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Abstract—Enzymes are the biocatalysts which catalyze the 

biochemical processes and thus have a wide variety of applications in 
the industrial sector. β-Galactosidase (E.C. 3.2.1.23) also known as 
lactase, is one of the prime enzymes, which has significant potential 
in the dairy and food processing industries. It has the capability to 
catalyze both the hydrolytic reaction for the production of lactose 
hydrolyzed milk and transgalactosylation reaction for the synthesis of 
prebiotics such as lactulose and galactooligosaccharides. These 
prebiotics have various nutritional and technological benefits. 
Although, the enzyme is naturally present in almonds, peaches, 
apricots and other variety of fruits and animals, the extraction of 
enzyme from these sources increases the cost of enzyme. Therefore, 
focus has been shifted towards the production of low cost enzyme 
from the microorganisms such as bacteria, yeast and fungi. As 
compared to yeast and bacteria, fungal β-galactosidase is generally 
preferred as being extracellular and thermostable in nature. Keeping 
the above in view, the present study was carried out for the isolation 
of the β-galactosidase producing fungal strain from the food as well 
as the agricultural wastes. A total of more than 100 fungal cultures 
were examined for their potential in enzyme production. All the 
fungal strains were screened using X-gal and IPTG as inducers in the 
modified Czapek Dox Agar medium. Among the various isolated 
fungal strains, the strain exhibiting the highest enzyme activity was 
chosen for further phenotypic and genotypic characterization. The 
strain was identified as Rhizomucor pusillus on the basis of 5.8s RNA 
gene sequencing data. 
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I. INTRODUCTION  

HERE is an ever increasing demand for the utilization of 
the biocatalyst; especially those synthesized by microbial 

fermentation in the industrial sector. One such enzyme is β-
galactosidase, which has a great demand in the food as well as 
in the dairy industry [1]. β-galactosidase or lactase (E.C. 
3.2.1.23) is the member of the glycoside hydrolase family of 
enzymes that are responsible for cleaving the glycosidic bond 
between two or more carbohydrate molecules or between a 
carbohydrate and the another molecule [2]. This enzyme has 
two main vital applications in the dairy industry, such as 
lactase is capable of catalyzing the hydrolysis reaction. In this 
reaction, the enzyme catalyzes the conversion of lactose into 
its respective monosaccharide units; thereby providing various 
health benefits such as offering lactose hydrolyzed milk as 
suitable alternatives for lactose intolerant people. Moreover, 
utilization of lactose hydrolyzed milk prevents the lactose 
crystallization in frozen, sweetened dairy products such as ice-
creams, condensed milk [3], [4]. Besides the hydrolysis 
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reaction, β-galactosidases are also able to catalyze the 
transgalactosylation reaction resulting in the synthesis of 
lactulose and galactooligosaccharide, potential prebiotics 
having various nutritional benefits [5]. Owing to these 
properties and to fulfill the demands of the consumers, there is 
a need for the low cost production of the enzyme.  

Lactases are naturally present in plants such as almonds, 
peaches, apricots and in animal organs such as brain and 
placenta [6]. Apart from this, microorganisms are also major 
sources of this enzyme [7]. Among all the natural sources, 
microorganisms are the preferred source for the enzyme 
production in terms their ability to grow on low cost agro-
industrial wastes; which can minimize the cost of production. 
Moreover, the higher yields can be obtained from microbial 
sources [8]. A variety of microbes such as bacteria especially 
lactic acid bacteria, yeast of the genus Kluyveromyces and 
fungi (Aspergillus oryzae, A. niger, etc.) have been widely 
used for the enzyme production.  

Although various microbial species have been exploited for 
β-galactosidase production, still β-galactosidase from fungus 
is of special interest as the enzyme synthesized is extracellular 
and thermostable by nature [9]. Extracellular enzymes are of 
economic significance, since the production cost arising from 
the additional techniques to extract the enzymes is low as 
compared to intracellular enzymes. The selection of suitable 
substrate along with the microorganism giving the higher yield 
of enzyme, efficient processing techniques are the prime 
factors determining the cost of the enzyme production. 

Keeping the above in view, the present study was carried to 
isolate the novel fungal strain from the various food and 
agricultural wastes having high enzyme producing capability.  

II. MATERIALS AND METHODS 

A. Isolation of Fungal Cultures 

1. Collection of Samples 

Different food and agro-industrial wastes, such as whey 
from the Verka Milk Plant, Sangrur, Punjab (India), peels of 
the different fruits and vegetables (kitchen waste), and other 
sources such as compost, manure and garden soil had been 
taken from different areas of Punjab and nearby states of 
India. 

2. Isolation of the Fungal Cultures 

The isolation of the fungal cultures was carried following 
the method of [10], along with some modifications. All the 
isolates were grown on modified czapek dox supplemented 
with chloramphenicol (100 mg L-1) to avoid the growth of 
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bacteria and yeasts. The plates were incubated at 28 ºC and 
45-50 ºC. Morphological identification of the isolates was 
observed and the colonies were further sub-cultured to obtain 
pure cultures which were stored at 4ºC until further use.  

