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Abstract—High density electrical prospecting has been widely 

used in groundwater investigation, civil engineering and 
environmental survey. For efficient inversion, the forward modeling 
routine, sensitivity calculation, and inversion algorithm must be 
efficient. This paper attempts to provide a brief summary of the past 
and ongoing developments of the method. It includes reviews of the 
procedures used for data acquisition, processing and inversion of 
electrical resistivity data based on compilation of academic literature. 
In recent times there had been a significant evolution in field survey 
designs and data inversion techniques for the resistivity method. In 
general 2-D inversion for resistivity data is carried out using the 
linearized least-square method with the local optimization technique 
.Multi-electrode and multi-channel systems have made it possible to 
conduct large 2-D, 3-D and even 4-D surveys efficiently to resolve 
complex geological structures that were not possible with traditional 
1-D surveys. 3-D surveys play an increasingly important role in very 
complex areas where 2-D models suffer from artifacts due to off-line 
structures. Continued developments in computation technology, as 
well as fast data inversion techniques and software, have made it 
possible to use optimization techniques to obtain model parameters to 
a higher accuracy. A brief discussion on the limitations of the 
electrical resistivity method has also been presented. 

 
Keywords—Resistivity, inversion, optimization.  

I. INTRODUCTION 

HE inverse problem in resistivity interpretation was 
described first when Slichter reported a method of 

interpretation of resistivity data over a layered earth using 
Hankel's Fourier-Bessel inversion formula [55]. It gives a 
unique solution if the resistivity is a continuous function of 
electrode spacing. In practice, resistivity measurements are 
limited to a small number of readings taken at discrete 
electrode spacing. Thus a unique resistivity response does not 
exist [8]. Vozoff used this method on field and synthetic data 
generated for three- and four-layer models [63]. Zohdy 
proposed a method of direct resistivity-interpretation which is 
valid for noisy data as well [71]. However, none of these 
earlier investigations deal with existence, uniqueness, 
construction and stability, which are important concerns and 
must be dealt with within any inverse problem. Backus and 
Gilbert introduced a linear inverse theory for geophysical 
problems [1]. They thoroughly discussed model resolution, 
least-squares fit of the data and solution uniqueness. The 
method is valid even for noisy or insufficient data, and they 
quantified the trade-off between resolution and stability for 
solutions to inverse problems. Following Backus and Gilbert’s 
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work, generalized linear inverse theory was described by 
Jackson in terms of linear algebra [33], [34].  

Since the forward problem of electrical soundings for 
stratified media was solved by means of the linear filter theory 
many articles have appeared dealing with automatic and 
numerical interpretation [24]. This approach looks for a fit 
between the experimental and the theoretical data in a least-
squares sense, either in the resistivity transform domain or in 
the apparent resistivity domain. Different error functions have 
been proposed and different minimization procedures 
considered. The best known are the steepest descent method 
[63], [4], [46] and the methods based on the algorithm of the 
generalized inverse matrix [32]. Due to the non-linear nature 
of this problem, an iterative procedure improves results. In 
recent times due to increase in computational capacity a 
number of optimization methods have been used in this 
context.  

However, some problems dealing with the interpretation of 
electrical soundings have not been solved yet for example: 
equivalence in models [46], [51]. Therefore, when a solution 
is obtained it may not correspond to the geological reality, or 
worse, a priori parameters or constraints included in the initial 
model may be modified in the final solution.  

II. THEORY: BASIC PRINCIPLES OF THE RESISTIVITY METHOD 

The relationship between the electrical resistivity, current 
and the electrical potential is governed by Ohm's law. To 
calculate the potential in a continuous medium, the form of 
Ohm's Law, combined with the conservation of current, as 
given by Poisson's equation is used. The potential due to a 
point current source located at xs is given by: 
 

.
1

ρ x, y, z
Φ x, y, z

∂j
∂t
δ x (1) 

 

where ρ is the resistivity, ϕ is the potential and jc is the charge 
density. The potential at any point on the surface or within the 
medium can be calculated if the resistivity distribution is 
known. For 2-D and 3-D models, analytical methods are used 
for simple structures such as a cylinder or sphere in a 
homogeneous medium [64]. Boundary and analytical element 
methods [57] can also be used for more general structures but 
are usually limited to models where the subsurface is divided 
into a relatively small number of regions. For modeling of 
field data, the finite-difference and associated finite volume 
methods [18], [19] and the finite-element method [7] are more 
commonly used. By using a sufficiently fine mesh and the 
proper boundary conditions, an accurate solution for the 
potential over complex distributions of resistivity can be 
obtained. 
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The purpose of the resistivity method is to calculate the 
electrical resistivity of the subsurface, which is an unknown 
quantity. The basic data from a resistivity survey are the 
positions of the current and potential electrodes, the current (I) 
injected into the ground and the resulting voltage difference 
(V) between the potential electrodes. The current and voltage 
measurements are then converted into an apparent resistivity 
(ρa) value using: 

