
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:5, 2008

1710

 

 

  
Abstract—The purposes of this paper are to (1) promote 

excellence in computer science by suggesting a cohesive innovative 
approach to fill well documented deficiencies in current computer 
science education, (2) justify (using the authors’ and others anecdotal 
evidence from both the classroom and the real world) why this 
approach holds great potential to successfully eliminate the 
deficiencies, (3) invite other professionals to join the authors in proof 
of concept research.  The authors’ experiences, though anecdotal, 
strongly suggest that a new approach involving visual modeling 
technologies should allow computer science programs to retain a 
greater percentage of prospective and declared majors as students 
become more engaged learners, more successful problem-solvers, 
and better prepared as programmers. In addition, the graduates of 
such computer science programs will make greater contributions to 
the profession as skilled problem-solvers. Instead of wearily 
rememorizing code as they move to the next course, students will 
have the problem-solving skills to think and work in more 
sophisticated and creative ways. 
 

Keywords—Algorithms, CASE, Problem-solving, UML. 

I. INTRODUCTION 
N many countries including the USA, the number of 
computer science students continues to decline. Students 

who show an initial interest in the field drop out in substantial 
numbers as the tedious realities of traditional programming 
instruction emerge.  

A. Evidence of Deficiencies in CS Education 
Most entry-level programming courses focus on coding and 

introduce students to Object-Oriented Programming (OOP) in 
C++ or JAVA [16, 23]. The following summarizes the 
resulting problems cited in the literature:  
•  Students focus on the syntax of the programming language 

and begin solving the problem by using the programming 
language, more often by trial and error, rather than first 
analyzing and designing solutions to the problem.  

• Since students are unable to make a connection between 
problem-solving and coding, they often lose motivation and 
ultimately switch to other degree programs.  

 
Manuscript received July 15, 2007, and in its shortened form was 

submitted on March 8, 2007, as a conference paper (that was accepted). 
Carol B. Collins is with the Computer Science Department, East Carolina 

University, Greenville, NC 27858 USA (phone: 252-328-9692; fax: 252-328-
0715; e-mail: collinsc@ ecu.edu).  

M. H. N. Tabrizi is with the Computer Science Department, East Carolina 
University, Greenville, NC 27858 USA (e-mail: tabrizim@ ecu.edu). 

• Without a basic understanding of software design and 
programming concepts, those students who stay with the 
program face an uphill battle in dealing with more complex 
programming related CS courses. 

• Students develop unproductive habits like mimicking code 
and tinkering with the code to fix problems.   

• Professors must repeatedly teach the same topics because 
students have not learned concepts that are transferable 
across topics and curriculum levels. 

• Students enrolled in senior level courses such as compiler 
construction and computer graphics spend excessive 
amounts of time with coding when working on projects 
instead of mastering the new concepts that the course and 
project are supposed to emphasize.  

• The inability to code effectively and efficiently becomes 
more serious when students take the software engineering 
courses.  With years of course work in OOP, students often 
cannot program adequately. For students who lack an 
understanding of programming concepts and problem-
solving capabilities, the syntax of the programming 
languages simply overwhelms them. 
The authors have witnessed the same symptoms in the 

senior level software engineering as in introductory computer 
science courses. Even the good programmers mimic or tinker 
with code, not truly understanding concepts behind 
programming.  

Although these students already had taken several semesters 
of courses using OOP languages like data structures, compiler, 
database, and computer graphics, they could not clearly state 
in English what an “object” was without referencing a 
particular syntax of a programming language. These 
deficiencies often are published and discussed [5, 10, 11, 17, 
22] at computer science and information technology-related 
conferences.  

The symptoms are not an aberration; they are the norm. To 
convince the students in the software engineering course that 
the process itself of creating software is indeed linked to 
software quality, the authors reverse engineered students’ 
cherished “A” rated programs from previous courses.  Upon 
seeing the result, the students were appalled at their programs’ 
structure and design. Clearly, knowledge and proficiency in 
writing code is a necessary but insufficient first step to create 
good object-oriented software [8] 

Often only a few graduating seniors are viewed as good 
programmers. At Microsoft PDC03 conference, most of the 
participating Faculty and Deans from leading universities 

Integrating Visual Modeling throughout the 
Computer Science Curriculum 

Carol B.Collins, M. H. N Tabrizi 

I 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:5, 2008

1711

 

 

throughout the USA, at the general academic session, felt that 
most of their graduates could not program effectively.   

One can also cite the results of the last year’s ACM 
(Association for Computing Machinery) World Finals 
Programming Contest sponsored by IBM:  MIT was the 
highest placing university in the USA at position 8, and the 
next highest USA University, CIT University, placed 39. One 
cannot say that the USA did poorly because of financial 
resources devoted to a select few students, when an elite 
university like MIT placed eighth and no other USA 
university placed above 39.  

B. Current Approaches to Addressing the Deficiencies  
Three major sources currently offer approaches to address 

the deficiencies ACM documents, textbooks, and various 
software aids.  Each source seems to fall short of addressing 
the scope of the problem. 

