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Abstract—The article investigates how 14- to 15- year-olds build 

informal conceptions of inferential statistics as they engage in a 
modelling process and build their own computer simulations with 
dynamic statistical software. This study proposes four primary phases 
of informal inferential reasoning for the students in the statistical 
modeling and simulation process. Findings show shifts in the 
conceptual structures across the four phases and point to the potential 
of all of these phases for fostering the development of students’ 
robust knowledge of the logic of inference when using computer 
based simulations to model and investigate statistical questions. 
 
Keywords—Inferential reasoning, learning, modelling, statistical 

inference, simulation.  

I. INTRODUCTION 
TATISTICS is becoming increasingly important to all 
levels of citizenship, with an abundance of data available 

to inform decision-making. A solid understanding of 
inferential statistics is of major importance for designing and 
interpreting empirical results in all scientific disciplines. This 
topic of statistical inference is relevant for the development of 
research in all empirical sciences, including psychology and 
education as well [5]. Statistical inference receives a particular 
attention in courses of statistics where hypothesis test and 
confidence intervals are taught to students as the method for 
analysis data to evaluate scientific hypotheses (see [1]). 
However, students are usually prone to fall into many 
misconceptions when making statistical inferences (see [10]) 
because inferential statistics involve understanding of many 
abstract concepts such as sampling distributions and 
significance level. The concept of sampling distribution is 
generally poorly understood as discussed elsewhere [6], [12]. 
Many students often are unable to integrate the different ideas 
pertaining inferential reasoning and use concepts in inferential 
reasoning [3]. Students often held misconceptions about the 
law of small numbers, sampling variability, sample mean and 
the properties of its sampling distribution such as the law of 
large numbers. In particular many students neglected the effect 
of sample size on the variance of the sample mean [6]. 
Students often confuse the population and the sampling 
distributions [6] and might not be able to identify the 
difference between the distribution of a sample and the 
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sampling distribution of a statistic [12]. Moreover, students 
seemed to be confused when they try to justify the use of the 
Normal distribution, although they might be comfortable doing 
the formal manipulations needed to use the central limit 
theorem (see [20]). As discussed by Batanero, Tauber and 
Sanchez [4] students have difficulties in distinguishing 
between the real sampling distribution and the theoretical 
model of a normally distributed population that is used as an 
approximation of the sampling distribution, based on the 
central limit theorem that is used to test the null hypothesis in a 
significance test. Further research on students’ statistical 
inferential reasoning shows that students have many 
difficulties in connecting the available evidence with the 
question under investigation to draw inferences [14]. Other 
learning difficulties are related to building a schema of 
interrelated statistical concepts, such as distribution, sampling 
variability, and representativeness (see [17], [19]). 

This paper, instead of dismissing or eradicating 
misconceptions, we should consider them as starting points 
which provide a pedagogic challenge of how to build on 
learners’ impoverished view of statistical inference and help 
students develop effective secondary (scientifically learned or 
taught) intuitions of  inferential statistics. The following 
section examines statistical inferences and learning as 
advocated by statistics educators. 

II. THEORETICAL FRAMEWORK 
Before students are introduced to statistical inference 

methods to decide whether the patterns they observe in data 
are real or random, they are usually presented with statistical 
problems that require informal inference. 

Informal Inferential Reasoning is the process of drawing 
generalized conclusions from data. Four critical principles 
have been identified as important to making informal 
inferences from data: (1) generalizing beyond data (parameter 
estimates, conclusions and predictions); (2) using data as 
evidence of the generalization; (3) articulating the degree of 
certainty (due to variability) embedded in the generalization 
(these three principles were articulated by [13]); and (4) 
comparing datasets with a model such as ideal (targeted) 
distributions (proposed by [2]). Making inferences informally, 
gives students a sense of the power of statistical techniques for 
making reasoned judgments and decisions about data drawn 
from real-world contexts. 
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Konold and Pollatsek [11] recommended that early teaching 
of statistics should focus on informal methods of data analysis. 
Many statistics educators advocate that inference should be 
taught entirely from an empirical perspective through 
simulation methods that enable students to better think 
statistically (as discussed elsewhere [9], [7]). The empirical 
study of sampling variability typically focuses on drawing 
repeated samples from a population, forming a distribution of 
sample statistics (such as sample means) from those repeated 
samples, and comparing the observed sample statistic to the 
empirical sampling distribution. This resampling approach 
elucidates how probability provides a theoretical structure for 
statistical inference, as it is based on the notion of considering 
what would happen when comparing the observed sample 
statistic to the distribution of sample statistics created under a 
chance model. As argued by Phannkuch [14] “the resampling 
approach to teaching would appear to be the most promising 
direction, as it could enable students to link probability 
intuitively with statistical inference” (p. 290). For such an 
approach, “randomization-based inference makes a direct 
connection between data production and the logic of inference 
that deserves to be at the core of introductory statistics” (see 
[7], p. 130). 

