we provide directives to define tasks and

to define barrier synchronisations. Tasks have to be surrounded

Fig. 2. Annotation and directive approach in Task parallelism

with Directives.startTask() and Directives.endTask() as shown

in the Fig. 2. To define a barrier, developer can use the

Directives.Barrier() directive after the relevant set of tasks.

At the conversion process, the toolkit first filters the methods

which have @ParallelTask annotations. Then these filtered

methods are submitted to the task parallelism handler. In the

handler it analyses directives used inside methods and filter

tasks that need to be parallel. In filtering tasks inside a method

we do dependency analysis to filter variables which are linked

inside the tasks. This mechanism is somewhat similar to the

approach used in Embla [18]. Then the method is recreated

by injecting relevant code segments to run the tasks using the

Java Executor framework. Barriers are implemented using the

cyclic barrier [19] of java.concurrent.util API.

B. Data Parallelism

Data parallelism occurs when the same operation has to be

applied to different sets of data. The degree of the granularity

depends on the data size. Integration of task parallelism and

data parallelism is still an open area of research and in our

toolkit we provide data and task parallelism as two separate

options.

The annotation and directive approach for a for loop paral-

lelization is shown in Fig. 3. We used @parallelFor annotation

to filter the methods. Then using the Directive.forLoop() we

can specify the for loop which requires the loop parallelism.

In addition to that shared variables and barriers can be de-

fine using the Directive.shared(string) and Directive.barrier()

directives. The toolkit is capable of parallelizing multiple for
loops inside a method as well.

During the conversion process, filtered methods which are

annotated with @ParallelFor are submitted to the data par-

allelism handler. Based on the number of processors in the

underline architecture the toolkit decides the number of splits

that are needed for the for loop. Then each split is organized

as a task and submitted to the Java Executor framework.



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:7, 2009

1859

Fig. 3. Annotation and directive approach in Data parallelism

Fig. 4. Annotation and directive approach in Divide and Conquer parallelism

C. Divide and Conquer Parallelism

Divide and conquer algorithms can be identified as another

major area in which parallel processing can easily be applied.

In these algorithms, a problem is recursively divided into

subproblems and executed. When subproblems are solved

results of them are combined together to obtain the complete

solution to the original problem. Subproblems are defined in

such a way that they can be executed in parallel. The basic

requirement for these subproblems to be executed in parallel

is that, a particular subproblem needs to be independent of

the result of another subproblem. In JConqurr, we introduce a

mechanism to enable parallel execution of divide and conquer

algorithms [20].

We use a Java concurrency package developed by Doug Lea

[21] to implement divide and concur parallelism in JConqurr.

Divide and concur algorithms have been efficiently solved

using the fork-join pattern [8] which we integrated to our

toolkit.

JConqurr identifes existing divide and conquer algorithms

by analysing a given source code. If a particular method

is invoked multiple times from within itself on independent

subset arguments they are identified as divided subproblems.

In sequential execution these subproblems are solved one after

the other, but in converted source code we enable parallel

execution of these subproblems via assigning them to separate

tasks and executing those tasks simultaneously.

In conversion process a new inner class extending class

FJTask [22] is added to the corresponding class where divide

and conquer algorithm is found. The method having recursive

calls to itself is then placed as the run method with recursive

calls replaced with new tasks generated correspondingly. In

Fig. 5. Usage of FJTask for parallelizing merge sort

creating this class method, local variables of the recursive

method and the types of variables which are passed as method

arguments has to be highly considered and defined. Then the

source code is analyzed to identify the first invocation of

the recursive method and that invocation is replaced with a

generated new task correspondingly. The source code segment

in Fig. 5 shows the overview of the new class generated for

merge sort algorithm.

D. Pipeline Parallelism

Pipeline parallelism can be applied when a set processes

has to be applied on a set of data. To increase the efficiency,

the data set can be segmented and while one data segment has

completed the first process and enter to the second process,

another segment of data can enter to the first stage for the

execution of first process. In pipeline processing, although

the time taken for processing a particular data set is not

minimized, an overall performance gain can be seen due to

the pipelined process [23]. The Fig. 6 illustrates the pipeline

process strategy.

