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Abstract—Masonry cavity walls are loaded by wind pressure and 

vertical load from upper floors. These loads results in bending 
moments and compression forces in the ties connecting the outer and 
the inner wall in a cavity wall. Large cavity walls are furthermore 
loaded by differential movements from the temperature gradient 
between the outer and the inner wall, which results in critical 
increase of the bending moments in the ties. Since the ties are loaded 
by combined compression and moment forces, the loadbearing 
capacity is derived from instability equilibrium equations. Most of 
them are iterative, since exact instability solutions are complex to 
derive, not to mention the extra complexity introducing dimensional 
instability from the temperature gradients. Using an inverse variable 
substitution and comparing an exact theory with an analytical 
instability solution a method to design tie-connectors in cavity walls 
was developed. The method takes into account constraint conditions 
limiting the free length of the wall tie, and the instability in case of 
pure compression which gives an optimal load bearing capacity. The 
model is illustrated with examples from praxis.  
 

Keywords—Masonry, tie connectors, cavity wall, instability, 
differential movements, combined bending and compression.   

I. INTRODUCTION 
ESIGN capacity of tie connectors in masonry cavity 
walls is determined by four basic failure modes: tension 

failure in steel, anchorage failure in the mortar joint, 
instability in compression (column buckling) and bending 
failure due to constraint condition. The first two failure 
criteria appear in pure tension and are not within the scope of 
this paper, but can be studied in for instance [1]. The last 
failure criterion, the bending criterion, gives a minimum 
length limitation of the wall tie, which is explained by the fact 
that the differential movement between the outer and inner 
wall is constant, which leads to a higher moment, when the 
free binder length decreases. An exact iterative solution of this 
phenomenon is derived in [2] to be presented and used as 
comparison with the model derived in this paper. The 
instability failure due to second order deformation appears 
when the free tie length reaches the critical column length, 
mainly determined by the stiffness and slenderness of the tie-
connector. This failure mode may be determined from 
instability column equations. For the analytical model 
developed, the method of Euler/Ostenfeld is used [3]. 

In addition to the above mentioned failure modes, it should 
to be mentioned that several types of tie connectors are built 
by a combination of ties easing the mounting of the tie 
connectors and to some extend to optimize the load bearing 
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capacity, see for instance [4]. The connections in combined tie 
connectors also may lead to failure; therefore the connection 
also needs to be designed. The model introduced also 
considers that combined tie connectors can be developed to 
obtain reduced effect from differential movements by 
establishing a charnier between the main tie connector and the 
constraint in the wall. Hence the moment in the tie connector 
is reduced. This may be accomplished by U-formed 
connectors or other system, see [1] and [5] and Fig. 1. 

 

 
Fig. 1 Typical tie connectors in masonry cavity walls 

 
Earlier test on cavity walls mainly examines the 

loadbearing capacity of the masonry used, see for instance [1] 
and [7], therefore the main verification is based on 
comparison with exact solutions. Nevertheless some test may 
be found in [6] and [7], which, however, may be used for 
verifying the level of the load capacity, but not for a detailed 
parameter study.  

II. STATE OF THE ART THEORIES 

A. Column Instability 
Instability failure is determined by the magnitude of 

deformation, and by having high amount of deformation, the 
second order effect will be dominating the failure, and the 
failure will approach Euler failure, i.e. stiffness properties are 
decisive, while lower deformation relatively to the strength 
parameters, the failure will be determined by the material 
strength parameter i.e. yield strength. The level of deformation 
depends on the curvature κ of the loaded column, i.e. the tie 
connector, by (1): 
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where fy is the yield strength of the tie connector and E is the 
Modulus of Elasticity, and the stiffness parameter (or 
slenderness ratio) given by (2): 
 

i
ls s=                          (2) 

 
where ls is the free column length having ls = kl where l is the 
free tie length, i.e. opening between outer and inner wall and k 
being the column effect depending on the constraint condition, 
and i is the radius of inertia.  

In the case of κs ≤ 0.5 the failure is dominated by strength 
parameters, hence the decisive failure, i.e. the critical normal 
force Ncr, may be determined by Ostenfeld column equation, 
see [3], as given in (3): 
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where A is the area of the cross section. 

When κs ≥ 0.5 the failure is dominated by the stiffness of 
the tie connector and the critical failure load may be 
determined by Euler given in (4): 
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where I is the area moment of inertia.   

B. Differential Movements 
Observing the tie connector in compression and pre-

deformed by influence of temperature movements between 
outer and inner wall, the second failure type may be 
determined by the solution derived in [2], see (5): 
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where N is the actual normal force acting on the tie, Δr being 
the maximal differential movement of the tie, W the section 
modulus as a function of the diameter d and ϕ the column 
factor. An exact solution for ties is derived in [2] determined 
by (6): 
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where 

EI
Nb =                               (7) 

 
We observe that the solution for the column factor depends 

on N, which results in a solution that is to be solved by 

iteration. 

