
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:7, 2007

2134

Abstract—Data Warehousing tools have become very popular and

currently many of them have moved to Web-based user interfaces to
make it easier to access and use the tools. The next step is to enable
these tools to be used within a portal framework. The portal
framework consists of pages having several small windows that
contain individual data warehouse query results. There are several
issues that need to be considered when designing the architecture for a
portal enabled data warehouse query tool. Some issues need special
techniques that can overcome the limitations that are imposed by the
nature of data warehouse queries. Issues such as single sign-on, query
result caching and sharing, customization, scheduling and
authorization need to be considered. This paper discusses such issues
and suggests an architecture to support data warehouse queries within
Web portal frameworks.

Keywords—Data Warehousing tools, data warehousing queries,
web portal frameworks.

I. INTRODUCTION
ANY middle to large sized companies have been
building data warehouses and performing analysis on

their data in order to more effectively understand their
businesses. The data warehouse tools that support this objective
have continuously evolved and currently most of them have
migrated to Web-based user interfaces. Users of data
warehouses can easily form queries or view results through the
Web. The next step of such tools is adapting to a portal
framework. Portals are becoming increasingly popular as the
mainstream to provide a user with a summary view of all
interesting information on a single Web page. This Web page is
mostly set up as the start page or home page of many employees
of an organization and most often display different

Manuscript received September 30, 2007. This work was supported in part

by the second stage of the BK21 program of the Ministry of Education and
Human Resources Development.

Minsoo Lee is with the Dept of Computer Science and Engineering, Ewha
Womans University, 11-1 Daehyun-Dong, Seodaemoon-Ku, Seoul, Korea
120-750 (e-mail: mlee@ ewha.ac.kr).

Yoon-kyung Lee is with the Dept of Computer Science and Engineering,
Ewha Womans University, 11-1 Daehyun-Dong, Seodaemoon-Ku, Seoul,
Korea 120-750 (e-mail: polyandry@hanmail.net).

Hyejung Yoon is with the Dept of Computer Science and Engineering,
Ewha Womans University, 11-1 Daehyun-Dong, Seodaemoon-Ku, Seoul,
Korea 120-750 (e-mail: auroree@ewhain.net).

Soo-kyung Song is with the Dept of Computer Science and Engineering,
Ewha Womans University, 11-1 Daehyun-Dong, Seodaemoon-Ku, Seoul,
Korea 120-750 (e-mail: happymint@ewhain.net).

Sujeong Cheong is with the Dept of Computer Science and Engineering,
Ewha Womans University, 11-1 Daehyun-Dong, Seodaemoon-Ku, Seoul,
Korea 120-750 (e-mail: bloom01@ewhain.net).

.

personalized information based on the employee’s position
within the organization. In many cases, business strategists of a
company would want to see several summary tables or graphs
of data warehouse query results on his/her start page along with
other useful information that may be irrelevant of the data
warehouse queries. As this paradigm of providing a portal page
as a single place for all available resources, tools, and
information of an organization is becoming popular, it is
essential for data warehouse query tools to adapt to the portal
framework.

We have identified several issues that need to be considered
when a data warehouse query tool is used within a portal
framework. Such issues arise due to the significantly different
environment where portals are used and where data warehouse
queries are executed. The issues that we discuss in this paper
are about single sign-on, query result caching, customizing and
sharing query results, scheduling of queries, and authorization
issues. We look into several characteristics of portals and
discuss how they affect the design and architecture of data
warehouse query tools. We also suggest an architecture to solve
the issues that are discussed.

The organization of the paper is as follows. Section 2 gives a
survey on related research and a few commercial products.
Section 3 explains the approaches that can be taken to support
data warehouse queries in portals. Section 4 gives an outline of
the architecture to solve the issues when developing a portal
enabled data warehouse query tool. Section 5 gives an
explanation of the current implementation status. Section 6
concludes with the summary and future work.