In our research we are introducing a novel method of

annotaions and directive machnism as for other patterns to

support pipeline processing using Java. Our proposed approach

is different from existing tools that support pipeline processing

since they need to special syntax [7] or programing effort [5]

where the original source code need to be changed. JConqurr

provides an efficient processing by delegating each pipeline

stage to a separate thread of execution. Data flows among

the processes are handled with the use of Java bounded

blocking queues. Currently two flavors of pipeline processes

are facilitated in JConqurr. They are regular pipeline processes

and split-join processes [24].
1) Regular Pipeline Process: This approach can be used

when the load on each stage is almost equal so that the

set of processes on a particular dataset can be performed

sequentially. This is the most generic method of pipeline

parallelism. The converted pipeline process follows a producer

consumer strategy where each stage works as a consumer for



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:7, 2009

1860

Fig. 6. Pipeline Process Strategy

Fig. 7. Illustration of Split-Join Pipeline Process Strategy

the previous stage and a producer for the next stage. Stage

(i) consumes the data produced or processed by stage (i-1)

and produces the data for the stage (i+1) by performing the

expected functions at that stage.

2) Split-Join Pipeline Processes: Being another flavor of

pipeline processes, this approach is used when the load on

a particular stage is considerably high so that the flow of

processes may block due to the excessive load on that stage.

To overcome this situation, the execution of the process

corresponding to that stage itself will be assigned to several

threads, so that the excessive load will be divided among them

in a round robin fashion [24].

In JConqurr, this is developed as an extended process of

regular pipeline process where, the basic functionality differs

only for intermediate input/output processes. The user is

facilitated to specify the number of split paths depending on

the load of the respective pipeline stage.

Depending on the directives specified, the tool needs to

recognize the split stage (stage (i)). Then after the data set

is processed by the stage (i-1), the output has to be written

to multiple output queues in a round robin fashion, so that

processing at stage (i) can be assigned to multiple threads.

The output of stage (i) will be written separately to individual

output queues. Stage (i+1) is considerate on retrieving data

from multiple input queues in the same order they were

assigned to multiple threads. Input/output processes have to

be carefully thought of to assure the input order of the dataset

is preserved.

Annotation and directives in parallelizing pipeline processes

in JConqurr is designed as follows.

@ParallelPipeline: This annotation is used above a method

in which pipeline process exists. The purpose of this annota-

tion is to ease the AST to filter the required methods for the

conversion process.

Directive.pipelineStart(): In pipeline processes a particular

set of functions are applied to a set of data. This result in

a loop in the program, a while loop most probably. To ease

the extraction of the required code segment for the conversion

process, this directive is used above the loop which contains

the pipeline process.
Directive.pipelineStage(input,output): This directive is used

to separately identify the pipeline stages. Within the loop, the

code segment in between stage directive i and the directive

i+1 is considered as the pipeline process at stage i. The last

pipeline stage includes the processes from last directive to the

end of the loop. This directive generally takes two arguments,

namely, the input and output for a particular stage. Depending

on the application and the process in a given stage, multiple

inputs and/or outputs are also possible. In such a scenario they

need to be defined as a set. In a nutshell, the input refers to

what a process has to dequeue from the input queue and the

output refers to what has to be enqueued to the output queue.
Directive.pipelineSplitStage(input,output,number of split

paths): This directive is used to specify the stage containing

a split mechanism, which indirectly says that the load at this

stage is high. The inputs and the outputs will be specified in

the usual way and additionally the number of split paths will

be specified. The number of threads running at the particular

stage will be equal to the number of split paths specified.
Directive.pipelineEnd(): This directive is used to mark the

end of the pipeline process. If there is a particular set of

functions to be done at the end of the process, such as closing

the input files, they can be specified as a block following the

above directive.
A sequential programme, marked according to the above

specification is ready to be converted into the parallel exe-

cutable code via JConqurr. The Fig. 8 illustrates a three stage

pipeline process along with corresponding annotations and

directives where pipeline parallelism can be applied.
In the conversion process the three pipeline stages will be

handled by three threads correspondingly. The dataflow among

the threads is handled with the use of queues where a thread

will dequeue the data enqueued by the previous thread or the

input. The dequeued data will be subjected to the process at

the current stage and will be written to another output queue to

be dequeued by the thread corresponding to the next pipeline

stage. Queues are shared among the threads to enable a thread

to dequeue the data enqueued by another thread.

E. GPU Parallelism
The programmable Graphic Processor Unit or GPU availabe

today has evolved into a highly parallel, multithreaded, many-

core processor with higher computational power and also

higher memory bandwidth. GPU is specialized for computing

intensive and highly parallel computations, exactly what is

needed in graphics rendering and this is also the very property

that we are using in our toolkit. All parallel patterns are

not supported by GPU but it has a strong support for data

parallelism and limited level of stream programming.
As earlier the conversion process the toolkit first filters

the methods which have @GPU annotations. Inside the han-

dler the toolkit analyses for for loops starting with Direc-

tive.gpuforloop().



