International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:1, No:1, 2007

IVE: Virtual Humans’ Al Prototyping Toolkit

Cyril Brom, Zuzana VI¢kova

Abstract—IVE toolkit has been created for facilitating research,
education and development in the field of virtual storytelling and
computer games. Primarily, the toolkit is intended for modelling
action selection mechanisms of virtual humans, investigating level-of-
detail AI techniques for large virtual environments, and for exploring
joint behaviour and role-passing technique (Sec. V). Additionally, the
toolkit can be used as an Al middleware without any changes. The
main facility of IVE is that it serves for prototyping both the Al and
virtual worlds themselves. The purpose of this paper is to describe
IVE’s features in general and to present our current work - including
an educational game - on this platform.

Keywords— Al middleware, simulation, virtual world.

I. INTRODUCTION

N the last years, the field of virtual storytelling and

computer games has developed rapidly. We are interested in
particular research and development in this area - we focused
on how to control virtual humans in large environments
like role-playing game worlds. Our developmental activities
include an educational storytelling game and a simulator of
a society. This game was also our original motivation behind
our past [2] and current research.

Specifically, by virtual human (or actor) we mean a piece
of code that simulates a human-like behaviour. Virtual human
is equipped with a virtual body and carries out more complex
tasks than just walking, object grasping or chatting in an
ELIZA-like way. Large world represents a spacious artificial
environment — not a single room, but a village or a region.
In this paper, we will focus on Al issues concerning virtual
humans, not on computer graphics.

From the gaming Al point of view, creating the behaviour of
a single actor is now basically an engineering issue provided
that he has no extraordinary requirements. A reactive planning
technique and the A* algorithm are acceptable solutions for
standard issues. However, there are at least two new problems
stemming from large environments — environments are so large
that they cannot be simulated on a single PC due to enormous
costs of computation, and they are inhabited with tens or
hundreds of virtual actors, which means that we must handle
the design complexity of their behaviour.

Hence, after we had successfully prototyped the behaviour
of several individual actors in our former tool [2], we focused
on these “large world” issues. We started our development
by working on theoretical solutions. Since our former tool
could not cope with the large worlds, we tried to find a new
toolkit that would facilitate our creation of a large world case-
study. However, we couldn’t find any. We tried Jade [22], an

Cyril Brom is with Charles University, Faculty of Mathematics
and Physics, Malostranské nam. 2/25, Prague, Czech Republic (e-mail:
brom @ksvi.mff.cuni.cz)

Zuzana VI¢kova is with Charles University, Faculty of Mathematics
and Physics, Malostranské ndm. 2/25, Prague, Czech Republic (e-mail:
zuzana.vlckova@gmail.com)

agent development platform, but found it too slow for our
purposes. We tried BDI platforms (such as Jam [14]) and Soar
[17], but realized that they are mostly stand-alone languages
and not toolkits supporting virtual world developments. Then
we ventured on a computer game engine, such as UT [9],
but since the game environment architecture was always firm,
these open engines would be too restrictive for our purposes.

Finally, we had to create our own toolkit, IVE - Intelligent
Virtual Environment [15] (Fig. 1). IVE has been developed in
Java and its latest version (1.1) was released in April 2006.
The main feature of IVE is that - unlike other tools - it presents
a platform for prototyping not only behaviour of virtual actors,
but also of virtual worlds.

In this paper, we first devote to the speed and complexity
problems, and then describe IVE in general, discussing its
potential as a developmental, educational and Al prototyping
platform. Then, its features coping with “large world” issues
will be highlighted. Finally, we introduce our current work
exploiting IVE and discuss the toolkit’s restrictions.

& 1VE - Intelligent Virtual Environment o x|
e Simulson Lod Debugging
aan B b 0 Sume 100005] Les v [L Simulaton Flaal tima 131
= - = T
Erog | B area ousez- | [area wub~ | Bs] Area Dar 3¢, ok

B0 «dtw N w2y Wiadno

Fig. 1. A screenshot from the test-scenario. On the left, there is a restaurant
with seven actors. On the right side, there is a tree of a world’s locations

II. PROBLEMS AND SOLUTIONS IN DETAIL

We suggested that the developer of a virtual reality ap-
plication which features a large world inhabited by tens of
actors, would face two problems — the problem with simulation
speed and the problem with handling the behavioural design
complexity.