According to Cobb [7] the core logic of inference entails the 
3Rs: (a) model set up that allows for randomize data 
production; (b) repeat by simulation to generate data from (a 
model) for a single trial and assess whether the outcomes are 
reasonable. Specify the summary measure to be collected for 
each trial and generate data for many trials collecting the 
summary measure each time; (c) Reject any model that does 
not accurately represent the phenomenon it was intended to 
model., Cobb suggests that digital technologies provide a 
natural way to introduce students to computer-intensive 
simulation-based methods, allowing students to easily create 
simulation models, and then to interpret the observed 
outcomes. 

This change of focus in statistics pedagogy-from centering 
on computation (i.e., the normal distribution and procedures, 
formulaic hypothesis tests), to the core logic of inference (i.e., 
chance models, and determining statistical unusualness; [7] has 
led to some reconceptualization of teaching statistics. 

 Inspired by Cobb [7] new curricula have been emerged in 
the last two years. Such curricula focus predominantly on 
using ideas of chance and models, along with computer 
simulations (i.e., Chance Agents for Teaching and Learning 
Statistics [CATALST], [8]) and randomization-based 
techniques, to make and understand statistical inferences. 
CATALST immerses students in the simulation-based 
approach to statistical inference that requires students to create 
a model with respect to a specific context, repeatedly simulate 
data from the model, and then use the resulting distribution of 
a particular computed statistic to draw statistical inferences. 

Efforts should be made to fully assess the pedagogical value 
of computer-intensive and simulation-based methods when 
teaching the logic of inference, and to investigate the linking 

of ideas of variation and probability. Such novel methods 
inevitably bring with them new challenges in how students 
learn and give rise to research questions about the conceptual 
development of students who engage in constructing such 
chance models. It is important to understand how students 
construct models, run simulations and interpret outcomes, and 
reason about uncertainty in the context of making informal 
statistical inferences, as well as understanding the challenges 
students might encounter in such a pedagogical approach. 

This paper presents data from a study in Australian schools, 
focusing on how Grade 9 students develop informal 
conceptions of inferential statistics as they engage in 
modelling using TinkerPlots2 [18] computer-based 
simulations. It is noteworthy to point out that although the 
terms “randomization” techniques and the “chance variation” 
to the extent that it relies on formal probability are precluded 
from secondary school curricula, this paper introduces 
randomization to Year 9 students through simulation-based 
approaches. Moreover, chance variation as an idea is assessed 
in an intuitive fashion.   

III. METHODOLOGY 
Thirty students in Grade 9, ranging from 14 to 15 years in 

age, from a rural secondary school in New South Wales, 
Australia, formed the population of this study. The researcher  
spent 2 sessions (40-45 minutes each) introducing the class 
teacher and the students to Tinkerplots2 during regular 
mathematics lessons. All students were familiarised with the 
TinkerPlots2 software, explicitly focusing on learning skills 
related to TinkerPlots2. In the first session, all students 
watched instructional movies that show how to use 
TinkerPlots2 features to build a simulation. In the second 
session, all students were familiarized with Tinkerplots2 
through a number of introductory activities related to building 
a data factory that simulates real phenomena. The students also 
ran a simulation and observed the generation of data, and the 
distributions of the various data. 