ACM’s Computing Curricula 2001 is a major contribution 
as far as it goes. But evidently from the number of curricula 
revision requests from NIH, the document does not go far 
enough in supporting problem- solving. For example, Chapter 
7 lists the deficiencies already cited and links these to the 
current emphasis on early coding. Three alternatives are 
suggested, but all suggestions involve listing and ordering 
topics, and do not address how to provide support for the 
problem-solving needed, although “developing cognitive 
models” is mentioned. (Chapter  7.5). Even in the table of 
activities, the activities imply verbal descriptions (for 
example, “describe” is used, not “sketch”). Even in the 
“Algorithms First approach”, where visual modeling would 
seem natural, the modeling referenced is pseudo-code.  
Imagine a building architect describing what is in a blueprint 
with some sort of pseudo-code! The next chapter deals with 
“Intermediate Courses”—at some point pseudo-code is 
abandoned, but what takes its place?  Here is where the study 
of computer science is really fragmented, creating an 
impression of a hodgepodge of topics but not a unified field 
like physics or biology. 
  The authors contend that whatever the topics and whether 
coding is early or late, without models to support the thinking 
involved in the solution process the situation will not improve.  
In particular, visual modeling seems to offer a unifying 
approach to problem-solving that allows students to build 
upon and expand the problem-solving techniques already 
learned instead of abandoning them as new topics are 
introduced. The ACM updated Computing Curriculum 
report’s focus is to specify curricula specific to subfields of 
computing and computer science, like software engineering 
and IT. The issue of a coherent toolbox with appropriate 
problem-solving tools is again addressed in passing. 

Textbooks generally offer local remedies, but no support for 
problem-solving in the context of programming, e.g., popular 
texts like Savitch’s [20].  Analysis with real data gets little 
attention even if textbooks refer to problem-solving structures 
involving branching, looping, and recursion. Design models 
often are expressed as pseudo-code or code.  No wonder 
students think that problem-solving starts with code!  

Using pseudo-code merely avoids some complexity 
involving syntax of programming language while offering 

nothing or very little in the way of guidance in the early stages 
of problem-solving.  Other textbooks like [2] show once some 
visual models (flow diagrams) of coding structures (e.g., 
if/else) but then do not use these for problem-solving. Instead, 
example solutions start with code or pseudo-code. 

Other remedies, including class diagrams, also have been 
proposed and appear in newer textbooks [7]. Visual-based 
class diagrams represent a potential improvement over 
pseudo-code. However, being static design models, class 
diagrams are fixed and structured too close to the code level. 
These diagrams will not fully support the students’ 
engagement in the problem-solving process from the 
beginning.  The gap from the problem statement to the class 
diagram is huge. Students who fail to leap this huge gap (and 
thus leave computer science) may very well succeed with a 
sequence of smaller gaps.  Visual models may be the stepping 
stones we need to create smaller gaps throughout the 
curriculum, just as the professional software engineers do. 

In addition, approaching software development from 
pseudo-code or the class diagram level requires that the 
student already know how the problem should be solved -- 
often by using step-by-step and algorithmic methodologies. 
Moreover, writing pseudo-code to describe what needs to be 
done is like describing a movie with prose.  In summary, these 
approaches generally compress into linearity the inherent non-
linearity of the solution process.  

Other approaches based on software aids, (e.g., BlueJ [3]); 
memory diagrams [11] also require thinking that is too close 
to the code level.  Functional programming languages, like Dr. 
Scheme have built-in analysis and design support via the 
“design template” as suggested by the author [9]. However, 
this template is specifically suited to functional programming 
and is also nearer the code level. Alice [1] is one of the better 
approaches that can be used to support analysis and design 
first, but can also be misused, allowing and even encouraging 
the habit of using only trial and error tinkering. By using 
problems that have visual solutions, Alice does seem to 
contribute to retention and better attitudes as measured on 
standard scales [13].  

C. The Common Weakness of the Current Approaches 
As can be seen from the cited specific shortcomings of the 

current approaches, what is missing in all of these approaches 
is a unified and formalized methodology that combines a 
general process for problem-solving with effective tools that:  
• support problem-solving irrespective of the code that will 

ultimately be produced.  
•  enable students to apply principles and approaches to 

problem-solving and programming, and  
• show the interaction of these approaches, to support, for 

example, creating modularity of functionality and levels of 
granularity, and using effectively abstraction, top-down,, 
divide-and-conquer, foot-in-door. 
Moreover, such a unified method can be enhanced by the 

use of the other existing aids, including memory maps, BlueJ, 
Alice, and design templates, depending on the specific code to 
be used. In fact, these aids would seem to make more sense 
and to be used more effectively if presented as enhancements 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:5, 2008

1712

 

 

to a common process with toolbox instead of as isolated 
pieces.  

Overall, the collective effort to overcome the difficulties 
related to syntax-based teaching of programming courses has 
been piecemeal. Proposed methodologies have focused on 
specific languages and provided solutions for specific 
problems in specific courses, or addressed thinking that is too 
close to the code level. 

However, our methodology, based on our extensive 
anecdotal experience over many years, is grounded in a 
process supported by visual modeling, is broadly applicable, 
will fit with current textbooks, and will be applicable as the 
breadth of computer science continues to increase. Problem-
solving based in visual models, already demonstrated for the 
engineering fields and other sciences,  can create an 
environment that can be seen as part of a larger picture and be 
more effective in aiding learning throughout a student’s 
academic and professional career in computer science, and 
include existing partially effective systems (like BlueJ and 
Alice) 

Moreover, the student will be prepared for today’s world 
where visual modeling is becoming ubiquitous (e.g. see VB 
Studio and its visual models of GoF patterns). 