Our solution to the speed problem takes advantage of a
level of detail technique (LOD - Sec. VI) at virtual space
layer and of the actors’ Al (contrary to its common use in
computer graphics). The LOD technique allows us to simulate
in detail only the parts of the world which are in the centre of
user’s attention. To utilise the LOD technique, a hierarchical

94

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:1, No:1, 2007

representation of the virtual space and a hierarchical kind of
action selection mechanism must be used.

We have two solutions for complexity problems. First, an
architecture for virtual worlds allows us to represent the actors’
behaviour in a way that facilitates us to control actors both
autonomously and in the centralised way (i.e., more actors
can be driven by one control algorithm), enhancing the level of
their coordination. Secondly, this architecture allows loading
new actions and objects as plug-ins, but without using any
machine-learning method at the side of actors’ “minds”.

Both the LOD technique and the complexity solutions stem
from Bryson’s hierarchical reactive planning [8], Bratman’s
theory of practical reasoning [3] and Gibson’s perception
theory of affordances [11]. These solutions will be described
in sections IV - V.

III. IVE IN GENERAL

IVE is a virtual environment simulator. Users are allowed
to simulate their own virtual world with own actors - they
can define objects, actions, spaces and Al for the actors.
The set of actions and objects is easily extensible. After a
simulation is started, user can interact with it, speed it up,
slow it down and save/load it anytime. IVE also includes some
limited debugging tools, which serve for monitoring properties
of actors’ and objects’ properties (e.g. actor’s “mind”).

Level of abstraction. IVE works with environments which
are discrete in space and pseudo-continuous in time. It means
that the space is divided into square tiles or atomic places
organised in a graph structure at the ground level of abstraction
and that actors can perform atomic actions like “step” or “take
an object”, which can last any amount of time. Actors can
interact among themselves and with objects.

Case-study world. IVE was tested with a scenario compri-
sing about 100 virtual humans acting in four virtual villages
(most of them were miners); each with a restaurant, 5 mines,
and 12 houses. If all the world is simulated (without LOD), the
simulation is still real-time (it takes about 5-8% of processor
load at Pentium 4,3 GHz). With just one restaurant simulated
in full detail and the rest of the world in lower detail, the load
decreases below 1% of processor usage (GUI excluded).

Hierarchical space representation. The space is represented
hierarchically: tiles are grouped into areas, areas into larger
areas etc. Each layer forms another level of complexity. This
representation is used because of the LOD technique. The
number of layers depends on the virtual environment, in our
case-study world, we use 5 layers.

Action selection mechanism. Let genius be a component
encapsulating the action selection mechanism. Every actor has
its own so-called basic genius. These genii utilise a hierarchi-
cal reactive planning that is inspired by Bryson’s POSH [8]
and that also resembles classical BDI implementations (e.g.,
[14]). Every genius has a set of goals. It adopts one goal
as its present-directed towards-a-goal intention and finds an
activity that accomplishes the goal. The genius commits itself
to this activity (i.e., formulates a towards-a-means intention).
Further, the activity can break down to sub-goals that can be
consequently adopted as towards-a-goal sub-intentions. This

adopting continues until an atomic action is performed. Then,
independently of success or failure, the decision mechanism is
started again. The activities as well as goals are predefined by
the world designer, and searched from a “behavioural library”
in the process. Fig. 2 depicts the hierarchy of committed
towards-a-goal and towards-a-means intentions for a genius
that drives a virtual miner.

Technically, the choices between goals and activities are
made according to reactive rules with priorities. However, the
advantage of IVE is that these rules can be easily replaced
by another hierarchical mechanism. For example, we are now
augmenting IVE with HTN planning [11]. The evaluation
of rules’ expressions is performed in a lazy and Rete-like
way [10], which means that we cache results from previous
computations, and evaluate the same sub-expressions only
once. This technique speeds up the rules evaluation rapidly.
When the case-study world is simulated in a full detail, the
actors are driven by maximum 5 000 rules together.

Notable exception to this mechanism is path-finding, which
is performed by hierarchical A* algorithm.

The IVE contribution is that the basic mechanism described
here is extended to cope with the complexity problem, as will
be detailed in Sec. IV and Sec. V.

o | B Avea Mine2” | B Awa=Up™ | Wy Gemiuves

- o G-ggeniFuzNol: 32787
o G-contiedF uzal): 32067

© roveroon S

Fig. 2. The detail of a miner’s “mind” (in the mine at the moment). (G)
denotes goals, [P] activities.

