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Abstract—In this contribution, the use of a new genetic operator 
is proposed. The main advantage of using this operator is that it is 
able to assist the evolution procedure to converge faster towards the 
optimal solution of a problem. This new genetic operator is called 
“intuition” operator. Generally speaking, one can claim that this 
operator is a way to include any heuristic or any other local 
knowledge, concerning the problem, that cannot be embedded in the 
fitness function. Simulation results show that the use of this operator 
increases significantly the performance of the classic Genetic 
Algorithm by increasing the convergence speed of its population. 

Keywords—Genetic Algorithms, “Intuition” operator, 
Reasonable genomes, Complex search space, Non linear fitness 
functions.

I. INTRODUCTION

ENETIC Algorithms (GAs) are known to be one of the 
most effective methods for searching and optimization 
[1]–[14]. By applying genetic operators (reproduction, 

crossover and mutation) in a population of individuals (sets of 
unknown parameters properly coded), they achieve the 
optimum value of the fitness function, which corresponds to 
the most suitable solution. As a result, they converge to the 
(near) optimal solution by evolving the best individuals in each 
generation. The main advantage of the GAs is that they use the 
parameters’ values instead of the parameters themselves. In 
this way they search the whole parameter space. However, 
GAs encounter some serious problems (concerning the 
convergence speed and the finding of the exact value of the 
global optimum) when they have to deal with optimization 
problems including too many local optima. 

In this contribution, the use of a new genetic operator, called 
“intuition” operator, is proposed. The main advantage of 
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including this operator in the well known set of genetic 
operators (reproduction, crossover and mutation) is that it is 
able to assist the classic GA to deal with situations where the 
search space is very complex or the fitness function used has 
many discontinuities. As shown by experimental results, this 
new operator helps significantly the evolution procedure of the 
classic GA to converge faster towards the optimal solution of a 
problem.  

The motivation of using such an operator derives from the 
need to assist the population of the classic GA in order to be 
able to evaluate the quality and the importance of each 
possible solution. This evaluation regards not only the value of 
the fitness function, that each possible solution achieves in 
each generation, but also its “perspective” as far as the general 
form of the search space and the global solution of the 
problem are concerned.  

The paper is organized as follows. In section II the proposed 
genetic operator is described and analyzed. In section III 
experimental results are presented in order to prove the 
significance and the efficiency of the proposed genetic 
operator. Finally, section IV summarizes the conclusions and 
suggests future applications and extensions.  

II. “INTUITION” OPERATOR

Experimental results have shown that GAs, when applied in 
order to optimize a complex problem using a strongly non 
linear fitness function with many discontinuities, are facing 
many problems especially as far as convergence speed and 
entrapment in local optima are concerned. Although they are 
usually able to reach a relative good score (compared to the 
global optimum) in a small number of generations, it takes 
them many generations (computational time) in order to refine 
the solution space and succeed in identifying the exact optimal 
solution of a problem. As known, classic GAs make use of 
three basic genetic operators (selection, crossover and 
mutation) in order to evolve the population of possible 
solutions to fit to the conditions and the characteristics of each 
specific problem. However, most of the times these three 
genetic operators are not capable of including the dynamics 
and the form of the solution space in order to assist the GA’s 
convergence. 

The evolution procedure of the classic GA wastes a large 
amount of evaluations of the objective function in order to 
refine a local optimum solution which is often abandoned in 
the next generations due to the application of the mutation 
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operator. This is because the use of the mutation operator can 
often lead to much better solutions compared to the ones found 
so far, directing the evolution of the algorithm to another area 
of the search space, in which a local optimum with higher 
objective value is located. So, there is need to incorporate into 
classic GAs evolution procedure a function or an operator able 
to succeed better exploration of the search space and avoid 
premature convergence and entrapment in local optima. 

In this contribution, a new genetic operator, to be included 
in the classic GA’s armory, is proposed, so as to assist the 
evolution procedure to achieve better global exploration of the 
solution space while executing the minimum possible number 
of functional evaluations. In order to achieve this goal, except 
for the standard global exploration mechanism, used by classic 
GAs (selection, crossover, mutation), we apply this new 
operator so as to preserve the global search procedure. This 
technique alleviates the enormous computational burden 
introduced by entrapment in local optima, which is quite often 
useless in finding the optimal solution. 

As known, a well designed and constructed fitness function 
is able to describe in a very satisfactory way the environment 
(solution space) to which the population of a GA is trying to 
adapt. However, in most cases, the classic GA’s evolution 
procedure is totally dependent on the dynamics of the specific 
GA. The genetic operators (selection, crossover and mutation) 
comprise the sole evolution mechanism having the 
responsibility to adapt the genomes of the GA so as to be as 
close as possible to the optimal solution of each problem.  