III.   THE VISUAL MODELING APPROACH 
Based on their own classroom experiences over the years, 

the authors have seen that an effective problem-solving 
methodology becomes an iterative process supported by visual 
modeling tools. The advantage is that students have 
appropriate visual modeling tools that can be used throughout 
the computer science curriculum.  Moreover, as the 
complexity and scope of problems increase, the process and 
tool set can be augmented not supplanted.  The keys are 
“enough complexity” and “appropriate tools” at each 
curriculum level. In this way, students get to practice thinking 
that is repeated within CS1 and throughout the curriculum, 
just as the physical science students do using their methods 
with visual models. 

Two major consequences can occur by using this approach: 
(1) Professors need not spend lots of time re-teaching because 
the concepts were presented too close to the code level. (If 
concepts are taught too close to the code level, students 
associate the concepts with the code; thus cannot apply the 
concepts when the programming language changes.)  (2) The 
approach naturally evolves into processes widely used by 
professionals, like the Rational Unified Process (RUP) 
supported by UML and Rational Rose [19]. 

A. Visual Modeling 
One key to the visual modeling approach is to make the 

programming assignments sufficiently complex, unlike the 
traditional approach of assigning extremely simple problems 
to solve, like averaging three numbers. Make the problem trip 
up even those who have already written programs.   

In this way, students more readily see how using a formal 
process with appropriate problem-solving tools allow them “to 
work smarter not harder”, and increase the likelihood of 
“doing it right the first time.”   

Moreover, by asking students to develop software that 
involves in-depth thinking and providing them with a process 
(using visual modeling) that adequately support this thinking, 
the authors have noticed that the advantage of those with prior 
programming experience disappears!  The playing field is 
leveled for all students.  

Another key is to identify an appropriate subset of UML. 
For CS1, the authors have found the use-case diagram, flow of 
events, and activity diagram to be especially useful, taking the 
student smoothly from problem statement to code. 

For example, in designing a “homework help” web page 
(i.e. provides conversions, like binary to decimal, feet to 
meters, etc.), the students represent these forms of “help” as 
use-cases as in Fig. 1. Only then do they propose various 
solutions. Students see that the use-case is an abstract version 
of a future solution that allows students to brainstorm later 
how the solution will be crafted. Instructors just need to 
augment with additional support that is readily available. 

 

 
Fig. 1 Example use case diagram 

B. Evidence Supporting the Approach 
We have successfully used the iterative approach with 

RUP, UML in Introduction to Computer Science and in 
Software Engineering courses. 

In order to motivate our claim that that formal research by 
those involved in the computer science education communities 
is necessary, we discuss here our experiences in three courses, 
Introduction to Computer Science, Software Engineering I, 
and Software Engineering II.   

Over the last four years one of the authors who is also 
involved in Software Engineering has integrated parts of the 
RUP and Visual Modeling tools in her Introduction to 
Computer Science courses as a precursor to a formal proof of 
concept research project.  

C. Entry Level Computer Science 
In the introductory course, the major focus of RUP is the 

iterative life-cycle model for which there is a clear continuous 
trail from inception to final project.  Consistent with the level 
of complexity of the introductory projects assigned, the author 
selected a few visual models to support student thinking 
throughout the process: the use case diagram, activity diagram 
based on flow of events, and the class diagram. 

Because newer textbooks discuss the class diagram, we 
omit describing in detail how these were introduced to the 
student. However, introductory textbooks do not deal with 
teaching introductory computer science courses using the 
other two diagrams. Thus, the authors now describe in some 
detail about using the use case and activity diagrams and 
thereby highlight how little additional teaching is needed and 
how effectively the students use these visual models to avoid 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:5, 2008

1713

 

 

so many difficulties typical to beginning students in computer 
science.  

(1) The Use Case Diagram:  The need for requirements 
analysis involving abstraction is illustrated by asking students 
to solve a visiting Martian’s problem of toasting bread. The 
students always suggest, “Buy a toaster.” The Martian then 
says, “OK, I got a toaster, and I see that I must plug it into 
something called a socket; but I live in a cave and cannot find 
a socket.”  

Because the students have already invested in part of the 
solution, they now say that they must wire the cave.   Had the 
students focused initially on the functionality needed (toast 
bread) instead of the solution (toaster), they could have 
proposed not just one but several solutions as they found out 
more and more about the situation.  

With the toaster already in the solution, students had to do 
the equivalent of “code tinkering” to make this solution work. 
(When students start solving problems using code or even 
pseudo-code instead of focusing on functionality, the structure 
of the solution is set, just as the toaster set the structure of the 
solution. That is, students must fix analysis and design 
problems at the code level.) 

The use case diagram is presented as a tool to facilitate 
requirements analysis so that later multiple design features can 
be considered, like how the functionality is to be modularized 
to promote ease of maintenance and reuse. 

The first assignments are team based.  Each team must 
produce a use case diagram from a given problem statement. 

For example, the problem might be “create a web site that 
will advise an incoming freshman about which math class to 
take to satisfy the math graduation requirement.”  First, each 
team identifies a list of three categories of user (i.e., a 
professor, parent, enrolled student). Second, each team makes 
a list of jobs (functionalities) the proposed software will 
perform, i.e., “The student should be able to view a list of 
eligible math classes”.  Third, the team creates a use case 
diagram reflecting these functionalities. Finally, each team 
presents the diagram to the class for discussion. 

