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Abstract—In this paper, five options of Iran’s gas flare recovery 

have been compared via MCDM method. For developing the model, 
the weighing factor of each indicator an AHP method is used via the 
Expert-choice software. Several cases were considered in this 
analysis. They are defined where the priorities were defined always 
keeping one criterion in first position, while the priorities of the other 
criteria were defined by ordinal information defining the mutual 
relations of the criteria and the respective indicators. The results, 
show that amongst these cases, priority is obtained for CHP usage 
where availability indicator is highly weighted while the pipeline 
usage is obtained where environmental indicator highly weighted and 
the injection priority is obtained where economic indicator is highly 
weighted and also when the weighing factor of all the criteria are the 
same the Injection priority is obtained. 
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I. INTRODUCTION 

T is obviously cleared that by rising the living standards in 
Iran and also the global population growth, the greenhouse 

gas emissions will definitely increase during the future years.  
Enormous consumption of fossil fuels to supply the 

demanded energy in the recent decade causes a huge amount 
production of greenhouse gases which leads to global 
warming disaster. 

Annually, over 140 billion cubic meters of natural gas are 
being flared and vented which is equivalent to 25% of the 
United States’ gas demand, 30% of the European Union’s gas 
demand, or 75% of Russia’s gas exports [1]. 

Gas flaring in Africa is equivalent to half of that continent’s 
power consumption. Flaring gas has a global effect on climate 
change by adding annually about 360 million tons of CO2.  

About 70% of gas flaring in the whole world produces in 
less than 20 countries whereas more than 70 billion cubic 
meters of it is generated in just four of the mentioned 
countries. Iran flared 400 billion cubic feet of gas in 2011. 
That would meet about a quarter of demand in South Korea. 
The gas is worth about $7.3 billion on Southeast Asian spot 
LNG markets [2]. The associated gas in Iran is usually flared 
for the lack of infrastructure to be processed and transported to 
demand markets. 

The flared natural gas was about 5% of the world’s natural 
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gas production by the end of 2012 [3]. As shown in table I, the 
top 20 countries accounted for the flaring of 127 billion cubic 
meters, which is over 86% of the total flaring in the world by 
the end of 2011. The ratio of CO2 emissions to natural gas 
flaring have also shown in the Table I. Russia stands on the 
first place of gas flaring in the world. The flaring of Nigeria 
alone amounts 12% of the total flaring and Iran holds the third 
place of gas flaring. 

 
TABLE I  

ESTIMATED TOP 20 GAS FLARING COUNTRIES [4] 

Rank Country 
Flared Volume, 109 cubic CO2 from flaring 

(106 tones/year) 2009 2010 2011 

1 Russia 46.6 35.6 37.4 116.4 

2 Nigeria 14.9 15.0 14.6 46 

3 Iran 10.9 11.3 11.4 28.9 

4 Iraq 8.1 9.0 9.4 17.7 

5 USA 3.3 4.6 7.1 14.3 

6 Algeria 4.9 5.3 5.0 14.8 

7 Kazakhstan 5.0 3.8 4.7 4.5 

8 Angola 3.4 4.1 4.1 7.9 

9 Saudi Arabia 3.6 3.6 3.7 10.3 
10 Venezuela 2.8 2.8 3.5 9.5 

11 China 2.4 2.5 2.6 2.9 

12 Canada 1.8 2.5 2.4 4.8 

13 Libya 3.5 3.8 2.2 7.2 

14 Indonesia 2.9 2.2 2.2 6.7 

15 Mexico 3.0 2.8 2.1 6.7 

16 Qatar 2.2 1.8 1.7 5.2 

17 Uzbekistan 1.7 1.9 1.7 - 

18 Malaysia 1.9 1.5 1.6 - 

19 Oman 1.9 1.6 1.6 6 

20 Egypt 1.8 1.6 1.6 6.7 

Total for the Top 20 
Countries 

127 118 121 316.5 

Global Flaring Level 154 146 147 365.8 

II. ENVIRONMENTAL EFFECTS OF CO2 

Iran has shown remarkable growth in total fossil-fuel CO2 
emissions since 1954, averaging 6.3% per year. In 2008 total 
emissions reached an all-time high of 147 million metric tons 
of carbon. With Iran being the world's fourth largest oil-
producing country it is not surprising crude oil and petroleum 
products account for the largest fraction of the Iranian 
emissions, 46.4% in 2008. The CO2 emissions time series for 
Iran, like other countries in the Middle East, shows sizeable 
emissions from gas flaring in the late 1960s and 1970s and a 
decline in these emissions during the 1980s and 1990s. This 
downturn reflects changes in oil field practices, improvements 
in oil field facilities, and increasing use of gas fuels. 
Emissions from gas fuels have grown 390-fold since the first 
reported natural gas use in 1955 and now account for 42.3% of 
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D. CHP 

Natural gas is the most common fuel for CHP plants and 
this is a reflection of its price, availability, wide range of 
applications and the lower environmental impact of its exhaust 
gases.  

The supply of natural gas to a user is by pipeline from the 
national distribution network, much of which is owned and 
operated by National Grid Gas.  

