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Investigation of Stability of Functionally Graded
Material when Encountering Periodic Loading

M. Amiri

Abstract—In this work, functionally graded materials (FGMs),
subjected to loading, which varies with time has been studied. The
material properties of FGM are changing through the thickness of
material as power law distribution. The conical shells have been
chosen for this study so in the first step capability equations for FGM
have been obtained. With Galerkin method, these equations have
been replaced with time dependant differential equations with
variable coefficient. These equations have solved for different initial
conditions with variation methods. Important parameters in loading
conditions are semi-vertex angle, external pressure and material
properties. Results validation has been done by comparison between
with those in previous studies of other researchers.

Keywords—Impulsive semi-vertex angle, loading, functionally
graded materials, composite material.

NOMENCLATURE

Amn amplitude

Ag,Bg (B =1-16) definedin (15)

Clk’ Czk, C3k defined in (]6)

(k=0,1,2)

Co integration constant

ed power law exponent

E,E\,E, elastic moduli of the material

es, ey, esp strain components on the reference surface of
the conical shell

Fi,F, Material property of the constituent’s
materials

h Thickness of the conical shell

i Power of time in the external pressure
expression

Iy critical stress impulse

Ji(k =1,2) coefficient

kg dynamic factor

Mg, Mg, Mgq moment resultants

m wave number in the S direction

Ng, Ng, Ngg forces resultants

NO NS, NS membrane forces in the fundamental
configuration

n wave number in the circumferential direction

Nge, Ng wave numbers corresponding to the static and
dynamic critical loads

Qap Reduced stiffness defined in (7)-(9)

Gers) Qera static and dynamic critical loads, respectively

q0, 91 loading parameter and static external
pressure, respectively

q1 defined in (36)

Ty average radii of the small and large bases of

the conical shell
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S6¢ coordinate system on the reference surface of
the conical shell
the axis through the vertex on the reference
surface of the cone

S1,S; the inclined distances of the bases of the cone
from the vertex

t,ter time and critical time, respectively

T temperature in Kelvin

Vs volume fractions

w displacement of the reference surface in the
inwards normal direction {

y semi-vertex angle of the cone

61,0, Defined in (35b) and (40), respectively

U,Uq, Uy Poisson’s ratios

T dimensionless time parameter

P, P1,P2 densities of the materials

A a parameter that depends on the geometry of
the conical shell

6 axis lies in the circumferential direction

05, 0, Osg stress components

w defined in (37)

Emn (), N (©) time dependent amplitudes

14 the axis in the inwards normal direction of
the reference surface

X defined in (35a)

A,(u=-1,0,1/2) defined in (31)

vy stress function

br (k=0, 1, 2) defined in (31)

A defined in (21)

Ay A, Defined in (29a) and (29b), respectively

I potential energy defined in (31)

[. INTRODUCTION

GMs are now widely used in various applications to higher

material strength. Initially FGM attract attentions when
Japanese scientist, published his work [1]. FGMs are some
kind of composite materials, in those mechanical properties
varies from one surface to another. These gradual changes in
properties of material microscopically occur in mechanical
properties which vary slightly from one surface to another.
This is gained with slowly changing the volume fraction of the
component materials. FGMs were first intended to be a
thermal shield material for aerospace structures and some
special duty reactors. FGMs are now fabricated for high
temperature  environment  applications as  structural
components [2]. Researches for FGM have been done mainly
to analysis of deformation and thermal stress [3], [4]. Birman
[5] represented a formulation for stability of FGM composite
plates, in which a micromechanical model was developed to
solve buckling problem of a rectangular plates under axial
loading. Feldman and Aboudi [6] assumed that grades of
material properties all through the structure are result of a
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spacial distribution of volume fraction for local reinforcement.
Praveen and Reddy [7] studied the response of ceramic-metal
FGM plates by a finite element method for transverse shear
strains, rotary inertia and to a certain extend large rotations in
the “Von Karman” sense. Static and dynamic responses of
FGM plates were investigated by changing the volume
fraction of ceramic and metallic components by a simple
power law distribution. Loy [8] analyzes vibration of a thin
shell cylinder with FGM supports a compound of stainless
steel and nickel. For thick plates Reddy [9] developed a
formulations considering shear deformation plate theory. After
that Pradhan [10] continued working in this subject of FGM
thin shell cylinder to various boundary conditions. Some other
studies focused on parametric resonance of FGM thin shell
cylinder under periodic axial loading [11]. In the earlier
studies, Reddy and his colleague [9] evolved a simple theory,
while material properties are graded in the direction of
thickness agreeing to a volume fraction power law
distribution, however their out coming results have been only
validated for simple case of FGM shell in a not changing
thermal environment. Woo and Mequid [12] analyzes a
solution for considerable deflection in thin FGM plates and
shallow shells. In their studies the thermal load considered
arises from the one dimensional steady heat conduction in the
direction of plate thickness, but properties of material are
independent from temperature. A self-consistent constitutive
framework describes the manners of a common three-layered
system encompassing a FGM layer under thermal loading
[13]. A post-buckling analysis for a thin shell cylinder of finite
length was also carried out under external pressure in thermal
environments [14]. Transient responses in a FGM cylinder to a
point load [15] and transient dynamic analysis of a cracked
FGM by a BIEM [16] were also performed by research
groups. In addition, large deflection and post buckling
responses of FGM rectangular plates subjected to transverse
and in-plane loads were done by a semi-analytical method
[17].