As stated before, for each specific problem, the classic GA 
uses the form of the fitness function in order to describe the 
solution space. It would be very helpful to provide the 
genomes of the population with the ability to evaluate 
themselves not only as far as their appropriateness is 
concerned (that is adequate only when they are already very 
close to the optimal solution), but also regarding the intuition 
of how close they are to the optimal solution. This can be 
accomplished by including a new operator in the evolution 
procedure. This operator will favor those genomes that are 
believed to be (or heading to) near the optimal solution.  

Someone may argue at this point that this criterion can be 
included in the fitness function of a GA. However, this may 
not lead to certain convergence to the optimal solution. That is 
because, this criterion although it is capable of sending 
genomes away from local optima (not letting them spending 
calculations in order to find a useless local optimum) it has 
limited knowledge concerning the whole search space and as a 
result it is not necessarily able to lead to the optimal solution 
by itself. At this point, we have to mention that using 
“intuition” operator aims not to get rid of all local optima, 
since they comprise a significant part of the problem’s 
definition, but to assist genomes in order not to be trapped in 
them. Local optima are important in order the description of 
the search space made by the fitness function to be as complete 
as possible. 

The “intuition” operator that is proposed in this contribution 

is playing exactly this role. It is able to identify and prevent 
situations in which although the value of the fitness function is 
smaller in the current generation compared to the previous one 
(when minimization is concerned), the  optimal genome found 
till that generation proves to be not so “optimal” because it 
leads the population of the GA in entrapment in a local 
optimum. So, the “intuition” operator is the one providing 
“reason” to the genomes of the GA, so as not to reproduce 
based solely on the evolution dynamics of the genetic 
operators but also based on the evaluation that they are able to 
do on themselves. Based on this self-evaluation they can either 
impose their existence in the next generations or retire if they 
are not appropriate according to their reason.  

FIGURE 1(A)
THE “INTUITION” OPERATOR

FIGURE 1(B)
THE “INTUITION” SELECTION 

We propose this new genetic operator to be applied in all 
genomes in the same way that the existing ones (selection, 
crossover and mutation) are applied, that is, with a probability 
p (Fig.1(a)). The operator will evaluate each genome based on 
the “intuition” function which will be specific to each different 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:1, 2007

173

optimization problem. Next, in the selection phase, some (a 
specific percentage of the population size) genomes of the 
population of the current generation will be reproduced to the 
next one based on the value of the “intuition” function 
achieved (Fig.1(b)). This procedure is exactly the same as the 
selection procedure based on the value of the fitness function 
achieved by each genome. So, any known selection method 
(for example roulette wheel selection) can be used in order to 
implement “intuition” operator. The genomes selected by 
“intuition” function and the genomes selected by the 
reproduction operator used, are merged and passed to the next 
generation. This procedure is repeated until the termination 
criterion is satisfied. The structure of the evolution procedure 
of the classic GA including the proposed “intuition” operator 
is presented in Fig.2. 

FIGURE 2
THE EVOLUTION PROCEDURE OF THE CLASSIC GA INCLUDING THE PROPOSED 

“INTUITION” OPERATOR

As someone can easily conclude, by using this new operator 
we affect positively only those genomes that are believed to be 
good approximations of the optimal solution without affecting 
negatively or impeding the evolution procedure of the GA. 
The main advantage of this approach is that it assists the GA’s 
evolution procedure to deal successfully with complex 
problems, where the solution space cannot be satisfactory 
described by the fitness function or the fitness function used is 
strongly non-linear having many discontinuities. In such cases, 
based on experience, someone has most of the times useful 
clues concerning the evaluation of possible solutions. These 
clues due to the complexity of the solution space can even be 
contradictory and as a result it is not possible to be included in 
the same fitness function. This valuable knowledge can be 

included in the evolution procedure only by using the 
“intuition” operator presented in this contribution. This 
operator is responsible for providing with reason the genomes 
themselves and as a result it assists them to avoid local optima 
and useless evaluations. 

III. EXPERIMENTAL RESULTS

In order to demonstrate the efficiency and the performance 
improvement introduced by using the proposed genetic 
operator, several simulation experiments were carried out. All 
the experiments were carried out 100 times (100 Monte Carlo 
runs). In this section, we present the results of the application 
of both the classic GA with and without the proposed genetic 
operator to two well known optimization problems. The 
functions selected to be optimized are the first two functions of 
the De Jong test suite [15]. These functions are quite popular 
in GAs’ literature, so it is possible to make direct comparisons. 