The installation of a gas-fired CHP plant almost always 
increases the site’s consumption of gas, as the new plant 
generates both heat and power and usually operates for a large 
proportion of the year. As well as the increase in total annual 
gas consumption, the maximum rate of consumption usually 
increases, and this often requires the uprating of an existing 
site gas connection. In addition, the gas supply pressure 
required for operating a gas turbine or a gas engine is often 
higher than the existing site supply pressure, necessitating the 
use of pressure-boosting equipment. 

E. Petrochemical Products 

Low natural gas prices are a magnet for petrochemical 
producers, who are planning big investments in the province 
and helping it realize its long-standing priority of adding value 
to its oil and gas resources. 

The large majority of chemical products are produced from 
petroleum (oil) or natural gas. Several of these base chemicals 
may be made more readily from natural gas rather than 
petroleum. Synthesis gas is an obvious candidate, due to the 
high hydrogen content of natural gas. Moreover, the light 
alkenes may be made from wet natural gas (NGL) in a process 
known as steam cracking. 

F. Injection 

Iran is one of the largest gas rich countries in the world that 
production capacity exceeds domestic consumption and gas 
injection requirements. Gas can be utilized as feed stock in 
petrochemical plants and refineries or exported through 
pipeline or LNG. Through re-injection of gas to oil reservoirs, 
while increasing the oil recovery ratios, the produced gases 
from fields shared with other countries could be stored into 
domestic gas fields.  

VI. METHODOLOGY 

Multiple criteria decision making (MCDM) refers to 
making decisions in the presence of multiple, usually 
conflicting criteria. MCDM problems are common in 
everyday life. In personal context, a house or a car one buys 
may be characterized in terms of price, size, style, safety, 
comfort, etc. In business context, MCDM problems are more 
complicated and usually of large scale. For example, many 
companies in Europe are conducting organizational self-
assessment using hundreds of criteria and sub-criteria set in 
the EFQM (European Foundation for Quality Management) 
business excellence model. Purchasing departments of large 
companies often need to evaluate their suppliers using a range 
of criteria in different area, such as after sale service, quality 
management, financial stability, etc. Although MCDM 

problems are widespread all the time, MCDM as a discipline 
only has a relatively short history of about 30 years.  

The development of the MCDM discipline is closely related 
to the advancement of computer technology. In one hand, the 
rapid development of computer technology in recent years has 
made it possible to conduct systematic analysis of complex 
MCDM problems. On the other hand, the widespread use of 
computers and information technology has generated a huge 
amount of information, which makes MCDM increasingly 
important and useful in supporting business decision making. 
There are many methods available for solving MCDM 
problems as reviewed by Hwang and Yoon, though some of 
the methods were criticized as ad hoc and to certain degree 
unjustified on theoretical and/or empirical grounds. There 
were calls in early 1990s to develop new methods that could 
produce consistent and rational results, capable of dealing with 
uncertainties and providing transparency to the analysis 
processes.  

In this paper, an AHP method is used to identify the 
priorities of flared gas recovery in different options which are 
explained as follows. In order to find the priorities, Expert 
Choice is used as the appropriate software and the result are 
shown as follows.  

A. Options 

An individual criterion for evaluation of the potential flare 
gas recovery options is leading to a limited guidance for the 
respective decision making process.  

In this respect, individual indicators are leading to the 
priorities of specific options, which will strongly depend on 
the selected indicator.  

The different options of flare gas recovery usage are as 
follows: 
• Liquid Fuels Production 
• Electricity Production 
• CHP 
• Petrochemical Products 
• Injection  
• Pipeline Usage 

B. Indicators 

For assessing the priorities of each option different criteria 
are used. The criteria of the assessment in this paper are as 
follows which is shown in  Table III. 
• Environment 
• Economics 
• Availability 

 
TABLE III  

 INDICATORS MEASUREMENT 
No. Indicator Measuring index 

1 Environment CO2 Content 

2 Economics Cost analysis($) 

3 Availability Delphi Panel Experts 

 
The assumptions of Iran’s future gas availability depend on 

different factors. In order to obtain the most probable ones, the 
three-round Delphi panel method is used in this paper.  
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criteria were defined by ordinal information defining the 
mutual relations of the criteria and the respective indicators.  

When the priorities are the same the results are presented as 
shown in case 4. The second group comprises cases with 
hierarchical constraints, with changing priority in constraints 
in each case. Amongst these cases, priority is obtained for 
CHP usage in Case 3where Availability indicator is highly 
weighted while the pipeline usage is obtained in Case 1 
(Environmental indicator highly weighted).  

The Injection priority is obtained in Case 3 and Case 5 
where Economic indicator is highly weighted and also when 
the weighing factor of all the criteria are the same the Injection 
priority is obtained.  

X. CONCLUSION 

As a result, where availability is the most important 
criterion, the CHP usage is chosen by the model while the 
priority goes to injection if the economical criterion has the 
highest importance.  

Even if this type of analysis contains arbitrariness in the 
evaluation of the priorities among the alternative options, it is 
noticed that the Injection option and the Pipeline usage and 
CHP option are the best choices under the constraints used. By 
increasing the number of cases to be analyzed, a better result 
for decision making should be obtained.  

It should also be noticed that, in this type of evaluation, 
further improvement of the data might lead to higher quality 
results. 
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