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Isospectral Hulthén Potential
Anil Kumar

Abstract—Supersymmetric Quantum Mechanics is an interesting
framework to analyze nonrelativistic quantal problems. Using these
techniques, we construct a family of strictly isospectral Hulthén
potentials. Isospectral wave functions are generated and plotted for
different values of the deformation parameter.
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I. INTRODUCTION

T for its bound state energy levels and eigenfunction is
fundamental in understanding the bound energy spectrum in
nonrelativistic and relativistic quantum mechanics. The wave
function contains all necessary information for the complete
description of a quantum mechanical system. There are only
a few potentials for which the Schrödinger equation can be
solved explicitly. One of these exactly solvable potentials is
the Hulthén potential. The Hulthén potential [1-5] is one of
the important exponential potentials which is extensively
used to describe the atomic interactions. It has many
applications in atomic physics, nuclear and high energy
physics, solid state physics and chemical physics [6,7].

We use the isospectral Hamiltonian approach to study the
isospectral potential and their wave functions. Two
Hamiltonians are said to be strictly isospectral, if they have
exactly same energy eigenvalue spectrum and S-matrix
[8-10], whereas the wave functions and their dependent
quantities are different. Though the idea of generating
isospectral Hamiltonians using the Gelfand-Levitan approach
or the Darboux procedure were known for some time, the
supersymmetric quantum mechanical techniques make the
procedure look simpler [11-13]. When one deletes a bound
state of a given potential V (x) and re-introduce the state, it
involves solving a first order differential equation. Thus, a
set of one-dimensional family of potentials V̂ (x, c) can be
constructed which have the exactly same energy spectrum as
that of V (x). In general, for any one dimensional potential
with n bound states, one can construct an n-parameter
family of strictly isospectral potentials, i.e. potentials with
eigenvalues, reflection and transmission coefficients identical
to those for original potential. This aspect has been utilized
profitably in many physical situations, which are of interest
to various fields [14-20]. In soliton physics, the stability of
the soliton/kink is ensured by the occurrence of a zero
energy ground state of the stability equation when small
oscillations around the soliton/kink are considered. The
stability equation can be considered as an one dimensional
Schrödinger equation with potential V (x) and one can
construct an isospectral partner for it. The partner stability
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equation will have the same energy spectrum as that of the
original equation. Then, one can reconstruct the soliton
solution and hence the potential, V(φ), which admits the
soliton solution from the partner stability equation. This
generalizes the class of Hamiltonians which admits
soliton/kink solutions that share the same stability data
[21-23]. The spectrum of a charged particle in uniform
magnetic field consists of equally spaced Landau levels
which are infinitely degenerate. Using isospectral
deformation, it has been shown that equispaced spectrum can
also be obtained for a wide class of non-uniform magnetic
fields [24], [25]. In this paper, we consider the Hulthén
potential and calculate the deformed potential and their
eigenfunctions using isospectral Hamiltonian approach.

II. ISOSPECTRAL HAMILTONIAN APPROACH

The connection between the bound state wave functions and
the potential is one of the key ingredients in solving exactly
for the spectrum of one dimensional potential problems. Once,
we know the ground state wave function (ψ0) and choose its
energy to be zero, we can factorize the Hamiltonian as H1 =
A†A where (in units h̄ = 2m = 1), A = d

dx + W (x) and
A† = − d

dx + W (x) are the supersymmetric operators and
W (x) = − d

dx [lnψ0(x)] is called the superpotential. We have

H1ψn = A†Aψn = εnψn, (1)

AA†(Aψn) = εn(Aψn),

H2(Aψn) = εn(Aψn). (2)

Here H2 is the supersymmetric partner Hamiltonian of H1,
with eigenfunctions χn = Aψn. It is obvious that H2 has the
same eigenvalue spectrum as that of H1, but for the case
Aψ0 = 0, which is the case of supersymmetry broken.
Explicitly, the relation between Hamiltonians reads,

E(2)
n = E

(1)
n+1; E

(1)
0 = 0,

ψ(2)
n = [E(1)

n+1]
− 1

2 Aψ
(1)
n+1,

ψ
(1)
n+1 = [E(2)

n ]−
1
2 A†ψ(2)

n ,

The superpotential relates the supersymmetric partner
potentials V1(x) and V2(x) as

V1,2(x) = W 2(x) ∓ dW

dx
. (3)

It is well known that for the potential V2(x), the original
potential V1(x) is not unique. The argument is as follows.
Suppose H2 has another factorization BB†, where
B = d

dx + Ŵ (x), then, H2 = AA† = BB† but H1 = B†B is

HE exact analytical solution of the Schrödinger equation
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not A†A rather it defines a certain new Hamiltonian. For
superpotential Ŵ (x), the partner potential V2(x) is

V2(x) = Ŵ 2(x) + Ŵ ′(x). (4)

Consider the most general solution as Ŵ (x) = W (x)+φ(x),
which demands that,

φ2(x) + 2W (x)φ(x) + φ
′
(x) = 0. (5)