II. RELATED RESEARCH
With the growing need to analyze huge amounts of corporate

data in a data warehouse, a variety of tools to analyze the data
and create reports have been developed. These tools are
particularly moving to Web-based interfaces in order to
accommodate a wide range of users. Several such popular tools
on the market are Brio 8 of Brio Software[1], Business Objects
[2], PowerPlay of Cognos [3], and Discoverer of Oracle [4].
Brio 8 supports server based reporting in a Web environment
and multiple data sources can be used in a single report.
Business Objects supports multiple data source integration and
uses a multi-pass SQL technology to accurately obtain query
results. It also supports three tier architecture as well as
client-server architecture. PowerPlay draws information from
relational databases to model and build PowerCubes ("Cubes").
The cubes and reports can be deployed to Web clients, or to
Windows and Excel clients, all using the same application

Minsoo Lee, Yoon-kyung Lee, Hyejung Yoon, Soo-kyung Song and Sujeong Cheong

Issues and Architecture for Supporting Data
Warehouse Queries in Web Portals

M

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:7, 2007

2135

server. Discoverer is a key component of Oracle9i Application
Server (Oracle9iAS) integrated business intelligence solution
and enables users to create, modify, and execute ad hoc queries
and reports.

Several portal products have recently emerged and gained
popularity due to the new paradigm of providing all
information useful for an organization as a single portal page.
The most significant products are Plumtree[5], Microsoft
SharePoint Server[6], Oracle 9iAS Portal[7], IBM
Websphere[8]. Plumtree supports personalized portal pages
and communities which are a collection of portal pages, and
document directories which are a repository of Web pages from
the Internet. MS SharePoint Server provides a customized
portal solution which enables enterprise search and integrated
document management. Oracle 9iAS Portal provides an
environment to support various open standards such as J2EE
applications as well as integration with Oracle’s own
applications. It is an integrated management environment that
also enables self service publishing. IBM Websphere
consolidates business data, applications, external newsfeeds
and includes a security layer for authentication, supports
Web-based content publishing, and customization of portal
contents.

III. APPROACHES TO INTEGRATE DATA WAREHOUSE QUERIES
INTO PORTALS

A. Web Portal Characteristics
Portals have several characteristics that make them very

appealing to support an organization composed of a variety of
users with different levels of technical knowledge or
experience. The most important characteristics are as follows.
• First, single sign-on is used. Using a single login id, users

can view and organize all information within the portal
framework.

• Second, portals require subsecond response time. Most of
the portal pages are used as start pages that should come up
immediately when a user starts the browser.

• Third, users are allowed to customize the view or
information displayed on their portal page to suit their
personal preferences.

• Fourth, users not only consume information but also provide
information to other users through the portal framework.

B. Web-based Data Warehouse Query Tool
The Web-based data warehouse query tool is implemented

as three-tier architecture. It is mainly a middle-tier component
that is implemented as a servlet which accepts requests from
browser clients and connects to the database to obtain query
definitions and run the queries. Features of the data warehouse
query tool are:
• A data warehouse query defines a sheet.
• A single sheet or groups of sheets along with layout

information is defined as a report.
• Query formulation is driven by a Graphical User Interface.
• Ad-hoc query analysis is supported.

• Queries can include parameters that can be modified to
customize the query.

• Query results are displayed as HTML tables to the user.
XML output of the query result is available.

C. Integration Approaches
The two types of integration approaches for data warehouse

queries into portals are called URL-based and Extension-based.
• URL-based : The portal keeps only a URL to the data

warehouse query tool that can execute a query and return an
html page which can be embedded into the portal page.

• Extension-based : An extension to the original data
warehouse query tool is developed in order to support the
required functionality to integrate data warehouse queries
into portals as a separate module that can communicate with
both the portal and the data warehouse query tool.
The advantage of the URL-based approach is that it is very

simple to implement. Actually no additional coding is needed
on the part of the data warehouse query tool. The disadvantage
is that the response time may be quite long due to the fact that
the query is being executed when the URL is invoked. This will
violate the characteristics of portals to provide instant
information to users.

The advantage of the Extension-based approach is that it can
include complex capabilities to satisfy the portal characteristics.
These capabilities will be discussed in the following
subsections as we have decided to take this approach. The
disadvantages of this approach are that it requires the
development of an additional module (i.e., extension) and
needs to be able to interface seamlessly with the portal as well
as the data warehouse query tool.

IV. ARCHITECTURE FOR EXTENSION-BASED INTEGRATION
We propose an architecture for a portal enabled data

warehouse query tool using the Extension-based approach
discussed in the previous section. Fig. 1 shows the proposed
architecture.