Ten average-ability students volunteered to spend a third 
session, outside of class time, to engage in the task reported in 
this study. In this session, students were asked to use the tools 
of TinkerPlots2 and the “Data Factory” features (see Fig. 1) to 
generate a simulation to investigate the impact of hours spent 
using Facebook on the school performance of a group of 
students. The students created a number of "virtual students," 
each defined by several variables (gender, hours spent on 
Facebook per week, school performance) whose values were 
determined by Tinkerplots2 using pre-defined probability 
distributions. After constructing their model, students were 
asked to run the simulation and interpret the outcomes. 

Each session lasted approximately 45-60 minutes and each 
pair of students worked directly with the researcher. The 
researcher interacted continuously with the students in order to 
observe the reasoning they used to explain the data and 
simulations. The data collected included audio recordings of 
each pair’s voices and video recordings of the screen output on 
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the computer activity using Camtasia software.  
 

 

Fig. 1 Data Factory that simulates the Facebook Task 
 
In tune with Cobb’s call (see [7]) for teaching the logic of 

inference and the related theoretical framework to investigate 
how students might construct models, run simulations, and 
interpret outcomes. First, the audio recordings were 
transcribed and screenshots were incorporated as necessary to 
make sense of the transcription. 

The data were then analysed using progressive focusing (see 
[16]), a process by which the author began with a wide field of 
focus and gradually narrowed the field by identifying key foci 
for ensuing study.  

This article focuses on one pair of students, George (G) and 
Rafael (Ra). Although the same insights as reported below 
were evident in the analysis of the sessions of other pairs of 
students, George and Rafael provided (in my view) the clearest 
illustration of how students how students construct models, run 
simulations, interpret outcomes, reason when making informal 
statistical inferences.  

IV. RESULTS 
The session began with George and Rafael creating a model 

to generate data to reasonably simulate the Facebook problem 
(Fig 1). The students began their attempt by perceiving a 
holistic entity, such as a student, as consisting of a cluster of 
pieces of data having attributes such as gender, hours spent on 
Facebook, impact of hours spent on FB on students’ 
performance, and school grades (Fig. 1). When the students 
drew curves in the Tinkerplots2 interface to define the 
probability density functions that would be used to generate 
the simulation data, they appeared to use software interface 
that relies on signal, variation, and spread of data to create the 
model. They talked about the curves with respect to most 
common values (what we could consider the “signal”), and 
variation of these values (what we could consider the “noise”) 
[15]. 

After the boys had generated 1000 virtual students, they 
looked at the distributions created in the sampler and the 
distributions of generated data.  
1. G:  Okay, so these areas here (pointing to the circled areas 

of the graph (bottom) of Fig. 2). I reckon, they’re just 
spots where, they could just be ugh, smaller populations 
just happening to do that. It’s just, it’s hard to explain.  

2. Re (Researcher):  What do you mean? 
3. G: See, on the graph that we’ve put here … there’s no 

spike here (pointing to the graph (top) of Fig. 2) and yet 
here there are these spikes (pointing to the circled areas of 
the graph (bottom) of Fig. 2)) and um, I just think that 
they’re just people who happened to go on for 6 hours.  

4. Ra:  Yeah… They probably had more free time… or cold 
weather.  

5. G:  And, there are more people doing that say 6 hours but 
on the graph (top Fig. 2) it doesn’t show that.  

The students’ attention was attracted by slices of prominent 
features of the observed distribution of hours spent per week 
by males (see bottom Fig. 2), such as higher areas of 
accumulated data compared to the curve that defined a 
probability density function of the hours spent on FB by males 
(see top Fig. 2). George seemed to refer to the variation caused 
by small samples when he referred to “the smaller 
populations” (line 1). Line 1 indicates that George seemed to 
recognize that the small sample size introduced variation, but 
he was unable to explain such vagaries of variation. They 
attempted to attribute some common cause factors to normal 
day-to-day variation, for example, people who happened to 
stay on for 6 hours (line 3), who have free time (line 4), or 
because of cold weather (line 4). When the students compared 
the outcome data distribution of the hours spent per week by 
students (Fig. 2) on FB to the distribution they created in the 
sampler, they began considering the possible outliers and other 



International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:7, No:6, 2013

1399

 

    

interesting features of the observed data. In particular, they 
reasoned about the data in terms of possible outliers, clusters 
of data and interesting individual cases. 