 

 	 ρ k
∆V
I
	 (2) 

 

where k is the geometric factor that depends on the 
configuration of the current and potential electrodes [46]. 
Equation (2) represents the simplest form of the inverse 
problem and assumes that the earth is homogeneous for each 
combination of current and potential measurements. The 
suitability of an array depends on many factors; among which 
are its sensitivity to the target of interest, signal-to-noise ratio, 
depth of investigation, lateral data coverage and more recently 
the efficiency of using it in a multichannel system. The 
advantages and disadvantages of the different arrays are 
discussed in various papers such as in [15], [12].  

III. DATA ACQUISITION – DIFFERENT TYPES OF SURVEYS 

A. One Dimensional Systems 

From the 1920's to the late 1980's there were essentially two 
surveying techniques used- Lateral profiling and vertical 
sounding. In a profiling survey, the distances between the 
electrodes were kept fixed and the four electrodes were moved 
along the survey line. In the sounding method the center point 
of the electrodes array remained fixed but the spacing between 
the electrodes was increased to obtain information about the 
deeper sections of the subsurface [59].  

The modern application of resistivity processing includes 
inverse modeling. A commonly used method for sounding 
data inversion is the damped least-squares method [30] [31], 
based on:  
 

	 J J λI J ∆g	 (3) 
 

where the discrepancy vector g contains the difference 
between the logarithms of the measured and the calculated 
apparent resistivity values and q is a vector consisting of the 
deviation of the estimated model parameters from the true 
model. Here, the model parameters are the logarithms of the 
resistivity and thickness of the model layers. J is the Jacobian 
matrix of partial derivatives of apparent resistivity with 
respect to the model parameters. λ is a damping or 
regularization factor that stabilizes the ill-condition Jacobian 
matrix usually encountered for geophysical problems.  

The major drawback of the sounding method is the 
assumption that there are no lateral changes in the resistivity. 
It is useful in geological situations where this is approximately 
true, but gives inaccurate results where there are significant 

lateral changes. The effect of lateral variations on the 
sounding data can be reduced by using the offset Wenner 
method [2] but for more accurate results the lateral changes 
must be directly incorporated into the interpretation model.  

B.  Multi-Electrode Systems 

Pelton et. al. developed an algorithm for inversion of 2D 
resistivity and induced polarization (IP) data using a method to 
calculate solutions of the forward problem for the range of 
anticipated model parameters (i.e. depth of overburden, 
thickness and width of anomalous body, resistivity of 
anomalous body, resistivity of the host rock and center of the 
body) [49]. It uses spline interpolation between the various 
stored forward models. Smith and Vozoff proposed a 2D 
resistivity inversion using a finite difference technique [56]. 
Their schemes are similar and suitable for complex 2D 
models, but do not incorporate the effects of topography on 
resistivity data in the inversion scheme. A terrain correction 
has been advocated by Holcombe and Jiracek but it may not 
be possible for a complex 2D model to completely separate 
the resistivity anomalies because of topography from those 
associated with subsurface features by using a simple 
correction [29]. Tong and Yang developed an algorithm for 
2D resistivity inversion where topography is considered in the 
model, allowing for the direct inversion without applying 
external corrections [60]. 

Shima developed an algorithm to invert resistivity data 
gathered over complex 2D structures, formulating the forward 
problem by the alpha centers method, and the inverse problem 
by steepest descent and Gauss-Newton methods [54]. His field 
investigations show that the method has good application for 
resistivity surveys in steep, mountainous areas. 

Sen, Bhattacharya and Stoffa developed an algorithm for 
nonlinear inversion of resistivity data. This method does not 
require a good starting model but is computationally more 
expensive. They used the heat bath algorithm of simulated 
annealing in which the mean square error (difference between 
observed and synthetic data) is used as the energy function. 
The resulting correlation and covariance matrices indicated 
how the model parameters affect one another and are very 
useful in relating geology to the resulting resistivity values 
[53]. 

Daily and Owen describe a tomographic inversion scheme 
to image the resistivity distributions between boreholes from 
current and voltage data measured along the boreholes [17]. 
They used a finite element Newton-Raphson algorithm 
developed by [69]. Their test results indicate that the accuracy 
of image reconstruction and spatial resolution mainly depends 
on data errors. 

