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Abstract—This paper presents the application of Intelligent 

Techniques to the various duties of Intelligent Condition Monitoring 
Systems (ICMS) for Unmanned Aerial Vehicle (UAV) Robots. These 
Systems are intended to support these Intelligent Robots in the event 
of a Fault occurrence. Neural Networks are used for Diagnosis, whilst 
Fuzzy Logic is intended for Prognosis and Remedy. The ultimate 
goals of ICMS are to save large losses in financial cost, time and 
data. 
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I. INTRODUCTION 
NGINEERING systems have experienced a surge of 
growth in terms of complexity and autonomy since the 

dawn of the information age. As these systems increase in 
complexity, the Condition Monitoring Systems required to 
monitor said systems must also evolve to compensate. 

During the Vietnam War it has been estimated that seventy 
percent of aircraft losses could have been avoided if the fault 
tolerant flight control systems were designed properly [1]. 
Since that time, fault tolerant flight control systems have 
evolved into highly advanced designs, such as Intelligent 
Troubleshooting Systems. Intelligent Condition Monitoring 
Systems are made up of three critical subsystems; Fault 
Diagnosis, Prognosis and Remedy. Diagnosis is the process 
that is used to detect a fault. Prognosis is the investigation of 
the cause of and evaluation of the nature of the fault and 
Remedy is providing possible solutions to the fault.  

In most of today’s high performance aircraft (military and 
commercial) resides a triple redundancy system [2], which 
involves having extra sensors or actuators for any one 
application, such that if one or two of these sensors/actuators 
fail, there is still one more system that will be able to control a 
vital component. For instance, a Boeing 777 commercial 
airliner has a triple redundancy system, and millions of lines 
of software code, with close to sixty percent of this code 
dedicated to redundancy management [3]. However for 
smaller scale, less complex aircrafts that need to consider 
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much lower budgets and weight considerations these systems 
are much too costly.  

In these small scale applications (such as with a civilian 
UAV system) a software based approach is generally 
favoured. This is due to the lower cost of the implementation, 
and the little to no weight consideration needed. There are 
many different methods of implementing software control, but 
most can be ruled out when considering the application of the 
system. While many traditional linear, time invariant 
controllers (e.g Kalman Filters) can be used for some basic 
aircraft situations, for example at cruise, when the aircraft 
enters a dynamically changing situation, the classic linear, 
time invariant systems cannot model the dynamics correctly 
and hence cannot model faults in the actuators or sensors 
which causes these systems to lose their appeal. It is for these 
dynamic situations, that a non-linear, time variant process is 
needed to be implemented. It has been found that Neural 
Networks are more than able to handle these situations, as they 
are non-linear approximators [2] and will outperform 
conventional methods with fewer false alarms (detecting a 
fault that does not exist) and fewer missed faults [4]. 

In order to convert this diagnosis data into an action, some 
form of logic must be implemented into the system to make 
decisions based on fault information. An increasingly popular 
system for this is the Fuzzy Logic System. Fuzzy Logic is a 
generalisation of standard logic, in that Fuzzy Logic values 
have a range of 0 to 1, which is in contrast to the usual logical 
system of values either being 1 (true) or 0 (false). Fuzzy Logic 
is “an effective means of capturing the approximate, inexact 
nature of the world” [5]. What this means is that Fuzzy Logic 
is able to take inexact variables, such as linguistic variables 
(i.e a ‘hot’ day), and make decisions based on the variables. 
Because of the inexact nature of the diagnostic process (at 
what point does an engine go from being in the normal 
operating range to an abnormal operating range?), the Fuzzy 
Logic System is well suited to making informative decisions 
based on the diagnostic data using simple if-else logic [6]. 

Pawar et al (2007) [7] designed and implemented a system 
consisting of Neural Networks to detect faults, and Fuzzy 
Logic to implement a local remedy (isolating the fault) on 
helicopter. The system was designed to measure; flap and lag 
bending deflections, elastic tip deflection and three forces and 
moments about the rotor hub. The system was able to detect 
and isolate rotor faults with an accuracy of 90-100%. The 
system was also, “robust and gave excellent results even when 
some measurements were not available,” [7]. When compared 
to a classic expert system, the Fuzzy Logic system was much 
more capable of dealing with situations where noise was 
present. 
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II.  PRELIMINARY DESIGN AND ANALYSIS 
The two current structural designs for Maritime UAV 

Robots are Catapult Launched and Vertical Take-Off and 
Landing (VTOL). Figure 1 below shows an example of each 
type of these Robots respectively, pioneered by Students and 
Staff of the University of Adelaide. Although these Robots 
differ in structure and component types, their subsystems do 
not. 

