Iterative methods for computing the weighted Minkowski inverses of matrices in Minkowski space

Xiaoji Liu, Yonghui Qin,

Abstract

In this note, we consider a family of iterative formula for computing the weighted Minskowski inverses $A_{M, N}$ in Minskowski space, and give two kinds of iterations and the necessary and sufficient conditions of the convergence of iterations.

Keywords-iterative method, the Minskowski inverse, $A_{M, N}$ inverse.

I. Introduction

In this paper, let $M_{m, n}$ denotes the set of all $m-b y-n$ complex matrices in Minskowski space. When $m=n, M_{n}$ is instead of $M_{m, n}$. Let $A^{*},\|A\|, R(A), N(A), A^{\dagger}$ and $\sigma(A)$ stand for conjugate transpose, spectrum norm, range, null space, Moore-Penrose inverse and spectrum of matrix A.

In the following, we give some notations and lemmas for the Minskowski inverse in Minskowski space.

Let G be the Minskowski metric tensor defined by

$$
\begin{equation*}
G u=\left(u_{0},-u_{1},-u_{2}, \cdots,-u_{n}\right) . \tag{1}
\end{equation*}
$$

where $u \in C^{n}$ is an element of the space of complex n-tuples.

For $G \in M_{n}$, it defined by

$$
G=\left(\begin{array}{cc}
1 & 0 \tag{2}\\
0 & -I_{n-1}
\end{array}\right) ; \quad G^{*}=G ; \quad \text { and } \quad G^{2}=I_{n}
$$

For $A \in M_{m, n} x$ and $y \in C^{n}$ in Minskowski space μ, using (1) we define the Minskowski conjugate matrix A^{\sim} of A as follow

$$
\begin{align*}
(A x, y) & =[A x, G y]=\left[x, A^{*} G y\right] \\
& =\left[x, G\left(G A^{*} G\right) y\right] \\
& =\left[x, G A^{\sim} y\right]=\left(x, A^{\sim} y\right) \tag{3}
\end{align*}
$$

where $A^{\sim}=G A^{*} G$ (see [4]).
Definition 1[4, Definition 2] For $A \in M_{m, n}$ in Minskowski space μ, the Minskowski conjugate matrix A^{\approx} of A is defined as

$$
\begin{equation*}
A^{\approx}=G_{1} A^{*} G_{2} \tag{4}
\end{equation*}
$$

where G_{1}, G_{2} are Minskowski metric matrices of $n \times n$ and $m \times m$, respectively. Obviously, (see [4])if $A, B \in M_{m, n}$ and

Xiaoji Liu is with College of Mathematics and Computer Science, Guangxi University for Nationalities, Nanning 530006, P.R. China. xiaojiliu72@yahoo.com.cn. Tel. +86-0771-3264782.
Yonghui Qin is with College of Mathematics and Computer Science, Guangxi University for Nationalities, Nanning 530006, P.R. China. yonghui1676@163.com.
$C \in M_{n, l}$, then

$$
\begin{aligned}
& (A+B)^{\approx}=A^{\approx}+B^{\approx} \\
& (A C)^{\approx}=C^{\approx} A^{\approx} \\
& \left(A^{\approx}\right)^{\approx}=A^{\approx} \\
& \left(A^{\approx}\right)^{*}=\left(A^{*}\right)^{\approx} .
\end{aligned}
$$

Analogous to Moore-Penrose inverse of A, we give the following definition of the Minskowski space $A_{M, N}$ of A .

Definition 2 [4, Definition 1] Let $A \in M_{m, n}, M \in M_{m}$ and $N \in M_{n}$ be positive definite matrices. if there exists B such that

$$
\begin{aligned}
& A B A=A, B A B=B \\
& M A B \text { and } N B A \text { are } M-\text { symmetric. }
\end{aligned}
$$

then B is the weighted Minskowski inverse of A (denoted by $A_{M, N} \bigoplus_{1}$. When $M=I_{m}$ and $N=I_{n}, A_{M, N}$ reduces to the Minskowski inverse and denoted by $A \bigoplus$.