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:7, 2009

1861

Fig. 8. Annotation and Directive Usage in Pipeline Processes

Fig. 9. Annotation approach in GPU parallelism

NVIDIA has introduced CUDA [25], a general purpose par-

allel computing architecture with a new parallel programming

model. In this architecture we can instruct to execute our

programmes in GPU using this extended C language. C for

CUDA extends C by allowing the programmer to define C

functions, called kernels. CUDA kernels act as single instance

multiple thread (SIMT) when you call such a kernel, it is

executed on different parallel threads [11].

The identified method by directives is recreated as a CUDA

file which is an extended version of C language, and that is

saved in a separate file at the time of the conversion with the

file extension .cu. This file is created by injecting relevant code

segments to the method with according to the CUDA syntax.

The CUDA kernel for the loop in Fig. 9 is shown in the Fig.

10.

Fig. 10. A sample CUDA file which is created using the annotated method

Fig. 11. A sample command used to compile the CUDA file into a cubin
file

To execute this code segment in GPU it must be compiled

using an nvcc compiler [25]. The nvcc is a compiler driver

that simplifies the process of compiling C for CUDA code.

Then the compiled code is saved in another separate file which

is a binary file and is saved with the file extension called

.cubin. This compilation process, and saving it to a separate

file is also done during the conversion and it is done using

a command. Such command line argument is showed in Fig.

11. The advantage of cubin files is that they can be ported to

any 32-bit architecture.
After the conversion, the cubin file should be loaded using

the JCuda driver bindings [11]. JCuda is a Java binding library

for the CUDA runtime and driver API. With JCuda it is

possible to interact with the CUDA runtime and driver API

from Java programs, as it is a common platform for several

JCuda libraries.
Using these libraries we can control how to execute a kernel

(CUDA function) from the loaded module, initialize the driver,

load the cubin file and obtain a pointer to the kernel function,

allocate memory on the device and copy the host data to

the device, set up the parameters for the function call, call

the function, copy back the device memory to the host and

clean up the memory, etc. So after the calculation inside GPU

is done, the result is copied back to our Java project and

carried forward. Using this method we can be able to occupy

large number of cores in the GPU and get results calculated

simultaneously with increased performance.

IV. PERFORMANCE

We have tested our toolkit in converting projects and appli-

cations into parallel enhanced projects. Projects are tested in

both sun JDK 1.6 and OpneJDK 1.6 environments. In below

sections we discuss the performance of each parallel pattern

using standard applications. Applications are tested on dual-

core and quad-core machines.

A. Performance of Task Parallelism
Fig. 12 shows the performance analysis of converted matrix

multiplication project vs. the sequential matrix multiplication

project. In here developer has used the task parallel annotation

and directives approach. The graph clearly shows the high

performance gain with the increment of the coarse granularity.

We were able to achieve considerable performance gain with

quad-core processors. During the testing both JDK versions

showed us similar behaviour.

B. Performance of Data Parallelism
We have tested the Eigenvalue calculation application with

the use of data parallel annotation and directive schemes.



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:7, 2009

1862

Fig. 12. Performance Monitoring in Task Parallelism in a 2.5 GHz Quad
core processor machine with a 4GB RAM

Fig. 13. Performance Monitoring in Data Parallelism in a 2.5 GHz Quad
core processor machine with a 4GB RAM

As Fig. 13 shows the performance gain increased with the

granularity of the data parallelism. Considerable performance

was monitored in the quad-core processor.

C. Divide and conquer

The graph in Fig. 14 depicts the results of performance

testing of sequential and parallel execution of merge sort

algorithm. When the graph is analysed it is seen that the

performance of the parallelism enabled source code exceeds

that of the sequential code only after a certain limit. This

limitation occurs because when the data to be processed is

low, the overhead caused by the threads exceeds the achievable

gain of performance. But when the data to be processed is high

the gain of performance in parallel execution is considerably

high.

Fig. 15 depicts the performance analysis of quick sort in

sequential execution and in parallel execution in dual-core

and quad-core machines. The performance has improved with

increasing size of the problem and the number of processors.

D. Performance of Pipeline Parallelism

In this section we discuss the performance analysis for the

test results for pipeline parallelism. The process was tested

Fig. 14. Performance Monitoring in Divide and Conquer Parallelism in
Merge Sort

Fig. 15. Performance Monitoring in Divide and Conquer Parallelism in Quick
Sort

with using two applications, a file processing application and

a data compression application.

1) File Processing: This is an experimental application

where a program reads a text input and applies a set of

heavy numerical calculations for the data read. For the testing

purposes, the calculations were designed in a way that each

stage carries equal loads. The following graph depicts the time

taken for processing different sizes of data sets.