Conical FGMs have wide applications in airspace industry
as structural element so several studies were conducted on
vibration and stability study of conical shells. Most of these
studies focused on isotropic and composite shells. [18]-[25].

For solving the stability problems of conical shells, it is
impossible to obtain analytical solutions as some difficulties
occur because of the real forms of the subjective loads.
Practically, simple analysis expresses an acceptable
approximation for load change depends on consumed time. As
evidence in some cases outcomes of the wind and fluid
pressure are stated as the power function of time. In some of
previous studies, external pressure is considered [26]. In this
research, the stability and consistency of truncated FGM
conical shells under external pressure changing as a power
function of time is investigated, considering different initial
conditions.

II. THEORETICAL STUDIES

In the selected coordinate system, the origin O is at the
vertex of the whole cone, on the reference plane of the shell,

and the S axis is on the rounded reference surface of the cone,
the h axis lies in the direction of circumference on the
reference surface of the cone and finally the f axis, is at right
angle to the plane of the first two axes, lies within normal
direction of the cone. The average radiuses of the small and
large bases of the conical shell are r1 and 12, and the distances
between the vertex and the small and large bases are S1 and
S2. It is noteworthy that the semi-vertex angle is c.

For properly model and obtain material properties of FGMs,
these properties have to be dependent to temperature and
position. This is accomplished with the aid of a simple
mixtures rule which governing the stiffness parameters joined
with the temperature dependent -characteristics of the
constituents. The fraction of volume is a 3 dimensional
function and the properties of the elements are functions of
temperature. The mixture of these functions gives increment to
the effective material properties of FGMs and could be stated
as:

F = F1Vf1 + F2Vf2 (1)

F, and F, are properties of components materials. Vi and Vi
are volume fractions of components which stated as:

Let volume fraction follows following power law:

V= +05)",7=¢/h (3)

index d varies through shell thickness to reach optimum value
for component materials. In some previous works such this
definition for Vi has also been used [11]. Regarding (1)-(3)
elastic modulus of a shell made from FGM E(E), Poisson’s

ratio V(E) and density p(E) could be written as:

E(§) = (B, —E)([(+ 0.5 +E,
V(&) = (v; =) ({+0.5)% + v, (4)
p(&) = (o1 = p)(+0.5) + p,

These three equation express Poisson ration, elastic modulus
and density of material 1 and 2 and as result following
equations are obtained:
{E=E1,v=v1,p=p1at(_=0.5 5)
E=E, v=v,p=pyat{=—05

The material properties are changing continuously from
material 2 (inside surface) to material 1 at the (outside surface)
of conic section of the shell.