Portal

Single Sign- On Server

SchedulerScheduler
Data Warehouse

Query Server

Query Result Cache

DW
Portal
Module

User authentication requests

Access cached
Query results

Request for
DW query result Execute DW query

Fig. 1 Architecture of portal enabled data warehouse query tool

The portal server needs a single sign-on server to manage

and authorize portal users. The data warehouse portal module is
the extension to the original data warehouse server. It accepts
requests from the portal server and returns the data warehouse

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:7, 2007

2136

query results from the query result cache. It also stores any user
specific customization information into the cache. There is a
scheduler that periodically or immediately initiates the
execution of the data warehouse query and stores the results
into the query result cache. The data warehouse query server
provides an interface that the scheduler can call and obtain the
query results. The portal, data warehouse portal module,
scheduler all need the authorization information stored in the
single sign-on server.

The following subsections discuss the details of the
architecture to support the basic characteristics of portals for a
data warehouse query tool.

A. Single Sign-On
Portal users are usually assigned a single login id that enables

them to use the portal framework in a personalized way. This
mechanism of using a single login id is called single sign-on.
The single sign-on id enables the portal framework to keep
track of each user’s privileges and personal preferences such as
their portal page organization or page contents.

Although single sign-on may look very easy and promising
in terms of eliminating the need for remembering multiple login
ids for the portal user, it complicates situations when several
data warehouse query results are shown on a portal page. Each
query may need to be run with different accounts in several
database systems. This means that the database account
information needs to be integrated with the single sign-on
mechanism of the portal framework.

The following Fig. 2 shows how the single sign-on
mechanism should be extended with the database account
information for each portal user. The single sign-on mechanism
must not only provide the database account information
available for each portal user, but also must provide
management functions. When database user passwords change
or accounts are dropped at the database system, these changes
will affect the single sign-on repository. Assume that the single
sign-on id of a portal user PU1 is mapped to several database
user accounts DBU1, DBU2, DBU3 where the respective
passwords are DBP1, DBP2, DBP3. If there is a change in the
password DBP1 in the database, this changed password value
should be updated in the single sign-on repository as well. Also,
if the account DBU2 is dropped from the database, this should
again be reflected in the single sign-on repository.

One way to automatically synchronize the database account
information in the source database systems with the single
sign-on repository is to require the source database systems to
notify the portal framework of any changes in account
information. However, most source database systems may not
be capable or not willing to perform this task. Therefore, a
passive approach that is dependent on the user is more favored.
When users see error messages in the query results due to the
fact that he/she has lost authorization or something has been
modified at the database level, they will be able to determine
and change any database account information in the single
sign-on repository themselves if they are provided with a
management mechanism to add, modify, and delete accounts in
the single sign-on repository.

Also note that as the single sign-on repository holds very
sensitive information, it should be encrypted and

communication between the data warehouse portal module
should be based on a trusted communication with a shared
secure key.

DBU1- DBP1
DBU4- DBP4

DBU2- DBP2
DBU5- DBP5

DBU3- DBP3

DW
Query
Server

Portal DW Portal
Module

Single Sign- On

PU1: DBU1- DBP1
DBU2- DBP2
DBU3- DBP3

PU2: DBU4- DBP4
DBU5- DBP5

PU1

PU2

Manage
DB Accounts

Synchronize

Trusted communication

Fig. 2 Integration of Single Sign-On and DW Portal Module

B. Query Result Caching
Portal users anticipate subsecond response, but it is

impossible for most data warehouse queries to be executed and
return the results within this short timeframe. The data
warehouse query result therefore needs to be obtained before a
user requests to view a portal page containing data warehouse
query results. In other words, the results should be cached. The
cache can be in the form of a middle-tier database that is
accessible by the data warehouse portal module.

The cache should be designed to hold the necessary data
types for the query results. The query results can be obtained as
XML and stored in the cache. The advantages of using XML
become evident when supporting customization features for
portals. Cached query results may also contain image data such
as graphs. There also may be several images related to a query
result.

The cache needs to be indexed so that the cache entry related
to a query result can be quickly identified and retrieved. As an
example, an index can be built on the following columns of a
cache table schema.