(a)                                  (b) 
Fig. 1 Maritime UAV-Robots during Operational Scenaios  (a) 

Catapault Launched and (b) VTOL  [8,9] 
 
As a preliminary approach towards this research, for each 

UAV subsystem (i.e. Energy, Localisation, Actuation, Vision 
and Communication) there will be a corresponding Fault 
Diagnostic and Prognostic System. This architecture is shown 
below in Figure 2. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2   A Preliminary Design of the General System Architecture [10] 
 
 
 

III. SIMULATION AND TESTING 

A. Introduction 
The Intelligent Condition Monitoring System and 

Command and Control (C&C) are two separate entities that 
work alongside one another. Data is processed by the ICMS 
and communicated to the C&C whilst maintaining the human 
operator throughout the entire procedure. Global Remedies, 
for Global Faults that have a Major effect on the mission, are 
administered by Command and Control [10]. 

The subsystems of the UAV that were chosen for this 
routine were Localisation, Actuation and Battery Logistics. 
Analysis of these three subsystems covers the majority of the 
aircraft. Furthermore, a single representative component was 
selected for each subsystem for simulation. 

These were an accelerometer (ADXL202EB), AUV thruster 
(engine) and a twelve Volt battery for the Localisation, 
Actuation and Energy Supply subsystems respectively. It 
should be noted that both the accelerometer and thruster 
components were used on an AUV (University of Adelaide 
Project #997), but for the demonstrative purposes of this 
model, it only mattered that there were some devices with 
easily found normal operating attributes. It should be further 
noted that as this was the initial stage of a long-term project, in 
most cases, only one means of failure was analysed, and 
further means would be investigated after verification of the 
simple model. 

The accelerometer voltage was measured to determine if the 
component was working correctly or not. The normal 
operating conditions are 3-5.25 Volts. This would be 
considered a ‘good’ operating condition i.e. the device is 
working correctly. Any voltage outside this range would be 
considered ‘bad’ (not working correctly). 

The engine would have both its voltage and current 
measured to determine correct working conditions. This is 
because the required power for hover (in ideal conditions) is 
18 Watts, which corresponds to 1.5 Amperes of current and 12 
Volts of voltage. The normal operating ranges of the current 
and voltage under these conditions were not found, so it was 
assumed for the sake of the simulation that the normal 
operating ranges were 1.25-1.75 Amperes and 11-13 Volts. It 
should be noted that once proper engine data is found it would 
be instituted into the model.  

The Battery Logistics system would monitor a 12 Volt 
battery and compare its output voltage to the required voltage 
of a black box subsystem. The black box subsystem could 
potentially be any of the UAV’s subsystems; for the brevity of 
this simulation it is not required that the subsystem is known. 
The battery subsystem will be either classified as red, yellow 
or green (this will be explained further in the Fuzzy Logic 
Systems section). 
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Fig. 3 Simulation Model 
 

The simulation was constructed and tested in MATLAB 
(R2007B) and Simulink, as this program allows quick and 
easy construction of Fuzzy Logic systems, networks and many 
ways to portray test data for user friendliness. A View of the 
Simulink Model constructed can be seen in Figure 3.  

B. Neural Networks 
The Neural Networks used in this simulation are all cascade 

forward back-propagation Neural Networks. These use a Tan-
Sigmoid transfer function to classify data based on network 
biases and weights. There are two variables that affect the 
accuracy of the classification of variables by the network, the 
number of hidden neurons, and the number of data points 
(samples). The number of hidden neurons affects the way the 
network classifies the data. When the number of hidden 
neurons is higher than optimum, the network tends to 
overcomplicate relations between variables, resulting in a loss 
of accuracy. Similarly if the number of hidden neurons is 
below the optimum number, the network simplifies the 
relations between variables, resulting in a loss of accuracy 
[11]. 

To determine the best number a MATLAB M-file was 
produced that created many networks (based on Neural 

Network 1) with different combinations of hidden neurons and 
sample sizes.  

Figure 4 shows the MSE (mean squared error) verses the 
number of hidden neurons when the sample inputs are 
randomly chosen each time the test is run. It can be seen that 
the general trend is that as the number of hidden neurons 
increases, the mean squared error increases (especially in the 
300 – 500 hidden neuron range). This is seen accross all of the 
Neural Networks. The crests and troughs that appear 
apparently randomly can be attributed to the randomly chosen 
inputs and the way in which each Neural Network learns. 
Figure 5 is the same test ran again but with a constant input of 
data. This will allow alleviation of concern over Figure 4 
being a product of the random samples used. As can be seen 
the same trend of proportionality exists between MSE and 
number of hidden neurons. The random spikes and troughs 
can be attributed again to the way in which the networks learn. 
This would be reduced if the sample size was increased (it was 
1000 for this test) to 10000 or more. We can further conclude 
from the figures that an optimum number of neurons would be 
less than 100 for each Neural Network. For the purposes of the 
simulation, 30 hidden neurons was decided upon. 
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Fig. 4 MSE versus Number of Hidden Neurons for Changing Samples 

Fig. 5 Mean Square Error versus Number of Hidden Neurons for Constant Samples 
 

C.  Fuzzy Logic Controllers 
There are three FLC’s in the model. These are all Mamdani 

type systems. It was chosen over a Sugeno type system 
because of its intuitiveness, and ease of human input into the 
controller. A Sugeno type system was not chosen as it is only 
really advantageous when the FLC is very complex, and 
reduced computational load is needed (this is not the case in 
this simulation) [12]. 

