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Information Entropy of Isospectral Hydrogen Atom
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Abstract—The position and momentum space information en-
tropies of hydrogen atom are exactly evaluated. Using isospectral
Hamiltonian approach, a family of isospectral potentials is con-
structed having same energy eigenvalues as that of the original
potential. The information entropy content is obtained in position
space as well as in momentum space. It is shown that the information
entropy content in each level can be re-arranged as a function of
deformation parameter.

Keywords—Information Entropy, BBM inequality, Isospectral Po-
tential.

I. INTRODUCTION

INFORMATION ENTROPY is an important quantity em-
ployed to study quantum mechanical systems. It provide

a measure of information about the probability distribution
in position and momentum space. The Shannon information
entropy of the single particle distribution in position space is

Spos = −
∫

ρ(r) ln ρ(r)dr (1)

and in corresponding momentum space

Smom = −
∫

ρ(p) ln ρ(p)dp (2)

where ρ(p) denote the momentum space particle density.
Information entropy plays a crucial role in a stronger formu-
lation of the uncertainty relations. The information theoretic
uncertainty relations were first conjectured by Hirschman [1]
and Everett [2] in the context of many worlds interpretation
and proved by Bialynicki-Birula and Mycielski (BBM) [3].
From the general properties of Fourier transform, it was proved
in a d-dimensional system for wave functions normalized to
unity,

Spos + Smom ≥ d(1 + lnπ). (3)

Though Spos and Smom are individually unbounded, their sum
is bounded from below. The total sum of information entropy
in position space and momentum space is minimum for the
ground state of harmonic oscillator. The physical meaning of
the inequality is that an increase of Smom corresponds to a
decrease of Spos and vice-versa, which indicates that a diffused
density distribution ρ(p) in momentum space is associated
with a localized density distribution ρ(r) in configuration
space. A framework for deriving uncertainty relations of the
above type, between general dynamical variables, not neces-
sarily canonically conjugate ones, have been given recently
[4-9]. A more general formulation of information theoretic
uncertainty relations, which incorporates a pair of arbitrary
quantum measurements have also been given [10].
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The position space and momentum space information en-
tropies for various systems like the nuclear density distribution
of nuclei, the electron density distribution of atoms and the
valence electron density distribution of atomic clusters have
been recently studied [11]. It is interesting to know the value
of information entropy which is a measure of the spatial spread
of the wave function for the various states of different systems.

The analytical determination of the position and momentum
space entropies have been carried out only for a few quantum
mechanical systems [12-16]. For the simple harmonic oscil-
lator, the information entropies were exactly calculated for
the ground state in both coordinate and momentum state, for
which the BBM inequality is saturated [17]. The information
entropies in various contexts, e.g., information theory, math-
ematics, mathematical physics, chemical physics and other
areas of physics have been extensively analyzed in recent times
[18-25].

We use the isospectral Hamiltonian approach to study the
isospectral wave functions and their entropies. Two Hamiltoni-
ans are said to be strictly isospectral, if they have exactly same
energy eigenvalue spectrum and S-matrix [26-28], whereas the
wave functions and their dependent quantities are different.
Though the idea of generating isospectral Hamiltonians using
the Gelfand-Levitan approach or the Darboux procedure were
known for some time, the supersymmetric quantum mechani-
cal techniques make the procedure look simpler [29-31]. When
one deletes a bound state of a given potential V (x) and re-
introduce the state, it involves solving a first order differential
equation. Thus, a set of one-dimensional family of potentials
V̂ (x, λ) can be constructed which have the exactly same
energy spectrum as that of V (x). In general, for any one
dimensional potential with n bound states, one can construct
an n-parameter family of strictly isospectral potentials, i.e.
potentials with eigenvalues, reflection and transmission coef-
ficients identical to those for original potential. This aspect
has been utilized profitably in many physical situations, which
are of interest to various fields [32-35]. In this paper, we
consider the hydrogen potential and calculate the position and
momentum space information entropy exactly for ground state
and excited states. Using isospectral Hamiltonian approach
(discussed briefly in section 2), the deformed potential and
their wave functions are constructed and used to calculate
the information entropy for the isospectral potential. In last
section, we conclude with brief discussion.