Fry and Neuman introduced a technique to image 
subsurface features for resistivity problems using an 
impedance-computed tomography algorithm [45]. The 
algorithm employs the solution of the Poisson equation 
without assuming straight line behavior of the current flow 
paths.  
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TABLE I 
 CHARACTERISTICS OF DIFFERENT 2D ARRAYS CONFIGURATIONS TYPES 

  Wenner Wenner-Schlumberger Dipole-dipole Pole-Pole Pole-dipole 

1 Sensitivity of the array horizontal structures **** ** * ** ** 

2 Sensitivity of the array vertical structures * ** **** ** * 

3 Depth of Investigation * ** *** **** *** 

4 Horizontal Data coverage * ** *** **** *** 

5 Signal Strength **** *** * **** ** 
Here each star represents degree of effectiveness of the method (4 stars being most effective) 

 
A 2-D model that consists of a large number of rectangular 

cells is commonly used to interpret the data [41]. The 
resistivity of the cells is allowed to vary in the vertical and one 
horizontal direction, but the size and position of the cells are 
fixed. Again, different numerical methods can be used to 
calculate the potential values for the 2-D forward model. 
Inverse methods are then used to back calculate the resistivity 
that gave rise to the measured potential measurements. 
Starting from a simple initial model (usually a homogeneous 
half-space), an optimization method is used to iteratively 
change the resistivity of the model cells to minimize the 
difference between the measured and calculated apparent 
resistivity values. As an example, the following equation 
includes a model smoothness constraint to the least-squares 
optimization method:  
 

J λF Δq J Δg λFq 	 (4) 
 
where F α C C α C C ; Cx and Cz are the roughness filter 
matrices in the horizontal (x) and vertical (z) directions and αx 
and αz are the respective relative weights of the roughness 
filters. k represents the iteration number. One common form of 
the roughness filter is the first-order difference matrix, but the 
elements of the matrices can be modified to introduce other 
desired characteristics into the inversion model [20], [21]. 
Joint inversion algorithms using other geophysical or 
geological data to constrain the model have also been 
implemented to help produce models that are consistent with 
known information [5]. 

A 3-D resistivity survey and interpretation model should 
give the most accurate results as all geological structures are 
3-D in nature. Although at present it has not reached the same 
level of usage as 2-D surveys, it is increasingly more widely 
used in complex areas for many environmental and 
engineering problems [9], [10]. This method uses reciprocity 
for efficient evaluations of the partial derivatives of apparent 
resistivity with respect to model resistivity. Loke et al. 
developed techniques to reduce the time needed to carry out 
3D resistivity surveys with a moderate number (25 to 100) of 
electrodes by arranging them in a square grid and using pole-
pole array for potential measurements [41]. They concluded 
that the number of measurements required could be reduced to 
about one-third of the maximum possible number without 
seriously degrading the resolution of the resulting inversion 
model by making measurements along the horizontal, vertical 
and 45° diagonal rows of electrodes passing through the 
current electrode. New data acquisition like multiple gradient 

array have been designed for the multi-channeled systems 
[16]. 

Many of the early 3-D surveys used the pole–pole array 
over rather small grids (up to about 20 by 20 electrodes) with 
measurements in different directions [39]. The use of other 
arrays, such as the dipole–dipole and Wenner–Schlumberger, 
is now becoming more common in surveys that involve 
thousands of electrode positions. 

In 4-D surveys, the change of resistivity in both space and 
time is measured. Measurements are repeated at different 
times using the same 2-D survey line or 3-D survey grid. A 
number of techniques have been proposed for the inversion of 
time-lapse data [44]. Techniques that incorporate 
regularization in space and time have been proposed to reduce 
inversion artifacts that may lead a misinterpretation of 
geophysical monitoring data. To alleviate this problem, 
Karaoulis et al. proposed an algorithm for inverting time-lapse 
resistivity monitoring data using 4D active time constrained 
resistivity inversion [36]. 

IV. OPTIMIZATION TECHNIQUES 

Traditional inversion method is the most commonly used 
procedure for resistivity inversion, which usually takes the 
linearization of the problem and accomplish it by iterations. 
However, its accuracy is often dependent on the initial model, 
which can make the inversion trapped in local optima, even 
cause a bad result. Non-linear method is a feasible way to 
eliminate the dependence on the initial model [52]. However, 
for large problems such as 3D resistivity inversion with 
inversion parameters exceeding a thousand, main challenges 
of non-linear method are premature and quite low search 
efficiency. 