III.  THEORETICAL APPROACH 
The theory for the failure caused by differential movements 

determines the minimum length of the tie connection. The 
theory should to be solved by iteration, but it is possible to 
present the result visually by using variable substitution by 
defining the variable u in (8):  

 
sblu =                                     (8) 

 
Then ϕ is determined using (6) as a function of u, and b is 

determined by (7) inserting N from (5) rewritten as given in 
(9): 
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The corresponding free tie length is finally determined by 

(10): 
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The result of the theories presented is illustrated in Fig. 2 

for a typical Z-tie connection fixed in both the outer and inner 
wall corresponding to a column effect factor k=0.5and the 
material and geometrical properties given in Table I.  

 
TABLE I 

MATERIAL AND GEOMETRICAL PROPERTIES 

d fy E Δr 
mm MPa MPa mm 

4 600 210.000 2.0 
 

 
Fig. 2 Example of exact solution for instability and differential 

movements using parameters from Table I 
 
The column instability theory takes both failure due to the 

strength and failure due to instability into consideration. It is 
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therefore assumed, that if a combined failure criteria for the 
differential movement failure and the instability failure are 
introduced in the general form in (11), this may lead to an 
analytical solution, which can give comparable results. 
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where the power η is a correlation factor reducing the second 
order effect when moment from differential movements 
dominate the failure, Ncr is determined by the instability 
failure using (3) and (4) and the ultimate bending capacity Mu 
determined by (12): 
 

yu WfM =                  (12) 

 
and M is the additional torque contribution from the 
differential movements determine from (13): 
 

2/ lEIrM α⋅Δ=                           (13) 
 
where α is the factor taking the constraint condition into 
account, i.e. having α = 6 for a tie fixed at both ends. 

Since N in (11) is the only unknown variable, N may be 
determined analytically from any free tie length by the 
reformulated (14): 

 
 ηβ /eNN cr=                (14) 

 
defining β in (15) as: 
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IV. ANALYSIS 
Solving (14) using an elastic stress distribution, having the 

Section Modulus W = π l3/32, and keeping η = 1.0 for 
simplicity, we get the conservative result presented in Fig. 3. 

 
 
 
 

 
Fig. 3 Elastic and plastic solution new theory compared to exact 

solution 
 
Similarly the solution using the plastic section Modulus W 

= d3/6 is shown in Fig. 3. This may be defended assuming 
compressions in cross section. As observed, to some extent, 
the solution gives better results compared to instability failure, 
but gives results on the unsafe side, when considering 
differential movements or failure purely dominated by 
bending failure. It may be argued that a plastic solution is 
acceptable, but due to the fact that the slenderness ratio l/d is 
large, this needs to be confirmed by test data,  

A tie connector structure where the moment from 
differential movements is small compared to the critical 
normal force, Ncr, η will decrease approaching 1. In the case 
of relatively high moments, η increases resulting in relatively 
higher capacity. This can be approximated by the semi-
empirical (16): 
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Using (16) by optimizing on the empirical parameters a and 

b, we find using elastic section modulus a very fine 
comparison with the exact solution having a = 1 and b = 1.3 as 
shown in Fig. 4 denoted ‘modified elastic’.  

 

 
Fig. 4 Modified theory using empirical values for the power η 
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Nevertheless, a more simple solution even not that 
theoretically founded, may be found by having a constant 
value of η = 3,0 as shown in Fig. 5 denoted ‘elastic η = 3’.  

We observe that using the simple empirical fitting it tends 
to give results a somewhat on the unsafe side. Nevertheless 
this might be accepted using the same argument that failure is 
dominated by bending and compression. Further contrary to 
the plastic solution, this method approaches the elastic 
solution, when normal force approaches zero. 

 

 
Fig. 5 Elastic solution using constant η compared to exact solution 

 
Further we need to analyze solutions for various 

temperature gradients. Δr is normally in the range of 0.5 to 8.0 
mm since Δr may be determined by (17): 
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Δ = ΔT*c being the initial differential movement, w being the 
width of the wall and h the height. For an ordinary brick 
masonry wall, we have a typically temperature gradient c of 
6·10-6 mm/C° and a maximum temperature difference ΔT = 35 
C° and for a wall with a width of 20 m and height 15m we 
obtain Δr = 4.5mm. 

If we use the same properties from Table I and then let Δr = 
4.5 mm and calculate the results using η from (16) and for a 
constant η = 3, we see from Fig. 6 that both calculations are 
stable and in compliance with the exact solution.  

 

 
Fig. 6 Elastic solution using constant η compared to exact solution 

with differential movement Δr = 4.5 mm 

V. DISCUSSION 
As we did observe the semi–empirical method given in (16) 

did not optimize or make the solution more stable even though 
more accurate data were achieved, it is recommended for 
simplicity’s sake to use the elastic solution with a constant 
correction factor η = 3,0 in praxis. This gives a little higher 
bending resistance with increasing normal force, which is 
reasonable to assume tending the plastic solution, when the 
stress distribution are mainly in compression.  

It is not reasonable to assume fully plastic behavior in the 
case of pure bending, due to the slenderness ratio of general 
used tie, at least special conditions has to be established taken 
into consideration the slenderness ratio.   

VI. CONCLUSION 
An analytically theoretical model to design cavity wall tie 

connectors was developed. The model shows good correlation 
with the exact solutions and is easier to use in design. 

The theory may be extended to be used for plastic solution, 
but tests are recommended before such a procedure is 
introduced for design.  
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