 
 

 
Each of the Fuzzy Logic controllers take data from 

sensors/engines/batteries and convert the data into three 
outputs, red (bad), yellow (caution) or green (good). This 
allows quick response from a pilot or observer of the UAV 
when a red signal is produced, implying a critical situation. 
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D. Subsystem One (Accelerometer) 
This subsystem can be seen in Figure 3 above and consists 

of a Neural Network only.  This network has been trained to 
output a value of 1 if the input voltage is within acceptable 
operating conditions [3, 5.25] (Volts) and gives an output of 0 
if outside the proper working conditions. 

Using a MATLAB M-file, the network created was 
simulated 30 times with new data. The results are shown in 
Figure 6. The sample size was made to be 10000, and voltage 
data (produced using a random number generator) was fed into 
the system. The results show five and ten percent interval error 
rates. The ten percent errors correspond to the number of 

classification mistakes made by the network (i.e. if the output 
was supposed to be one, an acceptable answer may lie 
between 0.9 and 1.1); a similar approach was made for the five 
percent errors. On average, the network made 25 errors per 
10000 inputs at the 10% interval, and 50/10000 at the 5% 
interval. This is an accuracy of 99.75% for a 10% interval and 
99.50% accuracy at a 5% interval. It can be seen from Figure 
6 that this is not constant, and depends on how the network 
responds to each input. 

The data from the Neural Network is then fed into the 
Mission Status subsystem which decides whether or not the 
mission is able to be accomplished successfully. 

 

Fig. 6 Neural Network One Error 
 
E. Subsystem Two (Battery Health) 
This subsystem is concerned with the availability of power 

to a subsystem (black box subsystem). It takes two inputs, 
required battery voltage and available battery voltage and 
decides if the batteries are able to supply adequate power to 
the subsystem. For the simple simulation a FLC is capable of 
doing quite well. The FLC takes the two inputs and compares 
these values against a rule set (see Table I). 

TABLE I 
FLC ONE BATTERY HEALTH RULE SET 

Rule 1 IF: Available Voltage is Low AND Req. Voltage is 
Low  
THEN: Logistic Health is Red 

Rule 2 IF: Available Voltage is Med AND Req. Voltage is 
Low  
THEN: Logistic Health is Yellow 

Rule 3 IF: Available Voltage is High AND Req. Voltage is 
Low  
THEN: Logistic Health is Green 

Rule 4 IF: Available Voltage is Low AND Req. Voltage is 
Med  
THEN: Logistic Health is Red 

Rule 5 IF: Available Voltage is Med AND Req. Voltage is 
Med  
THEN: Logistic Health is Red 

Rule 6 IF: Available Voltage is High AND Req. Voltage is 
Med  
THEN: Logistic Health is Yellow 

Rule 7 IF: Available Voltage is Low AND Req. Voltage is 
High  
THEN: Logistic Health is Red 

Rule 8 IF: Available Voltage is Med AND Req. Voltage is 
High  
THEN: Logistic Health is Red 

Rule 9 IF: Available Voltage is High AND Req. Voltage is 
High  
THEN: Logistic Health is Red 

 

The highlighted rule (number 3) is a condition that responds 
with a green output, which is always desirable. The output is 
then defuzzified (reverted to a crisp variable) via the centroid 
rule. This crisp value is then an input into the mission status 
subsystem. 

 
F. Subsystem Three (Engine Health) 
The engine health in this simulation will be dictated by the 

voltage and current being drawn from the power supply. As 
stated previously, the current will have a defined (arbitrarily) 
normal operating range of [1.25, 1.75] (Amperes) and the 
voltage will have a normal operating range of [11, 12] (Volts). 
A Neural Network will classify the inputs (current and 
voltage) and discern whether or not the system is in a normal 
operating range. These values will then be fed into a Fuzzy 
Logic system, which will classify the engine health (red, 
yellow or green). Using MATLAB, thirty Neural Networks 
were created to identify an average accuracy for each Neural 
Network system (current and voltage). Below, in Figure 7, are 
two graphs showing the performance of both systems. The 
Neural Network concerned with classifying current made (on 
average) 125 errors per 10000 inputs at a 10% level (a correct 
classification is within the range [0.9, 1.1]) and 290 errors per 
10000 at a 5% level (correct classification [0.95, 1.05]). These 
are errors of 1.25% and 2.90% respectively.  Here we can see 
that the lack of optimisation of the Neural Network has led to 
errors significantly larger than in Neural Network 1 (0.25% 
and 0.5% error rates versus 1.25% and 2.90%). It would be 
beneficial in further research to optimise all Neural Networks. 
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Fig. 7 Neural Networks Two (Current) and Three (Voltage) Errors 
 
