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 
Abstract—Annihilations, phase shifts, scattering lengths and 

elastic cross sections of low energy positrons scattering from 
magnesium atoms were studied using the least-squares variational 
method (LSVM). The possibility of positron binding to the 
magnesium atoms is investigated. A trial wave function is suggested 
to represent e+-Mg elastic scattering and scattering parameters were 
derived to estimate the binding energy and annihilation rates. The 
trial function is taken to depend on several adjustable parameters, and 
is improved iteratively by increasing the number of terms. The 
present results have the same behavior as reported semi-empirical, 
theoretical and experimental results. Especially, the estimated 
positive scattering length supports the possibility of positron-
magnesium bound state system that was confirmed in previous 
experimental and theoretical work. 

 
Keywords—Bound wave function, Positron Annihilation, 

scattering phase shift, scattering length. 

I. INTRODUCTION 

OSITRON collisions with atoms and molecules has been 
the subject of extensive experimental and theoretical work 

[1], [2]. Only elastic scattering or direct annihilation is 
possible when the positron incident energy is less than the 
positronium formation threshold, the possibility of positron 
bound state had been often invoked to explain the very large 
annihilation [3]. Positron annihilation is a good tool to give 
useful information about matter. Positrons offer new ways to 
study a wide range of phenomena including plasmas [4], 
atomic clusters and nanoparticles [5], and a new method to 
ionize molecules, such as those of biological interest, for mass 
spectrometry [6]. 

Positron annihilation occurs whenever an electron and 
positron come into direct contact. If the spin state of the 
annihilating pair is a singlet (S = 0) state, the dominant decay 
process is the 2γ decay. This signal provides information about 
the interaction, and it is the basis of many types of 
measurements. For example, this signal has been used to 
characterize defects and interfaces in solids [7].  

Modified effective range theory is used to extrapolate 
elastic cross-sections down to thermal energies for positron 
annihilation rates and positron scattering from atomic and 
molecular targets [1]. 

There have been several calculations of elastic scattering to 
the e+–Mg system using the distorted-wave polarized orbital 
method [8], [9]. In addition, there has been an application of 
many-body perturbation theory (MBPT) with particular 
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emphasis on low-energy elastic scattering [10]. There has also 
been an application of the close-coupling (CC) method with 
Ps(1s), Ps(2s) and Ps(2p) channels included [11].  

The existence of positron-atom bound states was predicted 
by many-body theory calculations and proved variationally 
more than a decade ago [12]. There are accurate theoretical 
calculations of positron binding to atoms [13]. 

The least squares variational method (LSVM) was applied 
successfully for low energy positron scattering from H, He 
[14], Kr [15] and Xe [16]. It was applied to obtain the wave 
function of the continuum Auger electron emitted from an 
ionized Ne atom [17] and developed to study positron-H 
molecule scattering [18]. 

In the present work LSVM has been developed to study 
positron-magnesium interaction at low energy. The 
annihilation parameter Zeff, phase shift, cross section and 
scattering length is calculated. Positron binding to of neutral 
magnesium is investigates. 

II. THEORY 

In non-relativistic time-independent quantum mechanics, 
Schrodinger’s equation is equivalent in form to the 
conventional eigenvalue problem: 

 

0)( EH
                      

     (1)                  

 
where H and E are the total Hamiltonian and energy, 
respectively, of a quantum mechanical system described by 
the vector  . The interaction Hamiltonian for positron- 

magnesium system can be written as 
 

)( r)(x,V    int
2
X

rV pTHH                (2)                   

 
where TH  being the Hamiltonian for the target atom,

  2
X is 

the kinetic energy operator for the incident positron, and
),( xrV tni

 stands for the interaction potential between the 

positron and the target: 
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where x and ri are the position vectors of positron and ith 
electrons respectively. The polarization potential Vp(r) is given 
the form [19] 
 

466 2)exp(1()( rrrrV cdp            (4)                  

Mahasen M. Abdel-Mageed, H. S. Zaghloul 

Interaction of Low-Energy Positrons with Mg Atoms: 
Elastic Scattering, Bound States, and Annihilation 

P



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:9, No:7, 2015

426

 

 

The dipole polarizability αd = 72 ao
3, and the cut-off 

parameter rc =3.032 [19]. Large values of αd ensure that the 
positron experiences a strong attractive polarization potential 
outside the atom and the positron binding to neutral 
magnesium is possible. 

The total energy E of the system may be written, in 
Rydberg, as: 

 
2
pkEE T  ,                                         (5)                                                                              

 

where 2
pkandET

are the energy of the target and the kinetic 

energy of the incident positrons, respectively. 

III. THE LEAST-SQUARES VARIATIONAL METHOD AND TRIAL 

WAVEFUNCTION 

The variational treatment [19] starts by defining a trial 

wavefunction );,( krx N
n

t , n refers to the dimension 

of the Hilbert-space part of the trial wavefunction representing 
all possible virtual states of quantum mechanical system 
composed of the positron and the target.  

The s-wave elastic scattering trial wavefunction for the 
system may be written in abbreviated form as: 
 

n
n
t CRS  11

          (6)     

 
where S is the regular part; 
 

               
)(.
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4

1
NT r

kx

kxSin
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                  (7)                                     

 
the irregular part of the asymptotic solution. It has the form 
 

       )()
)cos(

())1(
4

1
NT
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kx
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the cut-off function )1( xe   avoid the singularity at the origin. 

This cut-off function will tend to zero at the origin and to 
unity at infinity, and the quadratic integrable wavefunction;  
 

)(.)(),(
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i
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e
xi

i x
                                           (10)                      

 
where α is an adjustable (free) parameter which is selected 

from the values that give a plateau of 11R  [14]. In this case 

the reactance matrix R11 contains a single element which is 
identical with the tangent of the s-wave scattering phase shift 

0  and is calculated by: 

 

011 tanR ,                                     (11)                                

 

)( NT r  represents the target in its ground-state, which can 

be determined according to Hartree-Fock-Slater method [20]. 
The next step in the variational treatment is to select a proper 
test-wave function 

S  and define the functional 

 

          VEH n
tS                              (12)                   

 

The linear variational parameters 11R and id are chosen 

according to the following variational principle: 
 

02 V                                                     (13)                   
 
Thus, they are chosen according to a least-squares variational 
principle in which all projections of the vector n

tEH  )(  

on 
S are minimal. The test wavefunction 

S  is 

constructed [21], [22] by: 
 

 ......,2,1;,, njCS jS        (14)                   

 
In this case we have the system of projections 
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and the LSVM implies: 
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which means that the sum of the projections of   n

tEH  on 

the test function space s  are minimum. The minimization of 






2

1

2
n

j
jV  guarantees that the vector   n

tEH   has a 

minimum length. The variational parameters are obtained by 
applying this variational principle. The matrix elements 
required for the employment of the LSVM, namely  SS , 

 CS ,  iS  ,  SC ,  CC ,  jC  ,  Sj , 

 Cj , and  ij  , have the general form [14]: 

 

  fHEgfg                                 (18)                   

 

Thus, the final form of the trial expansion space n
t can be 

expressed [14] in terms of vector determinants as 
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