A. Genetic Algorithms 

Usually, a Genetic Algorithm for solving a particular 
problem has five major components: 
1. Genetic representation of the problem 
2. Tournament selection scheme 
3. Crossover and mutation operators 
4. Objective function 
5. Termination criteria 

The GA method has strong global search capability; 
however, for large inversion problem the main problem is low 
efficiency, which may cause bad solution. This problem may 
be solved using the mutation direction control method which 
is essentially a joint algorithm, in which the linearization 
method is embedded in GA because of its high local search 
capability. This joint algorithm is quite good at controlling 
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search direction and improving inversion efficiency, making 
the GA feasible for 3D resistivity inversion. Synthetic and 
practical examples have demonstrated that with GA method 
one can eliminate the dependence on initial model, and obtain 
excellent and high-quality inversion results. For a detailed 
discussion on the theory on this method the reader may refer 
to [25], [26], [35] and [67]. 

B. Artificial Neural Networks 

Artificial neural network (ANN) with characteristics of 
learning and non-linear approximation is widely used in 
interpretation of geophysical data, such as pattern 
classification, rock recognition in well logs and inversions of 
gravity, seismic and electromagnetic data [58], [61]. However, 
most of geophysical inversions using NN are limited to one-
dimensional models with a small number of parameters. El-
Qady and Ushijima studied NN approach to solve 2-D 
resistivity inverse problems, but similarly a small number of 
resistivity data and model parameters in their approach make it 
difficult for the interpretation of complex models [23]. So the 
problems of large networks with complicated input/output 
patterns should be tackled in the application of NN approaches 
to 2-D geophysical problems. 

Xu H L et. al. concluded that proper selection of the 
network, training samples and learning paradigms, the 
network can be well designed and trained to perform the large 

inversion of 2-D resistivity data[68]. Results show that the NN 
non-linear inversion method can reconstruct the fine structures 
of the subsurface model and is better than the conventional 2-
D inversion method. 

C. Simulated Annealing 

The Simulated Annealing (SA) method bears analogy with 
the physical annealing process in which a solid in a heat bath 
is warmed by increasing the temperature. This process is 
followed by slow cooling until the global minimum energy 
state is reached where it forms a crystal. Mathematically this 
involves drawing samples from a probability density function 
that is proportional to exp(-E(m)/T), where E(m) is the energy 
function for a model m and T is the parameter called 
temperature. It can be shown that as the temperature is slowly 
reduced, then in the limit as T goes to zero, the minimum 
energy state (model) becomes overwhelmingly probable. The 
Metropolis [43] and the heat bath algorithms [50] are 
computer algorithms that do nearly the same thing without 
computing E(m) at each point in model space. 

Following the work of Kirkpatrick et al., the simulated 
annealing (SA) method has become very popular in multi 
parameter optimization problems including those of 
geophysical inversion [37]. A fairly detailed account of the 
subject including proof of asymptotic convergence is given by 
van [62]. 

 
TABLE II 

 COMPARISON BETWEEN VARIOUS OPTIMIZATION SCHEMES 
Method Neural Network Simulated Annealing Genetic Algorithm 

Advantages 

It can obtain an arbitrary close 
approximation to any continuous function, 
be it associated with a direct or an inverse 
problem. Once trained, the network can 
obtain the result of inversion rapidly from 
the network output while the observed data 
are input as the test data set. 

It allows for considerable flexibility in model 
definition and parameterization and seeks a global 
rather than a local minimum in a misfit function. It 
has the added advantage in that it can be used to 
determine uncertainties. It is preferable over 
gradient methods because very good solution can 
be obtained even with poor starting models. 

It is intrinsically parallel - Performs well in problems 
for which the fitness landscape is complex - ones where 
the fitness function is discontinuous, noisy, changes 
over time, or has many local optima. Another area in 
which genetic algorithms excel is their ability to 
manipulate many parameters simultaneously. 

Limitations 

Good enough training samples are required 
to guarantee over constrained training 
procedure. In cases where input is 
complicated it is very difficult to select 
training samples. 

Very high computation cost is associated with the 
process. The issue of nonlinear uncertainty 
estimation can only be addressed using importance 
sampling. However most algorithms as 
implemented do not do an importance sampling.  

The problem of how to write the fitness function must 
be carefully considered so that higher fitness is 
attainable and actually does equate to a better solution 
for the given problem. One well-known problem that 
can occur with a GA is premature convergence. 