CREATE INDEX GETENTRY ON CID
CREATE INDEX CHECKEXIST ON DBCONN, QID,
QPARAM

The first index is used by the portal to quickly obtain query
results. CID is an identifier for the cache entry and is actually a
primary key. The second index described is used to check the
content of the cache entry in order to see if there already exists a
relevant cache entry before creating a new one. DBCONN
contains the database connection information, QID is an
identifier for each predefined data warehouse query, and
QPARAM is a combination of the query parameters that are to
be used by the query identified by QID. This kind of index will
differentiate the cache entry for each database connection, each
query, and each query parameter. Because it doesn’t contain

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:7, 2007

2137

information about the portal user, a cache entry can be shared
among several portal users.

Caches always have issues of expiration. Once information
in the cache is no longer useful – the reference count to the
cache entry becomes zero- the cache entry may be deleted.
However, for data warehouse queries, the cached entry may be
kept for some time in case the query result would be reused
within a short time. This greatly reduces the overhead of
re-running a data warehouse query whose result was already
stored in the cache. A timestamp on each cache entry may be set
when the entry is to be deleted. And after a specified period of
time a background process may really delete this cache entry.
The cache id (CID), reference count(REF), and timestamp(TS)
are shown in Fig. 3.

Customization Table

Cache Table

PU | WID | Customizations…| CID

CID|DB… |XML | IMAGE |TS |REF

PU = Portal User, WID = Window ID, CID = Cache ID
TS = Timestamp, REF = Reference count

PU1 W1 … 1
PU2 W1 … 1
PU3 W2 … 2

1 … … … - 2
2 … … … - 1

Query
Result
Cache

DW Portal Module

Fig. 3 Query Result Cache for DW Portal Module

C. Customization and Sharing
Portal users are provided with the ability to customize the

view of their data or portal pages. This feature also applies to
data warehouse query results. The users may want to see only
tables or only graphs or probably both on their page. In some
cases specific parameters that form the query may be
customized. The looks of the tables or titles of the table or
graph may be customized.

This kind of customization should be supported with
minimum overhead to the system. If the query needs to be
executed again after each customization operation by the user,
then it would cause too much overhead and make it look like
the customization operation itself is very slow. Most
customization operations should be taken care of at the
middle-tier level rather than going all the way to the database.
This can be solved by the separation of presentation logic and
data. The presentation information can be supported by
stylesheets and the data provided in the form of XML
documents. By retrieving the query result once as an XML
document and applying different customizations with a
stylesheet eliminates the need for re-running the time
consuming data warehouse query.

It is also necessary to minimize the amount of storage that is

used by these customization operations. If a user can reuse the
query result from another user, the storage space for the cache
can be dramatically reduced. Fig. 3 shows the cache table along
with a separate customization table that contains customization
options specified by a user for the query result windows on a
portal page. By separating the customization information from
cache entries, it is possible for several portal users to share the
data stored in a cache entry. In this case, there should be
reference counts being tracked on the cache entry in order to
correctly determine when the cache entry could be safely
deleted. In Fig. 3, the portal user PU1 created a window W1
and portal user PU2 created a window W2. These two windows
actually can share the same cache entry CID=1 and thus the
reference to this cache entry is set to REF=2. The reference
count to the cache entries should be correctly maintained when
sharing of cached data is permitted under the cover of different
portal users.

D. Scheduling Data Warehouse Queries
As explained in subsection 4.2, data warehouse query results

need to be cached in order to meet the subsecond response time
requirement of portal users. For this purpose, a query
scheduling mechanism is needed. A background scheduler
should be running and periodically execute the data warehouse
queries to populate the cache entry with the query results.

The most important design issue for the scheduler is
providing scalability. The portal environment has a much larger
user base than the traditional data warehouse whose user base is
composed of a few business strategists. In the worst case if no
query results can be shared among the portal users at all, the
scheduler will have to run queries on behalf of every portal user.
Additionally, a user may want to run several such data
warehouse queries, which will dramatically increase the
number of queries to be scheduled overall. The scheduler
should be designed as a multithreaded module so that parallel
threads can execute queries at the same time. Also, several
scheduler instances should be able to run in parallel if
necessary. This can be achieved by persisting data structures
that contain information such as refresh periods used by the
scheduler into a middle-tier repository and letting the multiple
schedulers obtain the information in a consistent way. We can
use the previously discussed Query Result Cache for this
purpose.