The solution of the above equation is φ(x) = d
dx ln [I(x) + c],

where I(x) =
∫ x

−∞ ψ2
0(x

′
)dx

′
and c is a constant. Therefore,

we obtain,

Ŵ (x) = W (x) +
d

dx
ln [I(x) + c] . (6)

The corresponding one parameter family of potentials V̂1(x, c)
is given as

V̂1(x, c) = V1(x) − 2
d2

dx2
(ln(I(x) + c)). (7)

The normalized ground state wave function corresponding to
the potential V̂1(x, c) reads

ψ̂0(x, c) =

√
c(1 + c)ψ0(x)
I(x) + c

, (8)

where c �∈ (0,−1). The excited state eigenfunctions for the
potential V̂1(x, λ) are given by

ψ̂n+1(x, c) = ψn+1(x) +
1

En+1

(
I

′
(x)

I(x) + c

)
(

d

dx
+ W (x)

)
ψn+1(x). (9)

The equations 7, 8 and 9 represent the one parameter family
of isospectral potentials and the wave functions which shall
be used to obtain the Hulthén Potential as a function of
deformation parameter.

III. ISOSPECTRAL HULTHÉN POTENTIAL

The Hulthén Potential is an interesting short range potential
which is used in atomic physics, solid state physics, nuclear
physics, particle physics and chemical physics. The potential
is given as [5],

V (x) = − V1e
−2ax

1 − qe−2ax
(10)

The energy eigenvalues of the potential are obtained as

En = −a2

[
n + 1 − V1

4qa2(n + 1)

]2

(11)

The normalized ground state eigenfunction reads

ψ0(x) =
e−2a

√
εx − qe−2a(1+

√
ε)x(

1
4a

√
ε
− q

a(1+2
√

ε)
+ q2

4a(1+
√

ε)

) (12)

The excited state wave functions are

ψn(x) = Nn(e−2a
√

εx − qe−2a(1+
√

ε)x)
P [n, 2

√
ε, 1, 1 − 2qe−2ax] (13)
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Fig. 1. The Hulthén potential for q=1, a=1, V1 = 4 and deformation
parameter c = 2 (dashed line) and c = 1.1 (dotted line). Solid line shows
the undeformed potential.

where Nn is normalization constant and P is Jacobi’s
polynomial. The potential isospectral to the Hulthén potential
is obtained after some calculations as

V̂ (x, c) = 2

{ (
e−4a

√
εx − 2qJ4 + q2J3

J1(c + J2)

)2

+
4a

√
εJ3 − 4qa(1 + 2

√
ε)J4 + 4q2a(1 +

√
ε)J3

J1(c + J2)

}
(14)

where

J1 =
(

1
4a

√
ε
− q

a(1 + 2
√

ε)
+

q2

4a(1 +
√

ε)

)

J2 =
− e−4a

√
εx

4a
√

ε
+ qe−2a(1+2ε)x

a(1+2
√

ε)
− q2e−4a(1+

√
ε)x

4a(1+
√

ε)

1
4a

√
ε
− q

a(1+2
√

ε)
+ q2

4a(1+
√

ε)

J3 = e−4a(1+
√

ε)x)

and
J4 = e−2a(1+2

√
ε)x

Using isospectral hamiltonian approach, the ground state wave
function is calculated as

ψ̂0(x, c) =

√
c(1 + c)(e−2a

√
εx − qe−2a(1+

√
ε)x)√

J1(c + J2)
(15)

The excited state eigenfunction is obtained after some
calculations as

ψ̂n(x, c) =
2q(n + 3 + 2

√
ε)e−2axJ3

5P [n, 1 + 2
√

ε, 2, μ]
J6 − J5P [n + 1, 2

√
ε, 1, μ]

(16)

where
J5 = qe−2a(1+

√
ε)x − e−2a

√
εx

J6 = aJ1(c + J2)(n + 2 − V1

4qa2(n + 2)
)2

and
μ = 1 − 2qe−2ax

The potential is plotted for different values of the deformation
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Fig. 2. Ground state wave function of Hulthén potential for q=1, a=1 and
deformation parameter c = 10 (solid line), c = 5 (dashed line) and c = 2
(dotted line).
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deformation parameter c = 10 (solid line), c = 2 (dashed line) and c = 1.3
(dotted line).
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a=1 and deformation parameter c = 10 (dashed line), c = 5 (small dashed
line), c = 3 (dotted line) and solid line is for undeformed case.

of the parameter, the deformation in the potential increases.
The wave function corresponding to ground state, first excited

for different values of deformation parameter. It is noted that
for large values of deformation parameter, the wave function
approaches towards the undeformed wave functions.

IV. CONCLUSION

We have presented the calculations for Hulthén potential
using isospectral Hamiltonian approach, which deals with
first order differential equation. A class of Hulthén potential
and their eigenfunctions is obtained having same eigenvalue
spectrum. The deformed potential and the eigenfunctions
approaches to their undeformed case for large values of the
deformation parameter.
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