Sensory perceptions. Every genius perceives its surrounding
through a set of sensors, which can be defined by a world de-
signer, and manages its own ‘“short-term memory” consisting
of actual percepts. These percepts are actually some index-
functional (or deictic) entities [1]. Sensors can be used both in
an active way (i.e., genius initiated) and in a passive way (i.e.,
driven by environmental events). In our case-study world, we
have implemented only a simple eyeSensor, which perceives
everything from the area the actor is located in.

GUI. Since IVE has been intended for Al issues, its GUI
is rather simple. However, the design of the GUI - world
interface allows an easy replacement of a particular GUL.

Interaction. In our case-study scenario, user does not control
an avatar in the environment, but she can influence the state
of the world directly (Fig. 3). However, the avatar can be
developed easily if needed.

95

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942

Fig. 3. The miner points to the hole to throw away the stone he holds.
Meanwhile, a user is adding 750 new stones to the cart.

How can we use it? There are at least three ways how IVE
can be used - for case-studies prototyping, for education and
as a middleware.

First, since we are allowed to create a new environment
and actors in IVE, the toolkit can be used as a platform for
prototyping almost any kind of virtual world with a discrete
space. IVE has been particularly intended for using large
environments, where we can benefit from the LOD technique.
User simply loads the configuration files, starts the simulation
and he can monitor actors behaviour, interact with them,
explore the log files etc. She can also change the mechanism
of action selection and sensing easily, provided that she keeps
its hierarchical nature that is needed for LOD.

Second, since it has a specious GUI and some debugging
tools, it can be used during a lecture for a live demonstration
of certain techniques. In particular, we use IVE in this way for
demonstrations of a reactive planning, LOD and some issues
concerning representation of virtual environments.

Finally, since the code is open and it is possible to modify
the IVE core, the toolkit can be used as a middleware for
applications featuring large environments based on discrete
space worlds. In this fashion, we use IVE for our educational
game and the for society simulation.

Probably the main limitation of IVE is that there is no user-
friendly editor. A world model and actors’ behaviour must
be currently specified in external xml and Java files. Our
experience is that (even though we do not have an editor),
IVE can be used by an undergraduate IT student. The editor
is one of our current works in the process.

IVE was programmed in Java. It can be used perfectly
well as a middleware, but in spite of LOD only for those
applications that are not time-critical (in other worlds, a
commercial game should be developed e.g. in C++). We also
remark that IVE is focused on large environments. If one wants
to develop just a simple application with one or two actors,
she may find that to use IVE for this purpose is like using a
sledgehammer to crack a walnut.

Vol:1, No:1, 2007

IV. J. J. GIBSON AND SMART ACTIVITIES

In this section, we discuss how IVE challenges the first part
of the complexity problem — extensions managing. In fact, we
will describe a refinement of the action selection mechanism
from Sec. III. The solution stems from the affordance theory.

Affordances were introduced by J. Gibson, a perceptual
psychologist, in so-called ecological theory of perception. He
claimed that we tend to perceive what the environment offers
us rather than physical properties of objects. The environmen-
tal offers were called affordances. “...the affordances of the
environment are what it offers the animal, what it provides or
furnishes [12]”.

In our effort to develop an extensible architecture offering
LOD AI, we have to refine a Gibson’s theory. As mentioned
above, a typical virtual human in IVE is driven by its own
genius, but still it is not fully autonomous. That is because
genii are given information about how to drive the actors. How
does it work? Up to some level, IVE approach resembles the
concept of smart objects [16] used often in computer graphics
and games, e.g. [19]. Smart objects are entities providing their
detailed functionality description, possible interactions as well
as the behaviour of a potential interacting actor. Smart objects
encapsulate a script that has to be executed by an interacting
actor. Using smart objects, the world can be described in terms
of a “purpose-oriented” language, and therefore an object can
be loaded into the simulation as a plug-in and an actor can
interact with it without any learning.