 Note that students are provided little instruction. The only 
instruction given to students for making the diagram from the 
problem statement is the following applied to one worked 
example: 

• The diagram is to show the jobs of the proposed 
software but NOT how the system will do the jobs. 

• Stick figures (actors) represent entities (human or 
machine or external database) that interact with the 
software system to be built.  

• The ovals (use cases) represent what the system will 
do. 

• Stick figures are named by a noun that denotes a role, 
like student, professor, or system administrator. 

• Ovals are named by a verb that denotes what the 
system will do for an actor. 

• Lines drawn between an actor and use case represent 
the actor-use case interaction. If one in this pair always 
initiates the interaction, the line is drawn as an arrow 

with the tip pointing away from the initiator. If either 
can initiate, no arrow tip is drawn. 

Despite this extremely brief set of initial instructions, 
among the benefits of this visual approach are that student can 
readily: 

• see abstraction at work, allowing an overview of 
requirements so that big features (like the main 
requirements and how the functionality is modularized) 
are clearly visible, 

• grasp what the individuals and teams are thinking (i.e., 
how the problem statement is being interpreted)  and 
thus offer insightful questions and comments, 

• see how many different approaches there are to solving 
a particular problem, 

• see how the diagram supports modularization of 
functionality, 

• see how to re-modularize (combine or break up use 
cases) to improve the solution for usability and 
maintainability, 

• learn, through the discussions, that there often is no 
single “correct” model and that the “goodness” of a 
solution depends on many factors. 

The most important benefit is that the student is weaned 
from the professor and starts on the road to self-learning: 

• Students can themselves create the diagrams. 
• The visualization of the requirements from the problem 

statement permits any student to understand most of 
any diagram and thus intelligently discuss it. 

• Because all students can discuss any diagram, students 
themselves correct errors (i.e., misnaming an actor or 
use case), clarify the requirements, clarify the use case, 
and understand how to settle on the “best” model to 
start with. 

• As in learning to walk, self correction and 
improvement is natural: the student sees not only a 
need for correction but also the approximate magnitude 
and direction of the correction needed. 

Previous coding experience does not help a student in these 
activities.  Even students with no coding experiences can 
grasp the basics of how the modularity of the use cases affect 
usability and maintainability in a dynamic situation where 
requirements constantly change. 

(2) The Activity Diagram: The activity diagram provides 
detail about how the use cases can be made to materialize. 
Students first provide a narrative of the flow of events, 
describing the various scenarios by which each use case can 
unfold from start to finish. From these they make an activity 
narrative, focusing on the action (verbs) needed to make the 
events occur. 

So that the reader can appreciate how even in CS1 much 
natural iterative and collaborative problem solving can be 
conveniently supported by re-expressing these narratives as 
activity diagrams (instead of pseudo-code, for example) 
considerable detail is given below about the process the 
beginning CS students are asked to follow to construct the 
activity diagram.  



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:5, 2008

1714

 

 

For simplicity, only the BOX, IF, IF-ELSE, and WHILE 
primitive flow structure are used in CS 1 for the activity 
diagram. The primitives are enclosed in ovals at the CS 1 level 
to emphasize to the student that the entire structure inside the 
oval is the primitive.  See Fig. 2. 

 

 
Fig. 2 Four basic primitive flows 

 
For each use case, the student constructs an activity 

diagram by referring the flow of events and activity narratives 
(expressed in everyday language).  The student (1) chooses 
and sketches candidate primitives based on the sense of the 
narratives, (2) copies sentences from the narratives into the 
boxes and diamonds as appropriate, and (3) iteratively re-
expresses these sentences and adding primitives until the 
activity diagram contains only language that directly translates 
into a language of choice, like C++ or JavaScript. 

This process is smooth and seamless.  At each step, the 
student does exactly what the activity diagram says and 
verifies that the requirements of the narratives are met up to 
that point. 

Until the final iterations that focus on the chosen computer 
language, the student needs no coding experience. Thus the 
focus is on design.  Design problems can surface early as 
students compare early design with the use cases.  Often 
students make changes in the use case diagram, as they see 
that they should split one use case into two or combine use 
cases. Students can think this way because the visual tools 
support this kind of thinking.  Even students with no coding 
experience participate in making such improvements.  

The only instruction the student gets for using these 
primitives to construct the activity diagram is the following 
applied to one worked example: 

• Any primitive (oval) can go inside any box. 
• The primitives can be strung together, like electric 

extension cords, via their entry and exit lines. 
• Choose a primitive based on the context of the activity 

in the narratives; use “while” to repeat an activity, or 
use “if” to allow for an optional activity, or use “if-
else” for choices between two activities, or use a 
simple box for unconditional activities. 

• The activities (repeated, choices, options, 
unconditional activities) are copied from the initial 

narrative and written as complete sentences in the 
boxes of a chosen primitive. 

• The sentence in any diamond is also from the narrative 
and states the condition that when true will cause the 
box on the T (true) branch to be executed.  

• The contents of each box and each diamond must be a 
complete sentence (subject, verb). 

• Write sentences into any box or any diamond in any 
order. 