 
A further improvement was proposed by Chunduru et al. 

who used a Cauchy-like distribution, which is also a function 
of a control parameter called temperature [11]. The advantage 
of using such a scheme is that at high temperatures, the 
algorithm allows for searches far beyond the current position, 
while at low temperatures, it looks for improvement in the 
close vicinity of the current model. We have used the mean 
square error between the synthetics and original data as the 
error function to be minimized. The synthetic response for 2-D 
models was obtained by finite-difference modeling, and cubic 
splines were used to parameterize the model space to get 
smooth images of the subsurface and to reduce computational 
cost.  

V. FIGURES  

 

Fig. 1 Schematic layout for a 2d resistivity survey .By making 
measurements with different spacing at different locations along the 

cable, a two dimensional profile of the subsurface is obtained. 
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Fig. 2 Some commonly used electrode arrays and their geometric 
factors 

 

 

Fig. 3 A flowchart showing general steps involved a Genetic 
Algorithm Simulation 

 

 

Fig. 4 General steps involved in a Simulated Annealing algorithm 

VI. LIMITATIONS OF THE RESISTIVITY METHOD 

A. Non-Uniqueness and Resolution of Data 

The inverse resistivity problem has a unique solution for 1-
D, 2-D and 3-D resistivity distributions within a boundary 
[22], but only under strict conditions where the voltage and 
current distributions are known continuously and precisely 
over the boundary for a complete set of current injection 
patterns. In practice, resistivity inversion is ill-posed and non-
unique due to only being able to use a finite number of 
electrodes covering part of the surface. This implies that more 
than one resistivity model will produce responses consistent 
with the observed data to the limits of the data accuracy [51]. 
Regularization is used, often in the form of a smoothing to 
enforce uniqueness without sacrificing too much resolution. 
However regions of the inverted image where the model 
resolution is lower will depend more strongly on the type of 
constraint used [47], [48]. The inverse images will therefore 
only accurately reflect the true subsurface resistivity if the 
regularization constraints are realistic.  

B.  Data Quality 

Measured data, and the resulting resistivity images are 
subject to error from a variety of sources including that 
introduced by the measurement device, poor electrode contact 
(usually identified through high contact resistances) or 
electrode polarization, and other indeterminate external effects 
[38]. These issues are addressed through the appropriate 
selection and conditioning of electrodes to reduce contact 
resistance, by using appropriate filters (including reciprocal 
error analysis) prior to inversion [70], and through employing 
measurement sequences that reduce the influence of electrode 
polarization. In practice, polarization can be reduced by 
ensuring adequate time between using an electrode to pass 
current and measure potential. 

C. Electrode Position and Survey Design 

For difficult ground conditions such as steep or heavily 
vegetated areas, it can be difficult to accurately position 
electrodes. Moreover monitoring unstable ground from land 
sliding, electrode positions can shift resulting in systematic 
data error which cannot be reduced through reciprocal error 
filtering [70]. Approaches to reduce the impact of these effects 
include the selection of measurement array geometries that are 
less sensitive to positional errors [65], and in the case of 
moving electrodes, to estimate electrode position using a 
position inversion routine [66]. 

For very long 2-D survey lines, and for 3-D imaging grids, 
it can be impractical to undertake measurements in a single 
deployment due to the long cable lengths required. 3-D 
surface surveys are often undertaken using a network of lines, 
where a single line is incrementally migrated across the 
surface to build up a measurement set comprising data from 
multiple lines [3]. Where a single line orientation is used, 
linear features parallel to the line direction can be poorly 
resolved and banding or herring-bone effects can be present in 
the model [40]. Mitigation measures include: roll-along (or 
multiple line) data acquisition methodologies [13], [14]; 
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orthogonal line directions and line separations of no more than 
two electrode spacing; and appropriate inversion settings (e.g. 
horizontal diagonal roughness filters) [20]. 

D. Effect of Anisotropy 

Typical geological causes of anisotropy include fracturing, 
jointing, layering and rock fabric (e.g. strong alignment of 
grains slates and shales). Detection of anisotropy has typically 
been undertaken using azimuthal [6] and square array [42] 
techniques. However, the most effective approach is perhaps 
surface to borehole imaging arrays, which unlike surface 
arrays, are sensitive to anisotropy associated with vertical or 
sub-vertical axes of symmetry, such as horizontal layering 
[28]. The influence of even moderately anisotropic media on 
the results of resistivity inversion that assumes isotropic 
conditions can produce significant distortions in electrical. 
Anisotropic resistivity inversion schemes have been developed 
[27]; but they are limited by number of factors, including the 
requirement to solve for additional parameters that exacerbates 
the problem of non-uniqueness, and the need for subsurface 
electrodes to effectively detect anisotropy associated with 
horizontal layering.  
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