However, the original smart objects have some limitations
we were able to overcome. Most notably, we have pushed the
concept towards smart activities, which are abstract entities
that describe the interaction among more actors and more
objects (think of the following situation: which object shall
offer a) closing a pen: the pen, or the cap? b) two actors
dancing in a couple?). Smart activities are localized in the
environment and genii can perceive them. More specifically,
since we linked activities with genii’s intentions, a genius has
perceived only activities that could satisfy its present-directed
towards-a-goal intentions.

Moreover, each activity contains a smart suitability - a
function that computes how convenient would it be to execute
the activity for given actor in the current context. (Apparently,
a human prefers to water with a watering can to a bucket,
even if the bucket is suitable too. Moreover, a child would
prefer watering with a smaller can than an adult. Additionally,
the garden might be also hosed. Decision among the possible
alternatives for every particular actor depends on the solution
suitability.). Finally, not atomic smart activities offer sub-
intentions and smart advices to genii. Smart advices help genii
to decide which sub-intention should be adopted in pursuing
the current (non-atomic) activity.

In other words, thinking in terms of our action selection
mechanism (Sec. III), the genius has a set of top-level goals,
but when it wants to accomplish them, it must “look around”
the environment for a set of smart activities for finalizing the
goal. Based on the suitabilities, the environment even tells the
genius how each particular activity is proper in the current
situation. The genius directly perceives suggestions what to

96

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:1, No:;1, 2007

do. Here we see the Gibson’s concept in its most clear form.
Further, if the activity is not atomic, the genius was to adopt
sub-goals offered by the activity and according to the given
advice, commit itself to those sub-goals (Fig. 4). In yet other
words, rules and priorities for making decision are represented
within the environment, not in the actors’ “heads”. Note that
in IVE, the genius is also allowed not to follow advices and
suitabilities, hence the framework allows actors to be truly
autonomous.

."r
‘.". el tasking an obwct
genlus / wadking o an cbjecl
/ 4
A i
— g
factor fpm" Wi ar chjectby s shosm
- . watering waterakln
| N re v
\\. I pudting down an object
I|
Xy
N
~ VS
TR R _—
filing an chject
wilh & waler from eee,
shaml |
Fig. 4. Representation of behaviour. The actor-1 has a “water garden-1”

intention, has committed itself to “watering garden-1 manually with the can-
127, has “fill the can” sub-intention, and choose the sub-activity “filling the
can-12 from the barrell-2 at the place-next-to-barrell-2”. Other sub-activities
for watering the garden, which are also depicted, can be perceived by the
actor’s genius.

This concept actually solves one part of the complexity
problem — we can simply manage extensions both during the
development and after the release (Fig. 4). Actors can be
though of as being navigated by highly modular intelligent
environments (hence the acronym IVE). Our representation is
detailed in [6].

V. ROLE-PASSING

Central control of actors is common in many applications.
e.g. in strategic games. It is also possible to trace role-passing
as layering of new reactive plans on actor’s plans. Role
can also contain new character’s qualities and rules for their
changes. For example, in “bar-guest” role, we can specify that
after passing the role, a level of “thirst” property is watched
[23].

In this apparatus, we can switch roles (switch on grounds
of norms [24]). Technically, norms are rules or evaluating
functions determining when switch roles. In IVE, it is an
analogy of suitability.

IVE supports combinations of central and autonomous
control in the following way: An activity (perceived by an
actor’s own genius), like behaviour in a pub, can be linked
to a so-called genius specialist - the bar genius for example.
The actor’s genius is then allowed to pass its actor to the
specialist to perform the chosen activity. Hereby, the specialist
can carry out some special-purpose reasoning, e.g. how to

assign the actors to tables not allowing two actors to collide.
The specialist can pass on an actor further to another specialist.
This process is called role-passing.

Finally, the specialists and the basic genius control the same
actor together. Each of them manages its own set of goals,
while at each particular moment genius that holds the goal
with the highest priority, drives the actor. If a goal of another
genius becomes the highest prioritised one, this new genius
gently overtakes the control (gently means that the interrupting
genius waits until the interrupted genius performs some clean
up). For example, in Fig. 5, all actors in the row at the bar are
controlled by three genii - the basic one, the bar specialist;
and the queue specialist and actors sitting at the tables are
managed only by the first two genii. If a drinking actor wants
to go to the toilet, the toilet goal (managed by the basic genius,
contrary to drinking) interrupts the drinking, but the restaurant-
specialist is allowed to let the actor to put the beer on the table
first (and not to take it to the toilet).