3. Screening of the Fungal Cultures 

The lactase producing fungal strains were initially screened 
by adding 50 µL of X-gal (5-bromo-4-chloro-3 indole-β-D 
galactopyranoside (20 mg/mL in DMSO) as inducer in the 
agar plates. The plates were further incubated in the respective 
temperatures (28 ºC and 45-50 ºC) for 3-5 days. The fungal 
cultures capable of producing β-galactosidase were chosen for 
further studies. 

B. Procurement of Fungal Cultures 

The fungal cultures, Aureobasidium pullulans NCIM 1050, 
Aspergillus oryzae NCIM 1212, A. niger NCIM 616, and 
Aspergillus flavus MTCC 9349 were procured from National 
Collection of Industrial Microorganisms, National Chemical 
Laboratory, Pune and Microbial Type Culture Collection 
Centre, Institute of Microbial Technology, Chandigarh, India 
respectively. 

C. Production of β-Galactosidase by Submerged 
Fermentation 

The growth and the fermentation media were prepared 
according to the method described by [11], to determine the 
potential of the fungal isolates in the production of the 
enzyme. The medium constituted of the following components 
(g/L): lactose (10.0), peptone (1.5), yeast extract (1.0), 
(NH4)H2PO4 (7.0), KH2PO4 (1.0), MgSO4.7H2O (1.0) and 
CaCl2 (0.3). The fermentation media was inoculated with 2% 
spore suspension and incubation was carried for 7-8 days at 
45-50 ºC. The fungal strain exhibiting higher enzyme activity 
as compared to the other isolates as well as from the standard 
culture was chosen for further studies. 

D. Determination of Enzyme Activity  

The enzyme assay was carried out by following the method 
of [12]. The culture was centrifuged at 5000 rpm for 10 min. 
The supernatant was used for enzymatic assay. The enzyme 
solution (0.2 mL) was mixed with the ONPG (1 mL) in 
sodium acetate buffer (0.1 M, pH 4.5). The enzyme solution 
along with the substrate was incubated at 50 ºC for 5 min. The 
reaction was stopped by using 1 mL of sodium carbonate 
(10%) and the absorbance was read at 420 nm (DR 5000, 
HACH, Germany). 

One unit of enzyme activity is equivalent to 1 micromole of 
ortho-nitrophenol liberated per min. under standard assay 
conditions. 

E. Identification and Characterization of the Isolated 
Culture  

The identification of the fungal strain was carried by means 
of both phenotypic and genotypic characterization. The 
identification studies were carried from Institute of Microbial 
Technology (IMTECH), Chandigarh. The phenotypic 

characterization was carried using maximum likelihood model 
based on Tamura-3 parameter model [13] and the genotypic 
characterization was done using 5.8s rRNA gene sequence 
data [14]. 

F. Determination of the Cell Biomass and Enzyme Activity 
of the Fungal Isolate  

The fungal isolate was grown for 14 days and the sample 
was withdrawn at every 24 h and the weight of the mycelium 
was checked to determine the growth pattern of the fungal 
isolate. Moreover, the enzyme activity of the fungal isolate 
was also checked at 24 h time interval. 

III. RESULTS AND DISCUSSION 

The study was carried to isolate the fungal strains capable 
of producing elevated levels of the enzyme β-galactosidase. 
The fungal strains were grown on cheap agro-industrial wastes 
and further tested for their potential in β-galactosidase 
production. 

A. Isolation of the Fungal Isolates 

The fungal cultures were isolated from different food as 
well as agro-industrial wastes collected from the different 
parts of Punjab and other parts of India. A more than 100 
fungal colonies were isolated when grown on the different 
agricultural as well as industrial wastes as well as from the 
other natural sources. These colonies were further grown on 
the modified czapek dox agar to obtain the pure culture.  

B. Screening of the Fungal Isolates 

The fungal colonies obtained were further screened by 
adding X-gal in the agar medium. The fungal colonies having 
the potential to synthesize β-galactosidase enzyme appeared 
blue in colour (Figs. 1 (a), (b)); whereas those fungal colonies 
that were not able to synthesize the enzyme did not show any 
blue colour. Among the 100 strains isolates, 45-50 fungal 
cultures showed blue colour when grown on media containing 
X-gal. The strains exhibiting the blue colour were chosen for 
further studies and the enzyme activity of the fungal cultures 
was determined. During the screening of the β-galactosidase 
producing strains, among the 72 colonies, 13 strains formed 
blue coloured colonies [15]. 

C. Production of β-Galactosidase by Submerged 
Fermentation 

The fungal isolates were grown in the fermentation medium 
and the enzyme activity of the isolates were determined and 
compared with the standard fungal culture that showed the 
maximum enzyme activity. The enzyme activity of the 
different fungal isolates has been depicted in Table I. Among 
all the isolated fungal strains, BPTT showed the maximum 
enzyme activity (2.14 IU/mL) in comparison to the standard 
strain, Aureobasidium pullulans, which had an enzyme 
activity of 1.7 IU/mL as shown in Fig. 2. The highest enzyme 
producer strain was isolated from the rotten banana peel.  
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