Lemma 1[4, Lemma 5] Let $A \in M_{m, n}$ be a matrix in μ, and let $M \in M_{m}$ and $N \in M_{n}$ be positive definite matrices. Then

$$
\begin{equation*}
A_{M, N} \bigoplus_{M}=\left(A^{\propto}\right)^{-1} A^{\approx} \tag{5}
\end{equation*}
$$

where $A \approx=N^{-1} G_{1} A^{*} G_{2} M$ and $A^{\propto}=\left.A \approx A\right|_{R(A \approx)}$ is the restriction of $A \approx A$ on $R\left(A^{\approx}\right)$.

mds

II. CONCLUSION

In this section, we will use a family of iterative formula which be defined in [3] for computing the Minkowski inverse $A_{M, N} \bigoplus_{\text {in Minskowski space. And also give two kinds of }}$ iterations and the necessary and sufficient conditions of the convergence of iterations.

Theorem 1 Let $A \in M_{m, n}$, define the sequence $\left\{X_{k}\right\}_{k=0}^{\infty} \in$ $C^{n \times m}$ as follow

$$
\begin{equation*}
X_{k+1}=X_{k}\left(3 I-3 A X_{k}+\left(A X_{k}\right)^{2}\right) \tag{6}
\end{equation*}
$$

and if we take $X_{0}=Y \in C^{n \times m}$ and $Y \neq Y A X_{0}$ such that

$$
\begin{equation*}
\left\|e_{0}\right\|=\left\|I-A X_{0}\right\|<1 \tag{7}
\end{equation*}
$$

then the sequence (6) converges to $A_{M, N}$ if and only if

$$
\rho(I-Y A)<1(\operatorname{or} \rho(I-A Y)<1)
$$

Furthermore, we have

$$
\begin{equation*}
\left\|X_{k+1}-X_{k}\right\| \leq\left(1+\|A\|^{2}\right) \frac{q^{3^{k}}}{\|A\|} \tag{8}
\end{equation*}
$$

where

$$
q=\min \{\rho(I-Y A)<1, \rho(I-A Y)<1\}
$$

and $M \in M_{n}, N \in M_{n}$ be positive definite matrices, respectively.

Proof: Let $e_{k}=Y\left(I-A X_{k}\right)$, by the iteration (6), we have

$$
\begin{align*}
e_{k+1} & =Y\left(I-A X_{k+1}\right) \\
& =Y\left(I-A X_{k}\left(3 I-3 A X_{k}+\left(A X_{k}\right)^{2}\right)\right) \\
& =\cdots \\
& =Y\left(I-A X_{0}\right)^{3^{k}}=Y e_{0}^{3^{k}} \tag{9}
\end{align*}
$$

i.e. $Y=Y A X_{\infty}$ when $k \rightarrow \infty$. In the following, we present

$$
\lim _{k \rightarrow \infty} X_{k}=X_{\infty}
$$

Sufficient: From

$$
\rho(I-Y A)<1,
$$

we easily have

$$
\rho(I-A Y)<1,
$$

since

$$
\sigma(Y A) \cup\{0\}=\sigma(A Y) \cup\{0\} .
$$

We also easily prove that $Y A$ is invertible on $R(Y A)$ and $A Y$ is invertible on $R(A Y)$.

From above, we can show that

$$
\begin{equation*}
X_{\infty}=\left.Y(A Y)\right|_{R(A Y)} ^{-1}=\left.(Y A)\right|_{R(Y A)} ^{-1} Y . \tag{10}
\end{equation*}
$$

we also get

$$
\begin{aligned}
& A X_{\infty} A=\left.A Y(A Y)\right|_{R(A Y)} ^{-1} A=A, \\
& X_{\infty} A X_{\infty}=\left.Y(A Y)\right|_{R(A Y)} ^{-1}, \\
& \left.A Y(A Y)\right|_{R(A Y)} ^{-1}=\left.Y(A Y)\right|_{R(A Y)} ^{-1}, \\
& \left.M A Y(A Y)\right|_{R(A Y)} ^{-1}=\left.I\right|_{R(A Y)}, \\
& \left.N(Y A)\right|_{R(A Y)} ^{-1} Y A=I_{R(Y A)},
\end{aligned}
$$

i.e. we can prove $X_{\infty}=A_{M, N}^{\oplus}$. It show that (6) converges to $A_{M, N}^{\oplus}$.