We think that this combination of semi-autonomous and
centralised controlling is vital for any application featuring
more virtual humans. For example, Trip and Grace from
Facade [18] are controlled in this way up to some level as
well as squads in the game FE.AR [19].

baslc genlus

&njoying in & pul

ai

genlug

pub-specialist N { i | /
Ih} ot

enjoying by a card game

L

snpaying by a
fnat mechine

Fig. 5. Role-passing in IVE. Actor-1 is delegated by its basic genius to
the genius pub-specialist, who can manage several actors together and choose
activities for them (e.g. card playing)

VI. LEVEL OF DETAIL FOR Al AND SPACE

There are many works describing LOD in computer gra-
phics, but just a few are related to LOD for virtual humans
and virtual space controlling. Probably only areas, where ad-
hoc application of this technique are used, are computer games
and experimental large worlds simulation in virtual reality.

The general idea behind LOD is not to compute such details
that a user cannot see or that are otherwise unimportant in the
given instant. To describe LOD in IVE, we use a membrane
metaphor - imagine an elastic membrane cutting through the
space hierarchy (see Fig. 6, 7), which is being reshaped in
the course of the simulation. Areas (or atomic places) at

97

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942

Vol:1, No:1, 2007

this membrane exist as abstract points, whereas areas below
the membrane do not exist in the instant of observing. The
membrane also determines the complexity of actors’ behaviour
in each area. Technically, the membrane is a function setting
a LOD values to areas.

How to simplify the complexity of a given behaviour
automatically? We already mentioned that if an activity is
not atomic, the genius should adopt sub-goals offered by this
activity. The tricky part is just in here: if the LOD value for
the location where the activity should be performed is low, the
genius must not adopt sub-goals, it should execute the chosen
activity atomically instead of that (Fig. 6, 7). In this way,
for example, an actor can water the whole garden atomically,
instead of finding a can and going from a flower-bed to a
flower-bed. If the LOD value is too low, actors and objects
even cease to exist, and they are not created again until the
detail is increased. Of course, the outcome of a simplified
simulation might differ from the outcome of simulation in full
detail - but since the simplified place is not in the centre of
attention, this does not matter.

IVE approach is very robust comparing to LOD Al tech-
niques typically used in games, e.g. [4], [13]. Notice that IVE
allows more places to be simulated in detail at any particular
moment (even a place unobserved by any user, since there
might happen something important from the point of view
of the story). IVE also admits a gradual simplification of a
simulation complexity between an important and an unim-
portant place (which keeps the overall load more consistent
and controlled during shifts of the centres of attention) and
areas to be simulated partially. Additionally, the hierarchy
of abstractions may have any arbitrary depth. However, in
practice, we would hardly need more than 4 or 5 levels of
abstraction, and - naturally - some applications might benefit
from a more lightweight LOD approach then we use in IVE
(as discussed also in [13]).

We recognised several remarkable issues concerning our
LOD approach. First, there can occur an ’oscillation problem’
with a user furiously oscillating between two locations. IVE
uses a garbage collector technique to cope with this. When
a LOD value can be decreased, we still keep the simulation
at the previous level of detail until we need the processor
capacity somewhere else - only then the garbage collector
decreases the LOD value.

Fig. 6. The space hierarchy in IVE. Some parts are simulated in full detail
(LOD 4), other in lower detail (LOD 2, 3).

Second, there are problems with increasing LOD during
running some activity - for example when an atomic watering
of the garden becomes non-atomic in the middle of process,
one half of flower-beds should be already watered. We adopted
some ad hoc techniques to deal with this problem, but we want
to resolve it in a more robust fashion in the future.

Fig. 7. Mine scenario in IVE. The mine comprises of three sublocations: the
lower part, the tunnel and the upper part. There are two miners - one in the
upper part and one in the lower part. The lower part and the tunnel are not
expanded (here). The scenario illustrates an activity taking place in locations
with different LOD (i.e., mining). The cart leaves the pit, which is simulated
in lower detail (LOD is 4) and enters the upper part, simulated in full detail
(LOD 5).

To sum it up, IVE presents a robust solution to LOD
technique and is advisable as a platform for LOD research.
However, for some applications, our technique might be too
robust. In detail, the technique is described in [6], [21].
For example, in ALOHA system [23], role-passing (Sec. V)
realises simple LOD for actors controlling - the role is not
passed if actor cannot be seen.