Fig. 16. Performance monitoring in pipeline parallelism - File Processing



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:7, 2009

1863

Fig. 17. Performance Comparison of Regular Pipeline and Split-join - File
Processing

Fig. 18. Performance monitoring in pipeline parallelism - Data Compression

According to the representation of Fig.16, it can be clearly

seen that the performance of the parallel executable code is

higher than that of the sequential code. Further the increas-

ing gap in between the two plots illustrates the increasing

performance gain with the increasing number of data to be

processed.

The Fig. 17 depicts results obtained for a similar file

processing application with unbalanced load. The calculations

are designed in such a way that, the load at a given stage

is a multiple of the load at other stages. When the regular

pipeline process is applied on the given application, the

performance gain is limited because of the bottleneck at the

stage with higher load. When the split-join process is applied

this bottleneck is avoided and hence results in an excellent

performance gain.

But most of the real world examples failed to fulfil the

eligibility requirements for the pipeline process to be applied.

Since the thread behaviors are dependent on the decisions of

the JVM, the performance gain is not guaranteed. But any

application with considerably higher load at each stage is

eligible for the conversion process.

2) Data Compression: This is another example where we

compress a file using java.util.zip. The time taken for com-

pressing different sizes of files is measured over time. The

graph in Fig. 18 depicts the results obtained.

The data compression example demonstrates an unexpected

behavior with respect to other parallel applications. When the

Fig. 19. Performance Monitoring in GPU based Parallelism

size of the file to be compressed exceeds a certain limit, the

performance of the parallel program degrades. The reason for

this can be interpreted as the unbalanced load among the stages

of the pipeline. The process consists of two steps namely,

reading the input file and writing in to the zip output stream.

When the file size to be compressed is extremely large, the

load on the read process becomes negligible compared to the

write process. Therefore the parallel program fails to exceed

the overhead of the thread execution and communication.

E. Performance of GPU based Parallelism

In this section we discuss the performance analysis for a

program which was run in the GPU. The GPU used was

a NVIDIA GeForce 9800GX2 model which has 256 stream

processors and 1GB of memory on the card. In this program

a matrix of high order was multiplied by another matrix. We

found that when the order of the matrix is too small, the time

taken by the GPU is higher than the time taken to calculate

in the CPU sequentially. When running on GPU, it has to go

through overheads like the Java bindings, memory allocation

for the variables in the device (GPU), copying the values to

the device, copying back the results and, clearing the memory.

We observed that when the order matrices are small, the

above mentioned overhead decrease the overall performance

compared to CPU execution. But when the order of the matrix

is increased at a certain level it gave a performance gain as

the higher number of parallel calculations overcomes those

overheads. The Fig. 19 shows the performance graph of this

experiment.

V. CONCLUSION

We have discussed about a toolkit which can heavily support

multi-core programming in Java. In addition to that we have

discussed about a novel technique to achieve parallelism using

the CUDA based graphical processing units. Our toolkit is

open for several future enhancements.

Automatic parallelization is one area we look forward in

future enhancement so that without the use of annotations and

directive we can automatically fulfill the parallel optimization.



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:7, 2009

1864

This may provide an opportunity to convert legacy applications

to optimized parallel applications.

Further a dependency analysis tool and load balancing

techniques will need to be integrated into JConqurr to provide

support to automatic parallelization. Mainly a dependency

analyzer can be used to identify the sequential code segments

which can become parallel. With the use of these features, the

complexity of the annotation and directive mechanism can be

avoided which would benefit the pipeline processes greatly.

Improvements will need to be introduced in order to re-

duce the overhead of communication and thread scheduling.

Currently applications of pipeline and split-join processes are

limited due to these factors. To get the maximum use of

the conversion process better communication mechanisms will

have to be researched.

In our research we only considered for loop parallelism us-

ing GPU and investigation on parallelism using other patterns

remains as interesting research areas. One such area would be

pipeline processing using the streaming capabilities provided

with GPU. Another open research area is hybrid programming

to utilize both CPU and GPU to achieve maximum parallelism.

REFERENCES

[1] C. T. yang, S.S. Tseng, M. C. Hsiao, S. H. Kao, “Portable Parallelizing
Compiler with Loop Partitioning”, Proc. Natl. Sci. Counc ROC(A), Vol.
23, No. 6, 1999. pp.751-756

[2] B. Chapman, L. Huang, “Enhancing OpenMP and Its Implementation for
Programming Multicore Systems.” Invited Paper, Proc. PARCO, 2007:
pp. 3-18.