Necessary: If (6) converges to $A_{M, N} \bigoplus$. By (9), we have

$$
\rho(I-Y A)<1(\text { or } \rho(I-A Y)<1) .
$$

Finally we will consider the error of two adjacent iterations between X_{k+1} and X_{k} in the following.

$$
\begin{align*}
A A_{M, N}^{\oplus}-A X_{k+1} & =A A_{M, N}^{\oplus}-A A_{M, N}^{\oplus} A X_{k+1} \\
& =A A_{M, N}^{\oplus}\left(I-A X_{k}\right)^{3} \\
& =\left(A A_{M, N}^{\oplus}-A X_{k}\right)^{3} \\
& =A^{3}\left(A_{M, N}-X_{k}\right)^{3} \tag{11}
\end{align*}
$$

So we have

$$
\begin{equation*}
\left\|A_{M, N}^{\oplus}-X_{k}\right\| \leq \frac{q^{3^{k}}}{\|A\|} \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|A_{M, N}^{\oplus}-X_{k+1}\right\| \leq\|A\|^{2}\left\|A_{M, N}^{\oplus}-X_{k}\right\|^{3} \tag{13}
\end{equation*}
$$

From (11)-(13) we get

$$
\begin{align*}
\left\|X_{k+1}-X_{k}\right\| & =\left\|X_{k+1}-A_{M, N}^{\oplus}+A_{M, N}^{\oplus}-X_{k}\right\| \\
& \leq\left\|A_{M, N}^{\bigoplus}-X_{k+1}\right\|+\left\|A_{M, N}^{\oplus}-X_{k}\right\| \\
& \leq\left(1+\|A\|^{2}\right)\left\|A_{M, N}-X_{k}\right\| \\
& \leq\left(1+\|A\|^{2}\right) \frac{q^{3^{k}}}{\|A\|} \tag{14}
\end{align*}
$$

By (14), it prove that (16) holds.
Corollary 1 Let $A \in M_{m, n}$, define the sequence $\left\{X_{k}\right\}_{k=0}^{\infty} \in C^{n \times m}$ as (6) and if we take $X_{0}=Y \in C^{n \times m}$ and $Y \neq Y A X_{0}$ such that

$$
\begin{equation*}
\left\|e_{0}\right\|=\left\|I-A X_{0}\right\|<1 \tag{15}
\end{equation*}
$$

then the sequence (6) converges to $A \oplus$ if and only if

$$
\rho(I-Y A)<1(\text { or } \rho(I-A Y)<1) .
$$

Furthermore, we have

$$
\begin{equation*}
\left\|X_{k+1}-X_{k}\right\| \leq\left(1+\|A\|^{2}\right) \frac{q^{3^{k}}}{\|A\|} \tag{16}
\end{equation*}
$$

where $q=\min \{\rho(I-Y A)<1, \rho(I-A Y)<1\}$.
Theorem 2 Let $A \in M_{m, n}$, define the sequence $\left\{X_{k}\right\}_{k=0}^{\infty} \in$ $C^{n \times m}$ as follow,

$$
\begin{gather*}
X_{k+1}=X_{k}\left[m I-\frac{m(m-1)}{2} A X_{k}+\cdots+\left(-A X_{m}\right)^{m-1}\right], \tag{17}\\
k=0,1, \cdots, m=2,3, \cdots .
\end{gather*}
$$

and if we take $X_{0}=G_{1} A^{*} G_{2}=Y \in C^{n \times m}$ such that

$$
\begin{equation*}
\left\|e_{0}\right\|=\left\|I-A X_{0}\right\|<1 \tag{18}
\end{equation*}
$$