 

 

Fig. 2 Distributions created in the sampler (top) and distributions of 
generated data (bottom) 

 

 

Fig. 3 Distributions of generated data (top) and distributions of 
school grades versus gender (bottom) 

6. Re:  What do these graphs show? Which graph shows the 
actual results? 

7. G: These are the actual results, up here … and it’s been 
put into that because that’s how what we think. 

8. Ra: That’s the results that just come out. 
9. Re: Do you think the results show what you think? 
10. G+Ra:  More or less. 
11. G: They could not always be the same. Maybe, sometimes 

they will be the same. 
12. Ra: When we will observe the hours spent on FB by a 

really big sample of students, like 50000 students or even 
more… 

The above quotes show that students used the model to 
generate a single trial of the experiment and they investigated 
the outcomes from a single trial. George appeared to 
distinguish the distribution of the actual results from the model 
they created when they drew the density function. He very 
eloquently articulated that the chance model presented by the 
density function as drawn in the sampler shows the “model” 
they constructed in their mind (line 7). He seemed to have a 
vague sense of the actual results being generated by this model 
when he mentioned that “it’s been put into that”. Both boys 
articulated colloquial notions of chance when they used 
expressions such as “more or less”, and “maybe” considering 
the appropriate phrasing of the statistical questions, that can be 
attributed to their preliminary sense of chance or variability 
between different outcomes. 

The students expected that the distribution of the generated 
data would resample sometimes the model (lines 11). George 
was uncertain about the absolute resemblance of the 
empirically observed distribution of hours spent on FB to the 
curves students created in the sampler. One possible 
interpretation of this situation, could be that when the model is 
run a few times to simulate a number of students, there is 
stability in the peaked data but there is some variation 
observed in the general details of the shape.  On the contrary, 
Raphael seemed to coordinate the role of sample size when the 
number of simulated students would increase (Law of Large 
Numbers) and the pattern would became more obvious in the 
variability within the data set. 

When they observed the distribution of generated data (see 
Fig. 3 (top)): 
13.  G: It doesn’t really seem to have an effect on how much 

you use it (referring to FB). The grades are still more or 
less the same. 

14. Ra: Yet there’s no one there and there are gaps.  
15. G: There are gaps, like here, and there’s gaps here...Okay, 

there’s a gap there. Then there’s a big bulk here. The 
bulks, but there’s still individual like here. And there’s an 
individual… (while speaking he points to places on the 
graph, see Fig. 3 (top))  

16. Ra:  And they just stand out, there’s nothing around 
them. And there’s big clusters of people, where there’s 
circles overlapping other circles, and like here (pointing to 
the line 0-2.999 of Fig. 3 (top)) and here, everywhere. 
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17. G:  It cannot be similar to this (pointing to the graph of 
school grades in Fig. 1). It is confusing.  

18. Ra: And they just stand out, there’s nothing around 
them. And there’s big clusters of people, where there’s 
circles overlapping other circles, and like here and here, 
everywhere. 

The above quotes show George and Raphael when they used 
the model to simulate data for many trials (each time 
interpreting the results). The students examined the empirically 
observed distributions of the resulting outcomes. They used 
the observed distribution to assess particular outcomes and 
compared the behaviour of the model to the observed data. At 
first sight, it seemed puzzling that the boys did not ‘see’ the 
impact of hours (spent on FB) on students’ school grades. 
However, their extended discussion showed how their 
attention was, at this point focused on interesting individual 
cases (lines 16), areas of the graphs that there were no data 
values and areas where there were big clusters of data values. 
The boys seemed unable to explain the relation between 
school’s grades versus hours spent on FB. When George 
attempted to compare the observed graphs to the density 
function drawn in the sampler, he found the information 
displayed in the graph confusing (line 17). He could not even 
observe that when the model was run a few times, there was 
stability in the peaks but there was some variation observed in 
the general details of the shape. When the boys observed the 
distribution of school grades for each gender:  
19. G:  Girls either averaged like really well, or not very well 

but boys are sort a just the same. 
20. Ra: But, there also seems to be a lot of boys that 

averaged very well. 
21. G:  Fairly well, then there’s a couple that do very well. But 

there are less numbers than this, 9 to 14, 9 to 15 range of 
um school grades. And that seems to be the same with 
girls as well 

22. Re: Do you think that, these are the results what you 
expected? 

23. Ra: I reckon girls should’ve had a bigger bulge just up 
around there (pointing to the range of 15-20 on the graph 
of Fig. 3(bottom)).  