Regarding the distribution in (5), the internal surface of the
conic part of shell is ceramic rich and the external surface is
metal rich. Let call this type A and subsequently for a metal
rich conical internal part of shell and ceramic rich external
surface Type B. Consequently, the properties of material and
the shells thickness, like Poissons ratio V(E) and elastic
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modulus E(E) could be obtained by (4). By knowing
properties of material, the relations between stress and strain
for thin conical shells are gained as:

a*w
es — Py
s Qi Qiz 0 / 192 o \
(20) [, % o)
Os6 0

Q2 O kee—s—za—;—gi—ﬁ) (6)

0 Qs6 1 9%w 1 0w

€50 " 5as0p T 509
where, @ = 0 siny, og, 0g and 0gg are components of stress,
og, 0g and oOgg are components of stress on the reference
plane, w is the displacement of reference plane in the normal
positive direction, on the way to the axis of the cone and
supposed to be much smaller than the thickness and Qup

(a, B =1, 2,6) are expressed as:

(51—122)(Z+0.5)d+E2

= = Z 7
Qu Q22 1—[(v1—v2)(z+0.5)d+vz] @
[(El—Ez)(?+o.5)d+Ez][(vl—vZ)(?+0-5)d+Vz]
12 = ~ a, 1? ®
1—[(v1—v2)({+0.5) +v2]
(El—Ez)(?+0.5)d +E,
Q12 = [ ] ©

- 2[1+(v1—v2)(z+0.5)d+v2]

It is presumed that a unchanging outside pressure changing
like a power function of time acts on shell as:

N = —0.5 x S(q1 + qottany, N§ = =S (g, + qot)tany,
Ny =0 (10)

N2, N§ and N2y are forces in the basic settings, q, is loading
parameter, g4 is the static pressure from outside, i is a positive
whole number power which is used to show time dependence
of pressure from outside which meets i > 1 t here is expressed
coordination of time.

By following expression force and moment could be
calculated:

05 -
(N, Ng,Ngg) = h [~ (a5, 05, 059)d {,

0.5 .
(MS' MQ,MSH) = hz f_O_S(JS' g, USB)d C (1 1)
Let stress function be:
10%2¥  10¥ 2y
Ns = 52502 T5a Vo = 552
1 9%w 1 0¥
Nso = = Sasap T 5704 (12)

Therefore, equations of dynamic stability and compatibility
could be rewritten as:

0w 24,03W Scoty — A, 0%°% A, 0¥ A, 0w
39" TS 957 ' 57 052 '5305 ' 5tost
204, — As) W 2(45—A;) 93
T 5T as2047 3 0S0gp?
2(A; — As+A,) 02W Az 0w
TS ag7 stagt
2(4,44¢) W 2(A,+Ag) 93w
TTS? 952092 S3  0S0¢?
_[Q1+%fi 2(A4+A6+A3)]62_WA 64_W
Scoty S4 a2 3 a8t
24;3%w  (A;  (qq + qot?)S\ 03w
D (S_Z_ 2coty )652
1+ qott A3\ ow 0%w
‘(—mty +§>£‘Pt"ﬁ

L(W,w) = 4,

=0

B,0*W 2(Bs+B,) W  2(Bs+B,) %W

LMW =G5~ 57 as2992 T 57 35947
2(Bs + B,+B,) 0*¥ B, 0¥ B, —B,0*¥
N R P T R T2
2B, 93W 0w B, 0w
T oss T higsr Tsiast
2(Bg — B3) 0*w 2(Bg — B3) 9w
T S3 052097 S3 9S9¢?
2(Bg — B; —B,) 0*'w B, ow
T 997 S30s
Bg coty\0*w 2B,d%w a'w
(ﬁ T)W‘Tm‘ O T

Ap,Bg(j = 1 — 6) and pare defined as:

Ay = C11By + (1B, Ay = C11By + C31By, A3 = C11B3 + (51By +
Ci2, Ay = C11By + C31B3 + Cyp, As = (41 Bs, Ag = C61B6 + Coy
By = CyoD, B, = —CyD, By = (C39C2y — €11C10)D, By =

1 C
(C20C11 — C21C19)D, Bs = —, By = =+
C6’J CﬁO

D =1/[(C10)* = (C20)%], pr = f_o(',s_s[(ﬂl = p2)({ +0.5)% + p,]d¢
15)

Cixs Cok and Cgy (k=0, 1, 2) are expressed as:

- d
05 5, (E1—E3)(C+0.5) +E. =
Clk — hk+1 f_osqk 1752 ( ) 2 (

- = (16a)
1—[(v1—v2)({+0.5) +vz]
- d = d
Gy = hEH1 f_otfs o [(El—Ez)((+0.5) +Ez]_[(v1—1;z)(§+20.5) +v2] 47 (16b)
1—[(v1—v2)({+0.5) +v2]
- d = d
Cop = R+ fi)(')s,s ¢ [(E1 E)($+0.5) +Ez][(V1 v,)(3+0.5) +vZ] 4 (16¢)

1—[(v1—v2)(z+0.5)d+vz]2

III. SOLVING THE PROBLEMS

As conical section of shell has a simple support around the
bases, the displacement and stress functions, w and ¥, are
defined as:

w= Zm Zn $mn (t)elr sinmyr cosn, @
Y= Z Z Nmn (£) S, A DT sinm, 7 cosny
m n

(19)
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m; = mt/In(S,/S;), r =1In(S/S;), n; = n/siny, &,,(t) and
Nmn () vary with amplitudes, m is the number of wave in the
direction of S, n is the wave number in the peripheral
direction, A is the geometry dependent parameter on 1.2 < A <
0.2 section of the of the conical shell.

Let r = In(S/S;) and by regarding (13) and (14) with the
aid of Galerkin method the following equations are obtained:

foznsmy f—oln(Sz/SO Ll(lp' W)WSzzezrdrdc =0

fOZTt siny

® s\ Ly (W, w)wSZe? drdg = 0
In(s})

The equations acquired by (17)-(19), by means of
derivatives with respect to variables ¢ and S, each at a time, it
is noteworthy that, the involved functions must increase with
respect to ¢ and slowly varies with respect to S. Form = 1,
regarding above properties, terms &, (t) andn,,, (t), ignoring
minor terms and removing 7,,,(t) from equations, then the
following expression is obtained:
Lomn® 4 AC) gy (£) = 0 (20)

Regarding the above equations t = t.,T and t, are critical
and 1 is the dimensionless time parameter which lies0 = 7 =
1. In (20), the below equations must be used:

_ ot _ AaBy) Aani 3 Ao
AT) = pthS? [(A3 By ) s3 o 1B cot’y - nlAl/Z(ql
qotyT")S, tan )/] @D
m3 = (nf +A%)(mf + 27 = 1) @
—12(A+p)
= [ i) g g (23)

T 105185, D2AH D] 2 +(A+1)2] (A+ )

The problem solution is transformed to second ODE (Order

Differential Equation) with time dependent variable
coefficients which meets the first condition as:

—0% _
£=0,>=0 (24)

Regarding (§,7) curve has a max. Value at T = 1 the initial
condition is r as,

& =0whent =0and = 65(1)

= 0whent=1. (24)
In (20), a method is employed by using Lagrange—Hamilton

type principle. The approximating functions meet (24) and

(25) has been selected as a 1** approximation as:

Emn(r) = Amr:eleT2 [(]1 + 3)(/1 + 2)_1 - T]

AmnE(T) = (26)

Emn (1) = Appé () = "4mnej2TT2 (G2 +3)(2 + 2)"t—1] (27)
When value of critical load is minimized it will be
dependent on choosing &(t) then, it could depend on the

values of j, (k = 1,2) too. It has been obtained that after the

computations, none of the minimum values of critical load
corresponds toj, =i+ 1 (k = 1,2). Here, A,,, is amplitude
of unknown displacement. Equation (20) is multiplied by
&.(7) and after integration, below equation is gained:

d as(@®
[£9)° 4 6, (5@ - 20, £ “ D rtar (28)
C, is a constant for integration and it is assumed that the initial
conditions are equal to zero. In addition, in each interval
points 0 <t < 1, &(r) is not equal 4§) zero and below
definitions are applicable:

2
A = [(A3 - AZB“) = nt +3 m2 = cotzy q1nihy /25, tany]

pchs3 By 52
(29a)

qo"htgr LA1/2 tany

A
z pthsg

(29b)

After substituting (26) and (27) in (28) and after integration
in 0<t< 1, for Lagrange-Hamilton type functional the
following expression is gained:

- P1pchSy i A;B,\ A
= Amn {tgr;;tanzy - (quOtéTS;’Al/z + (po [(A3 - 12?14) tal’lly n% +
SszAo 1
Bitan®y né ‘hAquz]} (30)
where
@, = [J[E(]2dr, @, = [[[&(D)]%dr,
1 et
@, =2 [ [Tn'&(m)é(m)dnds, 31

TABLEI
THE VALUES OF @ K, K=0, 1,2 FOR DIFFERENT VALUES POWER OF TIME I

Symbol =1 i=2 i=3 i=4
— T 2[(; ; -1
§(0) = e (i +3)(i +2)7 — 1]
d, 0.8859 3.5645 15.809 75.2705
o} 4.6561 24.700 142.836 870.4636
?, 0.5789 1.8139 6.8670 29.3800
— o ; ; -1
§(0) = eh"t[(j, + 2)( + D77 — 1]
?, 2.086 7.0527 27.7911 121.533
o} 6.678 30.8768 168.032 992.333
b, 1.1430 2.9326 9.9737 39.916

The values of &,, k=0,1,2 is given in Table L
Meanwhile in finite time, there is no agreement between the
work done by external forces and inertia force and the
minimum value of potential energy. When the minimum
condition in respect of unknown amplitude A,,, of II, must be
supported by minimum condition in respect of n?. These two
conditions give the net two equations which are dependent on
ter andng:

AN ®,p.hst 1 AW
= — — D,q,tL,.S3 A D, [(As n
0Amn  ti-tany n? 2qoter52 81+ Po B, Jtany 1 +
S2m3A, 1
22mzd0 L oA = 2
Bitan3y n® a0 %Sz 0 (3 )
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an AyBy\ Ay 3SImiA, 1 ®,pchSF 1
—=® (43— oo =~ vy
ong B,

After removing t.. from (32) and (33), these two equation
are gained:

=0
tany  Bjtandy n t2 tany n}

(1 - 302 (1- X — 05G1x7) = qow!/2x @+0/+ (34)

where these definitions are applied:
X=6 C"Tgy (352)
8 = it (35b)
T = (36)
9,07 pen(a, ) S B a7

W= zz/id)gz"‘i)/i [M2Ao]A+D/@D[(A3B, — A, By)A_; cot?y]3+D/(D

For q; = 0 and large values of the loading parameters, (34)
for X is solved by putting this value in (35) and taking into
consideration the relationn; = n/siny. Finally, the (38) is
gained as:

n‘zi — i61/4qé/(1+i)wi/(2+2i)sin1/2 (2y) siny

=5 (38)

The wave number ng, which is dependent on variation of the
dynamic load. Substituting (38) in (32) demonstrates (39) and
(40) as:

For the static case (t. = ,qo = 0) from (33) the next
coming equation is obtained for the wave number:

1
nZ = 0.75%25§}sinz(2y) siny 41)

Replacing (41) in (32) and substituting qotL,./®,, the critical
load is gained as:

48
ers = 33_/24 (42)

From Ky = qcrq/qers definition the dynamic factor is
obtained as:

33/4¢ N .
4= Oql/(1+l)wl/(2+21) (43)
2
Critical time and stress impulse can be found as:
28,00\ YE 171+ i
= ( q2)2 0) qo/( D 1/ (2+20) (44)
ter . 20,8, 1(AFD/T 172
ler = foc qot'dt = [ q>02 2] 1+i (43)

IV. NUMERICAL COMPUTATIONS

Silicon nitride and nickel is used in this study is used is
nickel. The densities and Poissons ratios of the materials are
not dependent on the temperature. The density of silicon
nitride and nickel is 2370 kg/m® and 8900 kg/m® respectively.
The Poissons ratio is 0.24 for silicon nitride and 0.31 for
nickel. The module of elasticity is obtained as: (temperature
dependent):

Gera = %tér _ %j)oq;/(1+i)wi/(2+2i) (39)
Egn = 348.43 x 10(1 — 3.070 x 107*T + 2.160 X 107"T? —
where 8.946 x 10711T3) (46)
1 3
1/4 272 3/4
, = 2‘1’—/2'"2A-1(’;31i}7;‘23‘*) " cot3izy (40)  Ey; = 223.95 x 10°(1 — 2.794 x 107*T — 3.998 x 10~°T2) (47)
E¢, and E; are of silicon nitride and nickel, respectively, and
T = 300 K is the temperature.
TABLE I
VARIATION OF THE CRITICAL PARAMETERS WITH SEMI-VERTEX ANGLE ¥ FOR (qo =225 (?) (£(0) =0,&,(1) = 0,&(1) = et E - TD
y asN =0 Type A material d¥N =0
d=05  d=1 d=2 d=3 d=4
qcrd(MPa)