An issue that has direct impact on the scalability
requirements of the system is the scheduling frequency. If the
scheduler is in synch with the data warehouse refresh schedule,
the scheduling frequency would be fixed for all data warehouse
queries except for those that are newly added to portal pages
and require immediate execution. If portal users are provided
with the capability to individually specify when their query
results should be refreshed in the cache, the processing load of
the scheduler may significantly increase. Even in such cases,
there should be minimum refresh period restrictions such as
hours being the minimum unit of refresh in order to control the
load of the scheduler. Also, in order to avoid a situation where
the load can grow infinitely, the interval of refreshing the query

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:7, 2007

2138

results should not be allowed to be less than the estimated data
warehouse query execution time. As an example, if the refresh
period is 1 hour for a data warehouse query and the query takes
2 hours to execute, the execution of the query will be kicked off
every 1 hour while some previously scheduled queries are still
running.

DW
Query
Server

Thread

Query
Results

Refresh
Schedules

DW Query
Scheduler

Single Sign-On Server

DW Portal M odule

Query
Result
Cache

Execute
DW Queries

Recovery
M odule

Query
Queue

Fig. 4 Multithreaded DW Query Scheduler

Another problem when designing schedulers is to provide a

recovery and management mechanism. This is especially
important when dealing with data warehouse queries because
these queries require large amounts of resources. Because the
scheduler is run as a background process, it could experience
errors while nobody is currently available to fix it or even
notice it. Therefore, it is desired that in some situations, if
possible, the scheduler can automatically diagnose its status
and perform recovery operations. If the server is rebooted and
the scheduler is reinitialized, it should be able to identify those
jobs that were in progress and redo them again. Also, if data
warehouse queries result in errors for some reason, the errors
should be logged and shown to the portal users to understand
the why the query result is not available. Functions to clean up
queries that are infinitely looping or are erroneously using too
much resources should be provided as well.

The scheduler also requires a super user privilege that can
run any query on behalf of any user. This may complicate the
process of authorization and potentially become a security hole
if the scheduler is not properly secured.

E. Authorization
The authorization model in the portal becomes quite

complicated when it comes to providing users to be able to
publish their data to other users through the portal framework.
This type of authorization for viewing data overrides the
database authorization mechanism. It especially becomes
complicated when a portal user publishes data that is prohibited
at the database level for other portal users to view. A user may
accidentally open up sensitive information to the public if
he/she is not aware of the restrictions provided by the database
security.

Therefore, in cases where a level of authorization is provided
at the portal level aside from the database level, the
authorization granting or publishing should be carefully
designed so that the authorization of the data at the database
level is not seriously violated. In our case, we decided to
provide maximum flexibility to the portal user and do not
restrict the user from publishing the information that he/she is
allowed to view. However, if a user that does not have the
database account required to run this published query in the
Single Sign-On server, he/she is not able to view the query
results. Therefore, even though we allow portal users to publish
any query, the database security is still maintained.

V. IMPLEMENTATION
The issues regarding the design of the Data Warehouse

Portal Module have been resolved and currently the module is
implemented in Java as a servlet. The Data Warehouse Portal
Module is currently being targeted first to support Oracle Portal
as Oracle’s products have a large user base. In order to support
Oracle Portal, a module called a Provider is implemented with
our servlet. Oracle Portal provides a PDK (Portal Development
Kit) which is a library to make it easy to plug into the
framework by just implementing several methods required by
Oracle Portal. We are using an adapter approach to be able to
plug into different portal products. Due to the fact that the Data
Warehouse Portal Module is a servlet, it can coexist with the
Data Warehouse Query Server or be separately installed on
another machine with a servlet engine or even on the machine
running Oracle Portal.

The Query Result Cache is a middle-tier database that needs
to be available for use. This database can be installed and
managed on the site that is running the Data Warehouse Portal
Module. It is also possible to use an existing database instead.
However, if using a remote database, the performance may be a
little slower due to the communication required through the
network. We are currently using an Oracle 9i database for the
Query Result Cache.

VI. CONCLUSION AND FUTURE WORK
We are currently extending our Web-based query reporting

tool which is designed for data warehouse queries to support a
portal environment. During the design phase we have identified
several issues that need to be considered when developing a
portal enabled data warehouse query tool. The issues are single
sign-on, query result caching, customizing and sharing query
results, scheduling of queries, and authorization issues. After
carefully examining each issue, we have come up with
architecture to support the portal environment.