• Re-express the English in successive iterations, using 
more primitives as needed, until the diagram shows 
that (1) computer will store data needed to carry out the 
required activities and evaluate the conditions, (2) all 
verbs are those expressible in the computer language of 
choice, (3) in the box for the “while” primitive, a 
sentence changes a stored data value so that eventually 
the condition in the diamond evaluates to F (false), 
unless a continuous loop is desired.  

Students first practice this process by describing everyday 
activities, like dressing for the weather (choosing to pick up 
an umbrella before leaving the house).  

Then, students use sequences of flows and nested flows to 
describe, for example, choosing between (if-else) “eating a 
dish of ice cream via successive spoonfuls (while)” and 
“going shopping (simple box)”, whose first pass activity 
diagram is illustrated in Fig. 3.  The “T” branch is the repeated 
spooning of ice cream into the mouth, and the “F” branch is 
the shopping activity. 

 

 
Fig. 3 Nesting primitives 

 
In every case, the emphasis is on choosing the picture and 

only then filling in the boxes and diamonds.  Once the original 
language is written, and the student checks the diagram 
against the story, the student may realize that the diagram 
needs to be modified, for example by adding initial 
conditions, describing the capacity of the spoon used in eating 
the ice cream, or describing what the computer must do if the 
amount left in the dish is less than a spoonful, etc. 

Once students are comfortable with activity diagrams for 
everyday activities, the student gets an assignment that 
requires a diagram whose sentences are directly translatable to 
a computer language, like JavaScript. 

The student follows the same process, but also paraphrases 
until the completed primitives are directly translatable into the 
chosen computer language. Fig. 4 below shows a problem 
statement with a sequence of activity diagrams (iterations) if 
the language is to be JavaScript. (Fig. 4 shows the coding step 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:5, 2008

1715

 

 

so that the reader can see how naturally the code is generated 
by good design.). 

 

 
Fig. 4 Example iterations from problem to JavaScript 

 
Only at the last iteration does the student need consider the 

details of the language, so long as the language considered can 
express the primitives used in the diagram. 

Typically almost all students will produce this particular 
sequence of designs. Note that students initialize the count 
only after the third iteration.  Their own testing of the design 

causes them to add the initialization box; the professor does 
not tell them to do this.   Moreover, if a student initially 
incorrectly locates the initialization box, the students correct 
themselves by checking the ‘story” the activity diagram 
shows. 

Students can do self correcting without the professor, 
provides the professor refuses to test the design for the 
student/ 

Advantages using the activity diagram before coding are 
numerous for both design and coding. 

First, the diagram offers seamless support in drilling down 
from requirements to code: 

• The student never loses his/her train of thought because 
at any point in time the diagram expresses clearly what 
the student last thought (interruptions of even days are 
inconsequential). 

• Stepwise refinement with abstraction is supported 
because the student can check and modify against 
previous iterations of the diagram that the student 
already understands. 

• Educated guessing and research (as opposed to trial 
and error) are supported. 

• Natural problem solving (a nonlinear activity) is 
supported, e.g., students acquire and use information as 
needed, students can clearly see where information is 
missing, and students have key words to use in 
research (including asking questions of others). 

• The diagram allows students to conveniently find and 
correct logic errors before investing in code, thereby 
reducing a source of frustration in coding. 

• Collaborative design in teams is enhanced because 
team members can express their thoughts in a way all 
team members can understand and explain. 

• Students have an overview of the interrelation of 
design choices and choices in the language chosen as 
they see that design should smoothly translate to code. 

Second, because of the high quality of the design, from 
which students directly generate code: 
• Students generate higher quality code in less time 

because the features and words in the picture are is 
directly translatable to code. 

• Students can explain their code since at the last 
iteration the diagram is directly translatable into code. 

• The activity diagram allows students easily and 
accurately to incorporate design changes that support 
code maintenance and may be required by changes in 
requirements. 

• Students correctly locate comments in code. 
• Students can differentiate between coding errors and 

logic errors and thus experience much less frustration 
in debugging. 

• Code tinkering to fix design problems disappears. 
• Students learn to reverse engineer, and thus learn new 

ways of thinking by studying others’ code as they write 
exiting code into activity diagrams. 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:5, 2008

1716

 

 

• Students are less inclined to mimic code they do not 
understand. 

• Students with coding experience have little or no 
advantage over others. 

Third, and most importantly, the professor is nearly 
removed from the problem-solving loop, except for the initial 
set of instructions on the purpose of the diagram and how to 
make one using primitives. 

For example, if a student asks, “Is this design correct?” the 
professor need only to reply, “Check that the story you told in 
your diagram expresses the requirements.” If a student asks, 
“Is my code correct?” the professor need only to say, put the 
code onto an activity diagram and check this diagram against 
the requirements.  

That is, students learn to be self sufficient learners because 
they have a tool (effective visual modeling) that supports self 
sufficiency.  

(3.) The Class Diagram: For the part of the course 
focusing on object-oriented solutions and languages, this 
instructor used part of “Learning to Program with Alice”. 
From their visual storyboards, students created textual 
storyboards, again starting with given English and then 
retelling until the code practically wrote itself. The important 
point is that students focused on solving problems, not coding. 

In addition to activity diagrams, analysis tables (Fig. 5) and 
class diagrams also help students construct their programs and 
also and understand current programs (more reverse 
engineering). 