then (17) converge to $A_{M, N}^{\oplus}$ if and only

$$
\rho(I-Y A)<1(\operatorname{or} \rho(I-A Y)<1) .
$$

Furthermore, we have

$$
\begin{equation*}
\left\|X_{k+1}-X_{k}\right\| \leq\left(1+\|A\|^{2}\right) \frac{q^{m^{k}}}{\|A\|} \tag{19}
\end{equation*}
$$

where

$$
q=\min \{\rho(I-Y A)<1, \rho(I-A Y)<1\}
$$

and $M \in M_{n}, N \in M_{n}$ be positive definite matrices, respectively.

In the following, we will consider another the iterative formula for computing the weighted Minskowski inverse $A_{M, N}^{\oplus}$ in Minskowski space.

Theorem 3 Let $A \in M_{m, n}$, define the sequence $\left\{X_{k}\right\} \in$ $C^{n \times m}$ as

$$
\begin{array}{r}
X_{k}=X_{k-1}+\beta Y\left(I_{y}-A X_{k-1}\right), \\
\beta \in C \backslash\{0\}, k=1,2, \cdots . \tag{20}
\end{array}
$$

and if we take $X_{0}=Y \in C^{n \times m}$ and $Y \neq Y A X_{0}$ such that

$$
\begin{equation*}
\left\|e_{0}\right\|=\left\|I-A X_{0}\right\|<1 \tag{21}
\end{equation*}
$$

then (20) converges to $A_{M, N}$ if and only if

$$
\rho(I-Y A)<1(\text { or } \rho(I-A Y)<1) .
$$

Furthermore,

$$
\begin{equation*}
\left\|X_{k+1}-X_{k}\right\| \leq q^{k}|\beta|\|Y\|\left\|\left(I_{y}-A X_{0}\right)\right\| \tag{22}
\end{equation*}
$$

where

$$
q=\min \{\rho(I-\beta Y A)<1, \rho(I-\beta A Y)<1\}
$$

and $M \in M_{n}, N \in M_{n}$ be positive definite matrices, respectively.

Proof: By iteration (27), we have

$$
\begin{equation*}
X_{k+1}=\left(I_{n}-\beta Y A\right) X_{k}+\beta Y \tag{23}
\end{equation*}
$$

Hence

$$
\begin{align*}
X_{k+1}-X_{k} & =\left(I_{n}-\beta Y A\right)\left(X_{k}-X_{k-1}\right) \\
& =\cdots \\
& =\left(I_{n}-\beta Y A\right)^{k}\left(X-X_{0}\right) \\
& =\beta\left(I_{n}-\beta Y A\right)^{k} Y\left(I_{m}-A X_{0}\right) \\
& =\beta Y\left(I_{n}-\beta A Y\right)^{k}\left(I_{m}-A X_{0}\right) \tag{24}
\end{align*}
$$

From (24), we obtain

$$
\begin{align*}
Y A\left(X_{k}-X_{0}\right)= & \beta Y A\left[\left(I_{n}-\beta Y A\right)^{k-1}\right. \\
& \left.+\cdots+\left(I_{n}-\beta Y A\right)+I_{n}\right] Y\left(I_{y}-A X_{0}\right) \\
= & {\left[I_{n}-\left(I_{n}-\beta A Y\right)^{k}\right] Y\left(I_{m}-A X_{0}\right) } \tag{25}
\end{align*}
$$

Similarly, we get

$$
\begin{equation*}
Y A\left(X_{k}-X_{0}\right)=Y\left[I_{n}-\left(I_{n}-\beta A Y\right)^{k}\right]\left(I_{m}-A X_{0}\right) \tag{26}
\end{equation*}
$$