Our future work will concentrate on evaluating the generic
adapter to see if it can plug into several portal products,
improving the cache performance and sharing mechanism,
allowing more customization options, refining the
authorization model to enable users to have a more
sophisticated layer of control on their data at the portal level.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:7, 2007

2139

REFERENCES
[1] Brio, http://www.brio.com/products/overview.html
[2] Business Objects, http://www.businessobjects.com/products/bobj/
[3] Cognos,PowerPlay,http://www.cognos.com/products/powerplay/index.ht

ml
[4] Oracle, Discoverer,

http://otn.oracle.com/products/discoverer/content.html
[5] Plumtree, http://www.plumtree.com
[6] Microsoft, Sharepoint

Server,http://www.microsoft.com/sharepoint/server/ default.asp
[7] Oracle,Oracle9iASPortal,http://portalcenter.oracle.com/servlet/page?_pa

geid=356&_dad=ops&_schema=OPSTUDIO
[8] IBM,Websphere,http://www-3.ibm.com/software/info1/websphere/index

.jsp?tab=products/portaltoolkit&S_TACT=103BGW01&S_CMP=camp
aign

[9] On Personalizing the Catalogs of Web Portals, N. Spyratos, Y. Tzitzikas,
V. Christophides, Special Track on Semantic Web at the 15th
International FLAIRS'02 Conference, Florida, May 14-16, 2002.

[10] Times-Ten Team, Mid-tier caching: the TimesTen approach. Proceedings
of ACM SIGMOD conference, p. 588-593, Madison, Wisconsin, June 3-6,
2002.

[11] Haifeng Liu, Wee Keong Ng, Ee-Peng Lim, Query Integration for
Refreshing Web Views. Proceedings of DEXA conference, p. 557-566,
Munich, Germany, 2001.

[12] Kurt Stockinger, Kesheng Wu, Arie Shoshani, Strategies for processing
ad hoc queries on large data warehouses. Proceedings of ACM Fifth
International Workshop on Data Warehousing and OLAP, p.72-79,
November 8, 2002, McLean, VA, 2002.

[13] Alexander Kuckelberg, Ralph Krieger, Efficient Structure Oriented
Storage of XML Documents Using ORDBMS. Proceedings of Efficiency
and Effectiveness of XML Tools and Techniques and Data Integration
over the Web, VLDB 2002 Workshop EEXTT and CAiSE 2002
Workshop DTWeb, p. 131-143, Hong Kong, China, 2002.

[14] Dieter Gawlick, Infrasturucture for Web-based Application Integration.
Proceedings of the 17th International Conference on Data Engineering, p.
473-476, Heidelberg, Germany, April 2-6, 2001.

[15] Christian Zirpins, Harald Weinreich, Andreas Bartelt, Winfried
Lamersdorf: Advanced Concepts for Next Generation Portals. WBC -
First International Workshop on Web Based Collaboration (Workshop
with DEXA), p. 501-506, Munich, Germany, 2001.

[16] Arne Koschel: Base Technologies for iPortal development: IONA's
iPortal Suite. Engineering Federated Information Systems, Proceedings of
the 3rd Workshop EFIS 2000, p. 102-105, Dublin, Ireland, June 19-20,
2000.

[17] Charu C. Aggarwal, Philip S. Yu, An Automated System for Web Portal
Personalization, Proceedings of VLDB conference, p. 1031-1040, Hong
Kong, China, 2002.

[18] Christian Wege, Portal Server Technology. IEEE Internet Computing, vol.
6 no. 1, p. 73-77, 2002.

[19] Wen-Syan Li, K. Selçuk Candan, Wang-Pin Hsiung, Oliver Po,
Divyakant Agrawal, Qiong Luo, Wei-Kuang Waine Huang, Yusuf Akca,
Cemal Yilmaz, Cache Portal: Technology for Accelerating
Database-driven e-commerce Web Sites. VLDB 2001, Proceedings of
27th International Conference on Very Large Data Bases, p. 699-700,
September 11-14, 2001, Roma, Italy.

[20] Peter H. Aiken, Kathi Hogshead Davis: Metadata Engineering for
Corporate Portals Using XML. Conceptual Modeling - ER 2000, 19th
International Conference on Conceptual Modeling, p. 572-573, Salt Lake
City, Utah, USA, October 9-12, 2000.