Analysis tables organized the objects and their respective 
methods and properties for the class diagrams. With a list of 
objects needed to enact activities, the class diagrams shown in 
the more recent texts in OO programming and the memory 
maps can make sense to the novice.  

 
Fig. 5  Analysis diagram 

 
Textbooks adequately cover class diagrams, and thus we 

omit discussing how to introduce these to students.  However, 
the seamless transition from the problem statement to code 
needs to be maintained.  For example, in subsequent courses 
as complexity of problems increase, other visual models must 
be added, e.g., the sequence diagram. 

In summary, by using an appropriate set of visual models, 
the student sees that 

• the transition from problem statement to code involves 
no huge gaps in thinking between the steps and 
iterations, 

• the visual models preserve the multidimensional 
thinking process used, and 

• any difficulties that arise are clearly traceable in the 
visual models to a particular point in the problem-
solving process.  

In this way, the students do not fix problems inherent with 
the design of the program (solution) by tinkering with the 
code or using blind trial and error.  (Instead of buying a 
toaster for a cave without electricity, they know early that a 
toaster will not work.) Moreover, students focus on the 
concepts, no matter the language; in particular they applied 
concepts before creating the final code:  

• The student was able to successfully and efficiently 
create designs directly translatable to correct code, 
including nesting and sequencing structures like if and 
while. 

• The student was able to explain code and correct 
his/her own mistakes by referencing the visual models. 

• Anyone, including those with coding experience, made 
moderate to serious errors if they failed to use the 
process and supporting tools. 

• With object oriented programming via Alice, students 
clearly saw how the storyboards and visual models in 
Alice related to UML and the overall iterative 
approach. 

• Students gravitated to the visual models and away from 
pseudo-code. Some students in reading the texts would 
sketch the diagrams in place of the given pseudo-code. 

• Those with prior programming experience lost their 
advantage over the others, but all were successful when 
properly applying the visual models.  

Students learned to teach themselves as visual models 
fostered self-corrective action. 

Following these courses, former students often returned for 
help with their first program in the next course. They would 
have code but no visual models. In no more than 1/2 hour, the 
student would not only create the visual models but also 
correct the code themselves. Each student said that their own 
failure to rely on visual models in subsequent courses 
occurred because neither the text nor professor used them. 

However, there is no reason for abandoning visual 
modeling after the introductory computer science course. By 
using UML in subsequent courses, the student reviews the 
visual modeling concepts already learned and merely adds 
more models to handle additional complexity.  With concepts 
unrelated to code presented independently of code, students 
have the means to apply these concepts in a wider variety of 
situations, so that the professor need not re-teach the concepts 
for each more advanced course involving programming. 

D. Software Engineering 
The details of introducing software engineering as an 

advanced undergraduate course are well known.  Thus, we 
omit the details of pedagogy and present only highlights of 
students’ experiences at our university. 

At the Software Engineering level, once students had 
developed software using RUP supported by UML, they were 
amazed with the code they produced.  In this course each 
semester, many of even the top students said that without the 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:5, 2008

1717

 

 

visual modeling they would not have produced such high 
quality code. Given this anecdotal evidence of the 
effectiveness of a visual problem-solving methodology 
semester after semester, both at the intro and advanced levels, 
the authors felt that the computer science profession should 
look more closely at developing a visual modeling based 
methodologies to support problem-solving at all levels of 
software development. 

As already mentioned, towards the end of the first software 
engineering course when students saw their prized projects 
from other classes reversed engineered into UML class 
diagrams, the students were appalled at their structures. A 
typical class diagram consisted of one huge class and two 
other tiny ones. Moreover, until students saw these visual 
models, they were unaware of the overall structure of their 
software from other classes. They readily saw that viewing 
code was no place to neither understand design issues nor 
understand how the code related to the original problem 
statement. 

E. The Professional World 
In dealing with co-op and newly graduated students, the 

authors have much contact with the professional world of 
software development. 

Businesses repeatedly state that they need people who can 
communicate with the outside world and with a gamut of 
technical people. Students need to be problem-solvers, not just 
good coders. Students need to innovate and be able to teach 
themselves. To this end, large companies have their own in 
house schools and emphasize visual modeling. 

Returning students verify this environment with comments 
like, “I have been there six months and still have not written a 
line of code”, and “To write any new code instead of using 
libraries, I have to complete a lengthy form justifying my 
proposed new code.”  Many students taking interviews have 
said, “The fact that I used UML with Rational Rose got me the 
interview”, or “Despite my excellent grades, I never would 
have been hired but for my RUP and UML experience.” 

The anecdotal and survey data from the authors’ classes and 
employer contacts indicate that the authors’ proposed 
approach holds promise.  Since this approach is amenable to 
any level of software development with the appropriate choice 
of visual models and the use of visual modeling in common in 
the computer science profession, the formal investigation of 
the effectiveness of this approach in CS education is 
encouraged.  

The next section describes research that indicates why the 
authors’ approach is likely to be validated by this proposed 
proof of concept research 

IV. NEED FOR PROPOSED APPROACH 
Wide agreement exists that students enrolled in 

introductory level programming courses should acquire a firm 
foundation in problem-solving instead of focusing too much 
on the details of programming languages’ syntax. Authors like 
Coad tried to focus more attention on design [4]. Some, like 
[21], propose to use Ada to teach problem-solving to non-
computer science majors due to the simplicity of the Ada 

syntax. This simplicity helps students to understand the 
distinct phase of design method.   