30° 0.0791 0.0768 0.0744 0.07123 0.0694 0.0682 0.0629

45° 0.0715 0.0694 0.0672 0.06437 0.0627 0.0616 0.0569

60° 0.0601 0.0583 0.0565 0.05413 0.0527  0.0518  0.0478

I, X 10° (Mpa s)

30° 13.895 13.107 12.2981 11.276 10.698 10.334 8.0803

45° 11.346 10.702 12.2981 9.2069 8.7350 8.4377 7.1875

60° 8.0224 7.5674 7.10030 6.5102 6.1766 5.9663 5.0823

30° 3.0458 2.5047 2.2937 2.0920 1.9871 1.9204 1.5919

45° 2.6378 2.1692 1.9864 1.8117 1.7209 1.6631 1.3786

60° 3.0458 2.5047 2.2937 2.0920 1.9871 1.9204 1.5919
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TABLE III
VARIATION OF THE CRITICAL PARAMETERS WITH SEMI-VERTEX ANGLE ¥ FOR q¢ = 225 (g) (8(0) =0,&,(1) = 0,&(7) = ¥t E - 1']
y dsN =0 Type B material dN =0
d=05 d=1 d=2 d=3 d=4

qurd(MPa)
30° 0.0791 0.0715 0.0744 0.0769 0.0781 0.0787 0.0629
45° 0.0715 0.0646 0.0672 0.0695 0.0705 0.0711 0.0569
60° 0.0601 0.0544 0.0565 0.0584 0.0593 0.0598 0.0478

I, x 105 (Mpa s)
30° 13.895 11.368 12.298 13.145 13.537 13.749 8.0803
45° 11.346 9.2817 10.141 10.733 11.053 11.226 7.1875
60° 8.0224 6.5632 7.1003 7.5894 7.8158 7.9378 5.0823
30° 3.0458 2.0752 2.2937 2.4973 2.5971 2.6597 1.5919
45° 2.6378 1.7972 1.9864 2.1627 2.2492 2.3034 1.3786
60° 3.0458 2.0752 2.2937 2.4973 2.5971 2.6598 1.5919
In Tables II and III, stable results for the FGM conic shell ~ [2] KM. Liew, X.Q. He, T.Y. Ng, S. Kitipornchai, 2002. “Active control of

are shown. The silicon nitride nickel shell of geometrical
properties  r; = 225X 1072 (m), 1, =8X 1072 (m),
r, =8x%x 1072 (m), h=13x10"* (m), A = 1.2 are simply
supported for type A and B materials. In the case that d = 0
(type A), the shell is made of ceramic and in type B material,
when d < 0, the shell is metallic.

Table II shows critical and dynamic load. Considering the
values of dynamic factor values in Tables II and III, it would
be obvious that for power law exponent d > 0, values for
critical parameters in Type B material are higher than a Type
A material. For power law exponent d = 0, critical values of
parameters for Type A and B are same. When d < 1 in power
law exponent the values of critical parameters for type A
material are larger than a Type B material. For instance, in
power law exponent when d is equal to one the dynamic
critical load, dynamic factor and critical impulse for a Type B
material are approximately about 13.5%, 24.84% and 27.8%
(greater than a Type A material). While coefficient d become
greater, there will be a little increment.

V.CONCLUSIONS

In the current research stability of conical shells of FGM
which is subjected to external pressure with variation of a
power function of time was studied. Considering a large
values of loading parameters into account, analytic solutions
are used for different primary conditions for critical
parameters values. Results were changing considerably while
material distribution was different by changing the values of
the power law exponent. This parameter controls the material
volume fraction of the different materials in the FGMs. It has
also found that reasonable control could be possible if we have
a good control over critical parameters values by properly
changing the power law exponent. A validation of the analysis
has been done with comparison between previous results and
those which has found to be accurate.
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