II. ISOSPECTRAL HAMILTONIAN APPROACH

The connection between the bound state wave functions and
the potential is one of the key ingredients in solving exactly
for the spectrum of one dimensional potential problems. Once,
we know the ground state wave function (ψ0) and choose its
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energy to be zero, we can factorize the Hamiltonian [31] as
H1 = A†A where (in units h̄ = 2m = 1), A = d

dx + W (x)
and A† = − d

dx +W (x) are the supersymmetric operators and
W (x) = − d

dx [ln ψ0(x)] is called the superpotential. We have

H1ψn = A†Aψn = εnψn, (4)

AA†(Aψn) = εn(Aψn),

H2(Aψn) = εn(Aψn). (5)

Here H2 is the supersymmetric partner Hamiltonian of H1,
with eigenfunctions χn = Aψn. It is obvious that H2 has
the same eigenvalue spectrum as that of H1, but for the
case Aψ0 = 0, which is the case of supersymmetry broken.
Explicitly, the relation between Hamiltonians reads,

E(2)
n = E

(1)
n+1; E

(1)
0 = 0,

ψ(2)
n = [E(1)

n+1]
− 1

2 Aψ
(1)
n+1,

ψ
(1)
n+1 = [E(2)

n ]−
1
2 A†ψ(2)

n ,

The superpotential relates the supersymmetric partner poten-
tials V1(x) and V2(x) as

V1,2(x) = W 2(x) ∓ dW

dx
. (6)

It is well known that for the potential V2(x), the original poten-
tial V1(x) is not unique. The argument is as follows. Suppose
H2 has another factorization BB†, where B = d

dx + Ŵ (x),
then, H2 = AA† = BB† but H1 = B†B is not A†A rather it
defines a certain new Hamiltonian. For superpotential Ŵ (x),
the partner potential V2(x) is

V2(x) = Ŵ 2(x) + Ŵ ′(x). (7)

Consider the most general solution as Ŵ (x) = W (x)+φ(x),
which demands that,

φ2(x) + 2W (x)φ(x) + φ
′
(x) = 0. (8)

The solution of the above equation is φ(x) = d
dx ln [I(x) + λ],

where I(x) =
∫ x

−∞ ψ2
0(x

′
)dx

′
and λ is a constant. Therefore,

we obtain,

Ŵ (x) = W (x) +
d

dx
ln [I(x) + λ] . (9)

The corresponding one parameter family of potentials V̂1(x, λ)
is given as

V̂1(x, λ) = V1(x) − 2
d2

dx2
(ln(I(x) + λ)). (10)

The normalized ground state wave function corresponding to
the potential V̂1(x, λ) reads

ψ̂0(x, λ) =

√
λ(1 + λ)ψ0(x)

I(x) + λ
, (11)

where λ �∈ (0,−1). The eqs. 10, and 11 represent the
one parameter family of isospectral potentials and the wave
functions which shall be used to obtain the information entropy
of hydrogen atom as a function of deformation parameter.

III. INFORMATION ENTROPY OF HYDROGEN ATOM

The one dimensional hydrogen atom is an interesting math-
ematical and physical problem to study bound states and
quantum degeneracy issues. The Hydrogen atom is described
by Coulomb potential,

V (x) = − 1
| x | (12)

The ground state eigenfunction in position space [36,37] is
given by

ψ(x) = α−1/2e−
|x|
α α → 0, (13)

and for excited states

ψeven(x) =

√
2
n5

e−|x|/n | x | L1
n−1(2 | x | /n) (14)

ψodd(x) =

√
2
n5

e−|x|/nxL1
n−1(2 | x | /n) (15)

The corresponding eigenfunctions in momentum space are

ψ0(p) =

√
2
π

α1/2

(1 + α2p2)
α → 0 (16)

ψn(p) =

√
2n

π

e±2in tan−1(np)

1 + n2p2
(17)

The ground state information entropy in position and momen-
tum space is

Spos = 1 + lnα

Smom = ln
(

8π

e2

)
− lnα

for excited states

Spos = ln
(

2n2

e3n

)
− 1

n2
(J2 + J3/2)

Smom = ln
(

8π

e2n

)

where

J2 =
∫ ∞

0

t2e−t ln t[L1
n−1(t)]

2dt

J2 =
∫ ∞

0

t2e−t[L1
n−1(t)]

2 ln[L1
n−1(t)]

2dt

The entropy densities for position and momentum space in
different states are plotted in the figure 1 and 2. It is interesting
to note that the momentum space information density plot
develop a dip at its peak with the increase in value of n. The
total information entropy for one dimensional hydrogen atom
in ground state is 2.2242 which is above the BBM saturation
value 2.1447. For the excited states, the value is higher than
ground state.
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Fig. 1. Position space information densities of hydrogen potential for n = 1
and n = 2.