Others, like [13], use a spreadsheet/database package as a 
valuable tool to aid the process of problem-solving. Other 
approaches [6, 12, 13] involve techniques to improve 
students’ problem-solving by integrating different criteria into 
an undergraduate computer science introductory course 
without using any specific programming tools.  However, 
none of these adequately addresses bridging the huge gap 
between the problem statement and the code. The students still 
develop their programs at the keyboard and tinker to get the 
code to work.  

That no pervasive problem-solving methodology exists is 
evident from the contents of textbooks and work presented in 
papers and conferences. Even the ACM/IEEE CC2001 
recommendations and the “algorithms first” approaches do not 
address the issues related to problem-solving, especially 
support for modeling.  Finally, the method that enables 
students to perform documentation is missing. One may ask, 
“Why UML?”  The reason is that UML:  

• as a visual-based modeling language, will help to 
remove ambiguity when analyzing and designing the 
system,  

• facilitates communication (including with oneself) 
about the structure during the software development 
process, from overall functionality down to the code 
framework,  

• permits use of prior experiences in all walks of life via 
analogous thinking,  

• preserves visually the thinking process providing 
students the means to improve their thinking processes.         

• supports modifications in the software structure at 
every level from describing the functionality to starting 
coding, and          

• already exists and is an accepted modeling tool. (A few 
of the UML diagrams, like the class diagram and flow 
diagram, already appear as isolated pieces in some 
current texts.) 

In summary, UML diagrams serve as a set of progressively 
more detailed visual models of the software developer’s 
concept of the system to be developed. In this way, UML 
provides the support for problem-solving and clear 
communication and also serves as a means for 
conceptualization using OOA and OOD. In addition, the 
visual models can be used to offer insights into new OO 
technologies, like Aspect Oriented Programming [24]. 

V. UNIFYING THE COMPUTER SCIENCE CURRICULUM 
Offering appropriate subsets of UML as a tool to support 

problem solving in programming courses from entry to senior 
level has clearly been shown to be a possible via the 
description in this paper of the success of using UML at both 
the beginning level and senior level of a computer science 
curriculum. 

Professors need not change either the goals or contents of 
any course, but merely choose the appropriate visualization 
tools to support problem solving.  At the moment, UML 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:5, 2008

1718

 

 

seems to comprise the appropriate set at the moment to 
support problem solving in the software development context.  

If students repeatedly see the same visual tools used 
throughout the curriculum with more and more tools added as 
the complexity of the problems increase, students should be 
able to learn more effectively and to do so as self learners.  In 
this way, students will be better equipped to solve new 
problems and be more productive professionals, whether in 
research or in commerce. 

That visual models are so useful in learning and problem-
solving is not surprising given the research on visualization, 
like the research presented on the importance of VTN (visual 
thinking network) in learning and problem- solving, especially 
in science.   See [15] for a discussion of VTN and other issues 
involving the visualization in problem solving and learning.  
The research was done with a focus on students trying to learn 
and apply concepts in science. With VTN Longo, et. Al. [15] 
assert that “Overtime the novice learner should then have the 
capacity to transfer this problem solving skill to new 
situations.”  Isn’t “applying concepts to new situations” at the 
core of the computer science profession? As they conclude, 
“The new understanding of the role of the visual cortex in 
cognitive processing has strong implications for broadening 
the science education research agenda with respect to research 
questions, methodology, and foci.” 

VI. CONCLUSION 
This study reports on using visual tools that enable students 

to seamlessly progress from the problem statement to the code 
in beginning and advanced computer science courses. This 
approach is designed to enhance the quality of students’ 
learning, specifically in the area of problem-solving and 
programming concepts. 

Proper use of UML via hand sketches is adequate, but other 
aids to visualization are often freely available for educators. 
Tools like MS Visio [18], Alice, and Rational Rose, will avoid 
the shortcomings of current approaches to addressing the 
syntax issues of code.  Professors and students will spend 
more time on problem-solving that results in better coding. 
While ACM/IEEE 2001 does not mention such an approach to 
problem-solving at entry level courses, ACM/IEEE does not 
exclude experimentation with methods.  Moreover, we are not 
proposing changing the ACM/IEEE 2001 body of knowledge.  

In addition, the implementation of the proposed 
methodology does not require massive re-conceptualization of 
the computer science course offerings, nor does it require that 
students learn less about core computer science theory while 
devoting time to visual-based software development skills. 
We propose using UML to foster, not hinder thinking. Time 
will be productively spent thinking about the problem instead 
of trying to fix analysis and design problems at the code level, 
often by trial and error.  

Thus, professors teaching  CS will be able to create their 
own learning environments, using their techniques, but still 
support and be supported by a unified system of models that 
facilitate problem-solving and is seamlessly applied 
throughout the core courses.  Moreover, professors in 
advanced computer science courses will be able to spend more 

time on topic instead of dealing with recurring coding issues 
while promoting excellence in computer science. 

Finally, appropriate visual models clearly do give students 
the means to teach themselves and engage more effectively in 
collaborative learning. Not only do visual models allow 
students to more easily find errors, but the magnitude and 
direction of needed corrections become more evident. 
Communication with others (student team members and 
professors) about their thought processes   is facilitated. If this 
self sufficiency is begun in CS1 and continued throughout the 
curriculum, it seems that students  may have a greater 
opportunity for success early and also for greater achievement 
throughout their academic and professional careers. 