[3] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K.
H. Randall, and Y. Zhou, “CILK: An efficient multithreaded runtime
system”, in Proc. 5th ACM SIGPLAN Symp. on Principles and Practices
of Parallel Programming, pages 207216, Jul 1995.

[4] J. Reinders, Intel Threading Building Blocks: Outfitting C++ for Multi-
core Processor Parallelism, 1st ed, O’Reilly, Jul 2007.

[5] J. S. Danaher, “The JCilk-1 Runtime System”, Masters thesis, Mas-
sachusetts Institute of Technology Department of Electrical Engineer-ing
and Computer Science, Jun 2005.

[6] M. Bull, S. Telford. “Programming Models for Parallel Java Applica-
tions”, Edinburgh Parallel Computing Centre, Edinburgh, EH9 3JZ, 2000.

[7] F. Otto, V. Pankratius, W. F.Tichy. “High-level Multicore Programming
with XJava”, 31st ACM/IEEE International Conference on Software
Engineering (ICSE 2009), New Ideas and Emerging Results, May 2009.

[8] T. G. Mattson, B. A. Sanders, B. L. Massingill, Patterns for Parallel
Programming, Addison-Wesley Professional, Sept 2004.

[9] M.Danelutto, M.Pasi, M.Vanneschi, P.Dazzi, D.Laforenza and L.Presti,
“PAL: Exploiting Java annotations for parallelism”, in European Research
on Grid Systems, pp.83-96. Springer US 2007.

[10] “Eclipse.org home”. [Online]. Available: http://www.eclipse.org/. [Ac-
cessed: 30/04/2010].

[11] Y. Yan, M. Grossman, V. Sarkar, “JCUDA: A Programmer-Friendly
Interface for Accelerating Java Programs with CUDA”, Europar, 2009.

[12] “Notes on the Eclipse Plug-in Architecture”. Azad Bolour and Bolour
Computing. [Online]. Available: http://www.eclipse.org/articles/Article-
Plugin- architecture/plugin architecture.html. [Accessed: 30/04/2010].

[13] “Eclipse Java development tools (JDT)” [Online] Available:
http://www.eclipse.org/jdt/ [Accessed: 30/04/2010].

[14] L. Nemtiu, J. S. Foster, M. Hicks, “Understanding Source Code Evo-
lution Using Abstract Syntax Tree Matching”, in Proc. International
Workshop on Mining Software Repositories (MSR), pages 1-5, Saint
Louis, Missouri, USA, May 2005.

[15] “JDT Core Component” [Online] Available: http://www.eclipse.org
/jdt/core/index.php [Accessed: 30/04/2010].

[16] “JDK 5.0 Developers Guide: Annotations Sun Microsys-
tems”. [Online].Available: http://java.sun.com/j2se/1.5.0/docs/
guide/language/annotations.html. [Accessed: 30/04/2010].

[17] M, Herlihy, N, Shavit. The Art of Multiprocessor Programming. Morgan
Kaufmann, 2008.

[18] K. F. Faxen, K, Popov, S, Janson, L, Albertsson, “Embla data depen-
dence profiling for parallel programming,” in Complex, Intelligent and
Software Intensive Systems, 2008.

[19] C. Ball, M. Bull, “Barrier Synchronization in Java”, Tech.Rep High-End
Computing programme (UKIEC), 2003.

[20] R. Rugina, M. Linard, “Automatic Parallelization of Divide and Conquer
Algorithms”, in Proc. 7th ACM SIGPLAN symposium on Principles and
practice of parallel programming, pp.72-83, 1999.

[21] D. Lea, “Overview of package util.concurrent Release 1.3.4.”
[Online]. Available: http://g.oswego.edu/dl/classes/EDU/oswego/cs/dl/
util/concurrent/intro.html. [Accessed: 20/10/2009].

[22] D. Lea, “A Java Fork/Join Framework,” in Proc. of the ACM 2000
conference on Java Grande, pp.36-43, 2000.

[23] M. I. Gordon, W. Thies, S. Amarasinghe, “Exploiting Course-Grained
Task, Data and Pipeline Parallelism in Stream Programs”, in Proc. of
the 2006 ASPLOS Conference, pp.151-162, 2006.

[24] B. Thies, M. Karczmarek, S. Amarasinghe, “StreaMIT: A language
for Streaming Applications”, International Conference on Compiler
Construction, Grenoble, France. Apr, 2002.

[25] “NVIDIA CUDA Programming Guide”. [Online]. Available:
http://developer.download.nvidia.com/compute/cuda/3 0/toolkit/docs/
NVIDIA CUDA ProgrammingGuide.pdf. [Accessed: 30/04/2010].