IV. INFORMATION ENTROPY OF ISOSPECTRAL HYDROGEN

ATOM

Using isospectral hamiltonian approach, the ground state
wave function is obtained as

ψ̂0(x, λ) =
2
√

λ(λ + 1)√
α

e−
|x|
α

2(λ + 1) − e−
2|x|

α

(18)

The information entropy in position space for ground state of
the isospectral potential is obtained after some calculations as

Ŝ0 =
8λ(λ + 1)

2(2λ + 1)(2λ + 2)
(Log

[
4λ(λ + 1)

α

]

+ (2λ + 1)Log[(2λ + 1)] − 2(2λ + 2)Log[2λ + 1]
+ (2λ + 1)Log[2λ + 2] − 2) (19)

The excited state isospectral wave function for odd values of
n is calculated as

ψ̂n+1(x, λ) =

√
2
n5

e−
|x|
n [xL1

n−1(
2 | x |

n
)

{1 − 1
(n + 1)2

e−
2|x|

n

α2(λ + 1 − 1
2e−2

|x|
n )

}

− 1
(n + 1)2

e−
2|x|

n

α(λ + 1 − 1
2e−

|x|
n )

{(1 − x

n
)L1

n−1(
2 | x |

n
)

− 2x

n
L2

n−2(
2 | x |

n
)}] (20)
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Fig. 2. Momentum space information densities of hydrogen potential for (a)
n = 1, (b) n = 2, (c) n = 3 and (d) n = 4.
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and for even n, we have

ψ̂n+1(x, λ) =

√
2
n5

e−
|x|
n [| x | L1

n−1(
2 | x |

n
)

{1 − 1
(n + 1)2

e−
2|x|

n

α2(λ + 1 − 1
2e−2

|x|
n )

}

− 1
(n + 1)2

e−
2|x|

n

α(λ + 1 − 1
2e−

|x|
n )

{(1 − | x |
n

)L1
n−1(

2 | x |
n

)

− 2 | x |
n

L2
n−2(

2 | x |
n

)}] (21)

The excited state information entropy in position space is
obtained as

Ŝn+1(x) = − 2
n5

J1 − 4
n5

J2 (22)

where

J1 =
∫

e−
2|x|

n J2
3Log[

2
n5

e−2
|x|
n ]dx

J2 =
∫

e−
2|x|

n Log[J3]dx

and for odd n

J3 = xL1
n−1(

2 | x |
n

){1 − 1
(n + 1)2

e−
2|x|

n

α2(λ + 1 − 1
2e−2

|x|
n )

}

− 1
(n + 1)2

e−
2|x|

n

α(λ + 1 − 1
2e−

|x|
n )

{(1 − x

n
)L1

n−1(
2 | x |

n
) − 2x

n
L2

n−2(
2 | x |

n
)}

whereas for even n,

J3 =| x | L1
n−1(

2 | x |
n

){1 − 1
(n + 1)2

e−
2|x|

n

α2(λ + 1 − 1
2e−2

|x|
n )

}

− 1
(n + 1)2

e−
2|x|

n

α(λ + 1 − 1
2e−

|x|
n )

{(1 − | x |
n

)L1
n−1(

2 | x |
n

) − 2 | x |
n

L2
n−2(

2 | x |
n

)}

In momentum space, the ground state isospectral wave
function is calculated as

ψ̂0(p, λ) =
√

72παλ(λ + 1)
1

[3π(2λ + 1)(1 + α2p2) + t1]
(23)

where
t1 = 6(1 + α2p2)tan−1(αp) + p

The ground state information entropy is calculated numerically
using the above wave function and plotted in figure 3 as a
function of deformation parameter. The information entropy
increases with deformation parameter to 1.2377 for λ = 0.57
and then gets saturated to 1.22 for large values of the of λ. The
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Fig. 3. Momentum space information entropy of hydrogen atom in the ground
state as a function of deformation parameter.

excited state isospectral wave function in momentum space
reads,

ψ̂n(p, λ) =
Exp[2i n tan−1(np)]

√
2
π

[
n2(1 + n2p2)3 + t2

]
n3/2(1 + n2p2)4

(24)
where

t2 =
4α(−pα2 + n2(p − i(1 + p2α2)))

(1 + p2α2)(π + λπ + 2 tan−1(np))
.

Using above wave function, information entropy in momentum
space can be obtained in any excited state for different values
of deformation parameter. For first excited state, information
entropy is 0.59 for λ = .001, 1.13 for λ = 1 and approaches
to 1.22 for λ = 8. The information entropy in different states
is rearranged as a function of deformation parameter.

V. CONCLUSION

The information entropy of quantum mechanical systems is
a great scientific challenge of present time as it provides a
deeper insight into the internal structure of the systems. The
information entropies of a class of systems is obtained, which
belong to the hydrogen potential. In position space, the infor-
mation entropy for isospectral potential is exactly calculated
for all the energy levels. The expression for momentum space
isospectral wave function are obtained analytically for the
ground state as well as excited states which is used to calculate
the information entropy in momentum space. It is found that
the information entropy is reduced for the smaller values of
deformation parameter. For lower information entropy, the
wave function will be more concentrated and the accuracy in
predicting the localization of the particle will be higher. This
approach can also be applied in the reduction of Heisenberg’s
uncertainty in position space.
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