The need now is for broadly applied designed experiments, 
including longitudinal studies, to study systematically the 
effects of visual based problem-solving begun early and 
continued throughout the CS curriculum. 

REFERENCES 
[1] Alice is a 3D Interactive Graphics Programming Environment for 

Windows 95/98/NT built by the Stage 3 Research Group. Retrieved 
April March, 20, 2004, from http://www.alice.org/. 

[2] Anderson J., & Franceschi, H. (2005). Java 5 Illuminated. Jones and 
Bartlett. 

[3] BlueJ and interactive Java development environment. Retrieved April, 
10, 2004 from http://www.bluej.org/, 

[4] Coad, P. & Yourdon, E. (1991). Object-Oriented Design. Prentice Hall. 
[5] Collins, C., & Tabrizi, M.H.N, (2007) Using Visual technologies to 

promote excellence in computer science education. Proceedings of the 
XXI. International Conference on Computer, Electrical, and Systems 
Science, and Engineering (CESSE 2007), 21, 83-87, 
http://www.waset.org/proceedings/v21/v21-15.pdf. 

[6] Deek, F.P., McHugh, J.A., Hiltz, S.R., Rotter, N., & Kimmel, H. (1997). 
On the evaluation of a problem-solving and program development 
environment. Proceedings of 27th Annual Conference on Frontiers in 
Education Conference. 

[7] Eckel, B. (2003). Thinking in Java, (Third Ed.), Pearson/Prentice-Hall. 
[8]  Fayad, M.E., Tsai, W.-T., & Fulghum, M.L. (1996). Transition to 

object-oriented software development. Communication. ACM, 39(2), 
108-121. 

[9] Felleisen, M.,  Findler, R.B. , Flatt, M., and  Krishnamurthi, S.  (2003). 
How to Design Programs, MIT Press Cambridge. 

[10] Guizzardi, G., Pires, L.F., & van Sinderen, M.J. (2002). On the role of 
domain ontologies in the design of domain-specific visual modeling 
languages. Invited presentation at Second Workshop on Domain-
Specific Visual Languages, 17th Annual ACM Conference on Object-
Oriented Programming, Systems, Languages, and Applications. 
Retrieved April 5, 2005 from 
http://www.dsmforum.org/events/DSVL02/Guizzardi.pdf). 

[11] Holliday, M. & Lugenbuhl, D. (2004). CS1 assessment using memory 
diagrams. Proceedings of the 26th SIGCSE Technical Symposium on 
Computer Science Education.  

[12] Hyde, D.C., Gay, B.D., and Utter D., (1979). The integration of a 
problem-solving process in the first course. Proceedings of the 10th 
SIGCSE Technical Symposium on Computer Science Education. 

[13] Kolesar M.V., Allan V.H. (1995). Teaching computer science concepts 
and problem-solving with a spreadsheet” in Proceedings of the 26th 
SIGCSE Technical Symposium on Computer Science Education. 

[14] Lloyd, B.H., & Gressard, C. (1984). Reliability and factorial validity of 
computer attitude scales, Educational and Psychological Measurement, 
42(2), 501-505. 

[15] Longo, P.J., Anderson, O. R., & Wicht, P. (2002), Visual thinking 
networking promotes problem solving achievement for 9th grade earth 
science students, Electronic Journal of Science Education, 7(1), 1-50. 
http://www.umassd.edu/cas/biology/longo/problem_solving.pdf 

[16] Naked Objects Framework. (2002). Retrieved April, 12, 2005 from 
http://www.nakedobjects.org/static.php?content=home.html. 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:5, 2008

1719

 

 

[17] Mahmoud, Q.H., Dobosiewicz, W., & Swayne, D., (2004). Redesigning 
introductory computer programming with HTML, JavaScript, and Java. 
in Proceedings of the 35th SIGCSE Technical Symposium on Computer 
Science Education. 

[18] Microsoft Visio (2003). Visio Fact Sheet, Retrieved May 1, 2005 
http://www.microsoft.com/office/visio/prodinfo/facts.mspx. 

[19] Rational Rose. Retrieved April, 20, 2004 from http://www-
306.ibm.com/software/rational/sw-atoz/indexR.html. 

[20] Savitch, W. (2005). Problem-Solving with C++: The Object of 
Programming. (Fifth Ed.), Addison-Wesley. 

[21] Suchan, W.K. and Smith, T.L. (1997). Using Ada 95 as a tool to teach 
problem-solving to non-CS majors. in Proceedings of the Conference on 
TRI-Ada. 

[22] Tabrizi, M., Collins, C., Ozan, E., & Li, K. (2004). Implementation of 
Object-Orientation Using UML in Entry Level Software Development 
Courses. Proceedings of SIGITE Conference. 128-131. 

[23] Ventura, P., & Ramamurthy, B. (2004). Factors that lead to success in 
CS: Wanted: CS1 students. no experience required. In Proceedings of 
the 35th SIGCSE Technical Symposium on Computer Science 
Education. 

[24] Wikipedia: Aspect-oriented  programming 
(http://en.wikipedia.org/wiki/Aspect-oriented_programmig). 