VII. LIMITATIONS AND PRESENT WORK

In this section, we discuss main IVE limitations and intro-
duce our present work.

Editor. As already said, perhaps the main limitation of IVE
is that there is no user-friendly editor. A world model and
actors’ behaviour must be specified in external xml and Java
files. Worlds and behaviour editors belong among our current
works:

Episodic memory. On the present, only short-term memory
for actors is an architectural build-in in IVE. Episodic memory
can be programmed externally. Without it, actors wouldn’t be
able to operate easily with the objects they currently do not
perceive (e.g., take a hammer that is in the next-door room).
Episodic memory is our second work-in-progress.

Planning. IVE action selection is based only on reactive
planning. However, the action selection mechanism can be
easily replaced. In the third work-in-progress, we focus on
augmenting IVE with an HTN planner [11]. Every smart
activity will offer not only reactive rules, but also PDDL
operators [20] for a genius.

LOD research. We plan to continue in LOD Al research, as
detailed in Sec. VI.

GUI. The GUI of IVE is not user friendly. However, IVE
is designed in a modular way, therefore GUI can be easily
replaced.

Discrete space. IVE was designed only for discrete, graph-
describable worlds, not for 3D environments. IVE creates a
discrete abstraction of a 3D world for the purposes of a high-
level reasoning. 3D virtual worlds are mostly represented in
way that they can be easily displayed, but on basis of this
representation, a virtual human can’t make decisions. We plan
to interconnect IVE and 3D word in the close future.

Virtual company. We work on a society simulator (as propo-
sed in [5]) using a combination of agent-oriented and process-
oriented approaches. IVE is used here as a middleware. This
tool is intended mainly for managers’ education.

Educational game. We have already started to work on a
simple storytelling game using IVE, which is intended for

98

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:1, No:1, 2

children education in civics. The idea is to play short social
narratives in IVE that would allow children to interact in
order to see “what happed, if...” For the purpose of this enter-
prise, we must primarily extend IVE with a drama manager,
which would drive actors according to the given plot. We
have developed the technique for driving stories and evaluate
them in a dummy fantasy case-study [7]. The technique uses
Petri Nets for plot specifications and admits describing non-
linear plots and unfolding the story at several different places
simultaneously, what is vital for our game.

VIII. CONCLUSION

In this paper, we have presented IVE, a toolkit for prototy-
ping virtual worlds and virtual humans’ Al.

The contribution of the toolkit is two-fold. First, it serves
for prototyping both the AI and the virtual worlds. Second, it
challenges the simulation speed problem and the behavioural
design complexity problem. Particularly, IVE utilises a robust
level of detail technique and a knowledge representation ad-
mitting simple extensions managing (i.e., objects and actions)
and actors coordination (autonomously and also in a centra-
lised way). There are many other prototypes and applications
coping with similar problems, but IVE joins all mentioned
solutions, and is designed and developed in the extensible way.

We have suggested that IVE can be used in many ways —
e.g. as an educational tool, for case-studies prototyping, or as
a middleware. We have also briefly presented our current work
in progress, focused both on overcoming some limitations of
IVE and on our practical projects, including and educational
game and a simulator of companies.

The details of the projects can be found in [6], [7], [21].
IVE can be downloaded at [15].

ACKNOWLEDGEMENT

The work was supported by the project 1IET100300419 of
the Program Information Society (of the Thematic Program
II of the National Research Program of the Czech Republic)
“Intelligent Models, Algorithms, Methods and Tools for the
Semantic Web Realisation” and GA UK No. 351/2006/A-
INF/MFF. The work on company simulator is also supported
by SoftDeC company: http://www. softdec.cz/. The research
would not be possible without intensive work of tens of
students from Charles University in Prague. The toolkit IVE
was implemented by Ondfej Sery, Tom4§ Poch, Pavel Safrata,
Jan Kubr, Jifi Kulhanek and Zden&k Sulc. The drama manager
prototype was implemented by Adam Abonyi. The additional
work is being developed by Daniel Balas, Martin Juhazs, On-
drej Holecek, Jifi Vorba, Kldra Peskova and Josef Reidinger.