The first De Jong test function is the sphere model: 
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It is smooth, unimodal and symmetric. The goal is to find the 
global minimum ( ) ( ) 00,0,0min 11 == ff .

The second De Jong test function is the Rosenbrock’s 
valley: 
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It has a very narrow ridge. The tip of the ridge is very sharp 
and it runs around a parabola. The goal is to find the global 
minimum ( ) ( ) 01,1min 22 == ff .

In most minimization problems, the fitness function used by 
classic GAs is the function, which needs to be minimized, 
itself. The “intuition” operator proposed for this problem aims 
in including reason, in the evolution procedure, which will 
enable genomes to detect whether they may lead in the next 
generations in finding the optimal (minimum) solution. The 
proposed “intuition” operator for these problems is the use of 
one step of the steepest descent method [16], that is   

( )kkkk fa xxx ∇−=+1 (3) 

where x is the solution vector, k is the current generation, a is a 
constant number (equal to 0.01 in our experiments) and 
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The value of the “intuition” function, used by the “intuition” 
operator to select useful genomes, is the following: 

kk
xx −+1

(5) 

It is obvious that, computing this value enable us to track 
whether it is possible to improve a specific solution. Although 
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this value constitutes a local evaluation criterion and cannot be 
included in the fitness function, it is a “good” clue of whether 
the evolution procedure is heading to the global optimum or 
not. 

For both the classic GA with and without the proposed 
genetic operator the same set of GA’s operators and 
parameters were used in order to have a fair comparison of 
their efficiency and performance. The representation used for 
the genomes of the genetic population is real number 
representation. As far as the reproduction operator is 
concerned, the classic biased roulette wheel selection was 
used. The crossover operator used is uniform crossover [17] 
(with crossover probability equal to 0.9), while the mutation 
operator is gaussian mutator [17] (with mutation probability 
equal to 0.001). The size of the population both for the classic 
GA with and without the proposed genetic operator was set to 
50, while the percentage of the genomes selected by 
“intuition” operator to pass to the next generation equals 30% 
(in our case 15 genomes). Except for that, both GAs used 
linear scaling and elitism.  

Both GAs were implemented using the C++ Library of 
Genetic Algorithms GAlib [17] and especially the 
GASimpleGA class for the implementation of the GAs (non-
overlapping populations) and the GARealGenome class for the 
real valued genomes (an implementation of an array of real 
values). All the experiments were carried out on a Intel 
Pentium IV 2.7GHz PC with 256 MB RAM. 

The comparison of the algorithms is based on two criteria. 
For both test functions two specific quantities are taken into 
consideration. The first one is the value achieved by the fitness 
function of each algorithm. We measure the number of fitness 
function evaluations made by each algorithm in order the value 
of the fitness function to overcome a predefined threshold. The 
second quantity is the number of fitness function evaluations. 
We measure the best value of the fitness function achieved by 
each algorithm for a specific number of fitness function 
evaluations. 

In the following table the performance and efficiency of 
both the classic GA with and without the proposed genetic 
operator is shown for the first De Jong function. 

TABLE I
EXPERIMENTAL RESULTS FOR THE FIRST DE JONG FUNCTION

Performance Criterion Classic GA 
Classic GA with 

“intuition operator” 

Fitness function value Number of evaluations 

<1.0e-10 20768 19567 
<1.0e-16 35290 33724 

Number of evaluations Fitness function value 

10000 1.69e-06 1.15e-06 

20000 8.99e-10 2.3e-10 

In the following table the performance and efficiency of 
both the classic GA with and without the proposed genetic 
operator is shown for the Second De Jong function. 

TABLE II 
EXPERIMENTAL RESULTS FOR THE SECOND DE JONG FUNCTION

Performance Criterion Classic GA 
Classic GA with 

“intuition operator” 

Fitness function value Number of evaluations 

<1.0e-4 1238271 110693 
<1.0e-8 Not able after 4000000 236556 

Number of evaluations Fitness function value 

50000 3.51e-02 3.27e-04 

100000 2.09e-02 5.39e-05 

200000 1.55e-02 6.12e-07 

IV. CONCLUSIONS AND FUTURE WORK

As experimental results show, the proposed genetic operator 
manages to significantly enhance the performance of the 
classic GA, especially in solving complex problems with 
strongly non linear fitness functions having many 
discontinuities. It would be very interesting to check the 
efficiency and performance of the proposed “intuition” 
operator to other difficult test functions and NP-Hard 
problems like the TSP problem. These issues will be the main 
scope of our future work. 
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