Raphael was expecting to observe an increase in the school 
grades of the female population (line 23). The boys then 
suggested to change the model that simulates the empirical 
grades for girls, increasing the grades for girls. They looked at 
their previous models and also suggested redrawing the density 
function that generates the boys' school grades: 
24. G: Make it go down (referring to the curve of the density 

function of boys’ school grades) Make it go down, not as 
steeply like that.  

Students revisited their previous actions and co-ordinated 
associated actions and generalisations to make adjustments to 
the models redrawing the density functions in the sampler that 
generate the empirical data. 

 

V. DISCUSSION  
The results suggest that both the modelling process and the 

simulation process appear to be appropriate resources for 
introducing beginning inference to middle school students. 
The modelling and simulation process challenged students to 
construct models, interpret empirically observed distributions, 
compare the behaviour of the models to empirically observed 
data and evaluate the models used to generate data. Computer-
intensive modelling and simulation-based methods reinforce 
each other, explicitly in terms of the elements of understanding 
the constructing models (samplers) appropriately to model the 
statistical problem, generation of simulated data, examination 
of the empirically observed distribution of the observed 
outcomes, interpretation of the results, and evaluation of the 
model used to generate empirical data. Thus these data, though 
only suggestive, seem to indicate a path by which Cobb's 
conjecture regarding the value of digital technologies in 
statistics education can be elaborated.  

Focusing on Cobb’s [7] logic of inference, the results of this 
preliminary research illustrate the conceptual structures that 
students build about informal inferential reasoning across four 
phases that trace the movement of students’ informal 
inferential reasoning in the modelling and simulation process 
(Table I). 

 
TABLE I 

PHASES OF INFORMAL INFERENTIAL REASONING IN THE MODELLING AND 
SIMULATION PROCESS 

Phases Description 

Phase 1 
Specify a model that will generate data to simulate the 

experiment. Use software interface that relies on signal, 
variation, and spread of data to create the model. 

Phase 2 

Use the model to generate a single trial of the experiment, 
investigate the outcomes from a single trial; Construct an 

appropriate representation of the outcomes from the single trial; 
interpret the results of a single trial; Consider possible outliers 

and other interesting individual cases. 

Phase 3 

Use the model to generate simulated data for many trials, 
each time interpreting the results. Examine the empirically 
observed distributions of the resulting outcomes. Use the 

observed distribution to assess particular outcomes. Compare 
the behaviour of the model to observed data; evaluate the 

model; consider the Law of Large Numbers when developing 
understandings between observations of distributions of 

empirical data and the model. 

Phase 4 Coordinate the actions of phases 1-3 to change the model, 
interpret the results, draw inferences based on the data at hand. 

 
The phases need to be refined before trying to apply them to 

a pedagogical practice.  
In terms of assessment, combining the four phases of 

informal inferential reasoning with a developmental model 
from cognitive psychology might be promising in documenting 
students’ continuous progress of reasoning. As such, the 
researcher assumes it would shed some light on the structural 
complexity of making informal statistical inferences.  

Given the observation of students’ initial difficulties in 
creating an appropriate model that would generate empirical 
data, it would appear that the use of a dynamic software such 
as Tinkerplots2 may contribute to developing intuitions about 
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what might be considered “appropriate co-ordination of signal 
and noise” or “meaningful approximation of real or simulated 
phenomena” [15].  

The four phases describe the conceptual structures that 
students build about informal inferential reasoning and provide 
a base to trace the cognitive processes involved in inferential 
reasoning. Future research will investigate more systematically 
students’ phases of informal inferential reasoning in the 
modelling and simulation process.   
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