The Neural Network concerned with voltage classification 

had an average error rate of 150 per 10000 inputs at a 10% 
interval and an average error rate of 300 per 10000 inputs at a 
5% interval (1.5% and 3% respectively).  The spikes in errors 
seen in each graph can be attributed to situations where 
overfitting (loss of generality) occurs. 

The Fuzzy Logic system for engine health has the input and 
output membership functions shown in Figure 8. Each input is 
categorized into three groups, Bad, Unclassified or Good and 
then the output is categorized into Red, Yellow and Green. 
Trapezoidal membership functions were implemented for all 
of the membership functions. 

 

Fig. 8 Subsystem Four Mission Health Membership Functions 
 
 
 
 
 
 
 
 
 
 

 
 

(a) 

(b) 
Fig. 9 Mission Status Membership Functions 

 
The fourth and final subsystem, as seen in Figure 3 above, 

is an overall classification of the mission’s health. This allows 
quick and easy identification by an operator on the current 
health of the system in relation to mission specifics (i.e. if a 
camera on the UAV is working for a surveillance specific 
mission). It comprises a Fuzzy Logic controller only. It does 
not need Neural Networks to classify initial states. The inputs 
(corresponding to the 3 former subsystems) determine the 
final health status of the system. The input membership 
functions for Battery Logistic Health and Engine Health are 
the same as the outputs for Subsystem 2 and 3 respectfully. 
The membership functions for the accelerometer health and 
output mission health can be seen in Figure 9. 

IV. RESULTS 
A.   Testing 
The model system will be tested with six situations (and 

expected results); 
Test 1 – All systems working correctly (Green) 
Test 2 – Accelerometer Voltage failure, all other systems 

working correctly (Red) 
Test 3 – Engine Current Failure, all other systems working 

correctly (Red) 
Test 4 – Engine Voltage Failure, all other systems working 

correctly (Red) 
Test 5 – Battery Voltage/ Required Battery Voltage failure, 

all other systems working correctly (Red) 
 
The results of this testing can be seen in Table II. 
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TABLE II  
TEST SET UP AND RESULTS 

 Test 1 Test 2 Test 3 Test 4 Test 5 
   Accelerometer 
   Voltage 

4 V 2 V 4 V 4 V 4 V 

   Battery  
   Voltage 

12 V 12 V 12 V 12 V 9 V 

 Battery  
 Voltage     
 Required 

2 V 2 V 2 V 2 V 12 V 

   Engine  
   Current 

1.5 A 1.5 A 1 A 1.5 A 1.5 A 

   Engine  
    Voltage 

12 V 12 V 12 V 10 V 12 V 

    Mission  
    Status 
    (Expected  
    Output) 

Green 
(1) 

Red 
(0) 

Red 
(0) 

Red 
(0) 

Red (0) 

    Mission  
    Status  
   (Actual Output) 

Green 
(0.75) 

Red 
(0.25) 

Red 
(0.25) 

Red 
(0.25) 

Red 
(0.25) 

V.   ANALYSIS 
As can be seen in Table II, the actual linguistic output 

(Green or Red) is what was expected from the system, 
however, the actual crisp value is slightly off (i.e. in test 1 the 
predicted output is 1, but the actual output is 0.75). This is due 
to the centroid defuzzication rule implemented by the FLC. 
This problem would be reduced if a third membership function 
(yellow) was brought into the output or removed if the 
defuzzification rule was changed. But in terms of linguistic 
output the system works as expected. 

VI. CONCLUSION 
The results in Table II show the effectiveness of the model 

thus far. The model could be improved upon by increasing the 
accuracy of the Neural Networks. This would be done by 
further research into each individual Neural Network, testing 
combinations of the number of hidden neurons, the number of 
samples and the length of the training epochs. The FLC’s 
could be improved by bringing expert knowledge into the 
production of the membership functions for the Fuzzy Logic 
controllers. This would allow a more powerful and optimum 
solution to be found for each specific case. Finally the model 
could be well improved upon by finding data from the UAV 
and implementing these into the design. 

This simulation successfully justifies the use of Neural 
Networks in conjunction with Fuzzy Logic in the preliminary 
case put forward in this report. 
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