By (25)(26), we prove that (20) converges to $A_{M, N}^{\oplus}$ if and only if $\rho(I-\beta Y A)<1$ (or $\rho(I-\beta A Y)<1$), respectively. From

$$
\rho(I-Y A)<1,
$$

we have

$$
\rho(I-A Y)<1,
$$

Since

$$
\sigma(Y A) \cup\{0\}=\sigma(A Y) \cup\{0\}
$$

As the proof in Theorem 1, we obtain

$$
X_{\infty}=\left.(Y A)\right|_{R(Y A)} ^{-1} Y=\left.Y(A Y)\right|_{R(A Y)} ^{-1} .
$$

Let $\lim _{k \rightarrow \infty} X_{k}=X_{\infty}$ and by (25)(26), we show that

$$
\begin{aligned}
\lim _{k \rightarrow \infty} X_{k} & =\left.(Y A)\right|_{R(Y A)} ^{-1} Y\left(I_{y}-A X_{0}\right)+X_{0} \\
& =\left.(Y A)\right|_{R(Y A)} ^{-1} Y
\end{aligned}
$$

Using the definition of the weighted Minskowski inverse, we obtain

$$
X_{\infty}=\left.(Y A)\right|_{R(Y A)} ^{-1} Y=\left.Y(A Y)\right|_{R(A Y)} ^{-1}=A_{M, N}^{\bigoplus} .
$$

From (24), we can get

$$
\begin{aligned}
\left\|X_{k+1}-X_{k}\right\| & =|\beta|\left\|Y\left(I_{x}-\beta Y A\right)^{k}\left(I_{y}-A X_{0}\right)\right\| \\
& \leq q^{k}|\beta|\|Y\|\left\|\left(I_{y}-A X_{0}\right)\right\| .
\end{aligned}
$$

Corollary 2 Let $A \in M_{m, n}$, define the sequence $\left\{X_{k}\right\} \in$ $C^{n \times m}$ as(20) and if we take $X_{0}=Y \in C^{n \times m}$ and $Y \neq$ $Y A X_{0}$ such that

$$
\begin{equation*}
\left\|e_{0}\right\|=\left\|I-A X_{0}\right\|<1 \tag{27}
\end{equation*}
$$

then (20) converges to $A \oplus$ if and only if

$$
\rho(I-Y A)<1(\text { or } \rho(I-A Y)<1) .
$$

Furthermore,

$$
\begin{equation*}
\left\|X_{k+1}-X_{k}\right\| \leq q^{k}|\beta|\|Y\|\left\|\left(I_{y}-A X_{0}\right)\right\| \tag{28}
\end{equation*}
$$

where $q=\min \{\rho(I-\beta Y A)<1, \rho(I-\beta A Y)<1\}$.

References

[1] J.J. Koliha, A simple proof of the product theorem for EP matrices, Linear Algebra Appl. 294(1999) 213-215.
[2] A.R. Meenakshi, D. Krishnaswamy, Product of range symmetric block matrices in Minskowski space, Bull. Malays. Math. Sci. Soc. (29)(1)(2006) 59-68.
[3] Weiguo Li, Zhi Li, A family of iterative methods for computing the approximate inverse of a square matrix and inner inverse of a non-square matrix, Applied Mathematics and Computation, 215(2010) 3433-3442.
[4] Adem Kiliç man, Zeyad Al Zhour, The representation and approximation for the weighted Minkowski inverse in Minkowski space, Math. Comput. Model., 34(2008) 363-371.
[5] Y.Chen. Iterative methods for computing the generalized inverse $A_{T S}^{(2)}$ of a matrix $A[J]$. Applied Mathematics and Computation 233(1996)207229.
[6] A. Ben-Israel,T.N.E. Greville. Generalized Inverses: Theory and Applications. Wiley, New York, 1974.
[7] X. Jin, Y. Wei, Numerical Linear Algebra and Its Applications[M], Science Press, Beijing/New York, 2004.
[8] J.J. Koliha. A simple proof of the product theorem for EP matrices [J]. Linear Algebra and its Applcation, 294(1999) 213-215.
[9] F.Huang, X.Zhang. An improved Newton iteration for the weighted Moore-Penrose inverse[J]. Applied Mathematics and Computation 174 (2006)1460C1486.