007
Specia? thanks belong also to Daniel Ryslink for his com-
ments.

REFERENCES

[1] Agre, P. E., Chapman, D. Pengi: An implementation of a theory of
activity. In: Proceedings of the 6th national Conference on Al, Seattle,
Washington, 1987, p. 196-201

[2] Bojar, O., Brom, C., Hladik, M., Toman, V. The Project ENTs: Towards
Modeling Human-like Artificial Agents. In: SOFSEM 2005 Communicati-
ons Liptovsky Jan, Slovak Republic, 2005, p. 111-122

[3] Bratman, N. Intention, plans, and practical reason. Cambridge, Mass:
Harvard University Press, 1987

[4] Brockington, M. Level-Of-Detail Al for a Large Role-Playing Game. In:
Al Game Programming Wisdom, 2002

[5] Brom, C., Kocab, P. Virtual agents in a simulation of an ISO-company.
A poster. In: Proc. of Intelligent Virtual Agents, Springer, Berlin, 2005

[6] Brom, C., Lukavsky, J., éer}’/, 0., Poch, T., Safrata, P. Affordances and
level-of-detail Al for virtual humans In: Proceedings of Game Set and
Match 2, Delft, 2006

[7]1 Brom, C., Abonyi A. Petri-Nets for Game Plot. In: Proceedings of AISB
- Artificial Intelligence and Simulation Behaviour Convention, Bristol,
2006, p. 6-13

[8] Bryson, J. The Behavior-Oriented Design of Modular Agent Intelligence.
In: Miiller, J. P. (eds.): Proceedings of Agent Technologies, Infrastructu-
res, Tools, and Applications for E-Services, Springer LNCS 2592, 2003,
p. 61-76

[9] Epic Megagames. Unreal
http://www.unrealtournament.com/

[10] Forgy, C. Rete: A Fast Algorithm for the Many Pattern/Many Object
Pattern Match Problem. In: Attificial Intelligence 19, 1982, p. 17-37
[11] Ghallab, M., Nau, D., Traverso, P. Hierarchical Task Network Plan-
ning. In: Automated Planning: Theory and Practice, chapter 11, Morgan

Kaufmann Publishers, USA, 2004

[12] 1Gibson, J. J. The Ecological Approach to Visual Perception. Boston:
Houghton Muffin, 1979

[13] Grinke, S. Minimizing Agent Processing in “Conflict: Desert Strom”.
In: AI Game Programming Wisdom II, 2004

[14] Huber, M. J. JAM: A BDI-theoretic mobile agent architecture. In:
Proceedings of the 3rd International Conference on Autonomous Agents
(Agents’99). Seatle, 1999, p. 236-243

[15] IVE project, http://urtax.ms.mff.cuni.cz/ive/public/about.php

[16] Kallmann., M., Thalmann, D. Modeling Objects for Interaction Tasks
In: Proceedings of EGCAS 98, Lisbon, Portugal, 1998, p. 73-86

[17] Laird, J. E., Newell, A., Rosenbloom, P. S.: SOAR: An Architecture for
General Intelligence. In: Artificial Intelligence, 33 1, 1987, p. 1-64

[18] Mateas, M. Interactive Drama, Art and Artificial Intelligence. Ph.D. Dis-
sertation. Department of Computer Science, Carnegie Mellon University,
2002)

[19] Orkin, J. 3 States & a Plan: The Al of FE.A.R. In: Game Developer’s
Conference Proceedings, 2006

[20] PDDL, Planning ~ Domain Definition
http://planning.cis.strath.ac.uk/competition/

[21] Sery, O., Poch, T., Safrata, P., Brom, C. Level-Of-Detail in Behaviour of
Virtual Humans In: Proceedings of SOFSEM 2006: Theory and Practice
of Computer Science, LNCS 3831, Czech Republic, 2006, p. 565 - 574

[22] Tilab: Jade, Java Agent DEvelopment Framework., http://jade.tilab.com/

[23] McNamee, B. Dobbyn, S. Cunningham, P. and O’Sullivan Men Behaving
Appropriately: Integrating the Role Passing Technique into the ALOHA
system., C. Proceedings of the AISB02 symposium: Animating Expressive
Characters for Social Interactions (short paper) p. 59-62.

[24] Dignum F. Autonomous Agents with Norms., Al and Law, 7, p. 69 - 79,
1999

Tournament, 2004,

Language., 2002,

99

