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from Cone Penetrating Test: An Artificial Neural
Network Study
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Abstract—The Cone Penetration Test (CPT) is a common in-situ
test which generally investigates a much greater volume of soil more
quickly than possible from sampling and laboratory tests. Therefore,
it has the potential to realize both cost savings and assessment of soil
properties rapidly and continuously. The principle objective of this
paper is to demonstrate the feasibility and efficiency of using
artificial neural networks (ANNs) to predict the soil angle of internal
friction (@) and the soil modulus of elasticity (E) from CPT results
considering the uncertainties and non-linearities of the soil. In
addition, ANNs are used to study the influence of different
parameters and recommend which parameters should be included as
input parameters to improve the prediction. Neural networks discover
relationships in the input data sets through the iterative presentation
of the data and intrinsic mapping characteristics of neural topologies.
General Regression Neural Network (GRNN) is one of the powerful
neural network architectures which is utilized in this study. A large
amount of field and experimental data including CPT results, plate
load tests, direct shear box, grain size distribution and calculated data
of overburden pressure was obtained from a large project in the
United Arab Emirates. This data was used for the training and the
validation of the neural network. A comparison was made between
the obtained results from the ANN's approach, and some common
traditional correlations that predict ® and E from CPT results with
respect to the actual results of the collected data. The results show
that the ANN is a very powerful tool. Very good agreement was
obtained between estimated results from ANN and actual measured
results with comparison to other correlations available in the
literature. The study recommends some easily available parameters
that should be included in the estimation of the soil properties to
improve the prediction models. It is shown that the use of friction
ration in the estimation of ® and the use of fines content in the
estimation of E considerable improve the prediction models.

Keywords—Angle of internal friction, Cone penetrating test,
General regression neural network, Soil modulus of elasticity.

I. INTRODUCTION

HE Cone Penetration Test (CPT) is becoming

progressively popular for its high ability to delineate
stratigraphy of soil and assess soil properties rapidly and
continuously. Many soil properties can be obtained from the
CPT results including angle of internal friction, soil modulus
of elasticity, seismic assessment, and relative density [1]-[5].
The current study focuses on the prediction of the angle of
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internal friction (@) and the soil modulus of elasticity (E) from
CPT results which are important in bearing capacity and
settlement calculations. Over the years, many correlations
were developed to estimate @ and E from CPT results [1]-[4].

The correlations mostly considered the value of qc (cone
penetration resistance) only which is obtained from CPT
results. The study investigates the influence of other
parameters on the correlations. These parameters are easily
obtained from laboratory tests such as grain size distribution
analysis or are readily available from CPT results such as Fr
(Friction ratio defined as the ratio between the sleeve and tip
resistanc). The current paper studies the feasibility and
efficiency of using artificial neural networks (ANNs) to
estimate the soil properties (® and E) from CPT results and to
investigate which parameters should be included in the soil
property estimation to improve the prediction models.

Artificial neural networks have been intensively studied and
applied to many geotechnical engineering problems [6]-[17].
It has been applied to estimate many soil and material
properties [18], [19] and it proved to be a powerful tool that
can have a superiority over other correlation techniques such
as regression analysis [5], [20]-[24]. It has been shown that
ANNs are capable of mapping nonlinear and complex
relationships in nature. The neural network technology mimics
the brain’s own problem-solving process. An ANN is
composed of a large number of connected neurons which act
like simple processors. Generally, ANNs offer viable solutions
when a large volume of data is available for training. When a
problem is complex or difficult to formulate analytically, a
neural network solution could be appropriate to use.

A large amount of field and experimental data including
CPT results, plate load tests, direct shear box, grain size
distribution was obtained, filtered and processed from a large-
scale project that covers the United Arab Emirates (UAE). The
soil in UAE is mostly cohessionless soil and the country is
witnessing a lot of development and many construction
projects. It is believed that developed soil relations that can be
applied to such active areas in construction would be of
benefit to engineers in this area specifically and to
geotechnical engineers in general.

The database used and the neural network modeling are first
presented. For estimating both ® and E, different ANN
models are then developed with different input parameters to
study the influence of the input parameters on the ANN
models. The predictions from ANN are compared to
predictions from other correlations available in the literature.
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Conclusions highlighting the efficiency of the ANNs and the
parameters that have the greatest and least impact on the
properties' estimation are finally presented.

The project has about 820 boreholes with variable depths
and with SPT for each borehole along the project alignment as
shown in Fig. 1 and about 400 CPT are executed beside the
boreholes. Moreover, there are about 630 test pits with
maximum depth 3.0m along the project alignment with 260
plate loading test to determine the modulus of soil elasticity
and 606 CBR test. In addition, other lab tests are performed on
the soil sample for classifications such as, Grain size
distribution tests (Sieve analysis and Hydrometer), and lab
tests for determining the shear strength parameters such as
direct shear box.

III. NEURAL NETWORK MODELING

A.Background

There are two main types of neural networks; supervised
networks and unsupervised networks. In the supervised
network, a large number of correct predictions are given to the
model from which it can learn. Examples of supervised
networks are backpropagation networks (BPN), general
regression networks (GRNN) and probabilistic neural
networks (PNN). Unsupervised networks, on the other hand,
can classify a set of patterns into a specified number of
categories without learning from previous correct patterns. An
example of an unsupervised network is the Kohonen networks
[25].

The architecture of a supervised ANN, generally, consists

II. AVAILABLE DATA

The data for this study was collected from the results of
geotechnical investigation work that has been done for a large-
scale project which extended all over United Arab Emirates
UAE (Fig. 1). The soil in that area is cohessionless soil.

-

Fig. 1 The colored lines (Magenta, Red, Green, Blue) illustrate the locations of the available site investigations along UAE

of an input layer, an output layer and one or more hidden
layers. The input layer contains the input variables while the
output layer contains the target output vector. At least one
hidden layer that contains the artificial neurons (processing
units) is used between the input and output to assist in the
learning process [26]. The neurons in the input layer, hidden
layer(s) and output layer are interconnected; each of which is
connected to the neurons in the next layer. Each connection
has a 'weight' associated with it. Input values in the first layer
are weighted and passed on to the hidden layer. Neurons in the
hidden layer produce outputs by applying an activation
function to the sum of the weighted input values [27]-[29].
These outputs are then weighted by the connections between
the hidden and output layer. The output layer produces the
desired results.

There are two basic phases in neural network operation. The
first phase is the training phase and the second phase is the
testing phase. In the first phase the data is repeatedly presented
to the network while the weights of the data are updated to
obtain the desired output. In the second phase the trained
network with the frozen weights is applied to data it has never
seen. A properly trained network can model the unknown
function that relates the input variables to the output variables.
It can subsequently be used to make predictions for a given set
of previously unseen input patterns where the output values
are unknown.
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B. ANN Models Developed in the Study

The neural networks used in the current study were
developed using the neural network program Neuroshell 2.
This program implements several different neural network
algorithms. The general regression neural network (GRNN) is
used in the current study. GRNNs are known for their ability
to train quickly on sparse data sets [30]. In addition, GRNNs
were preferred over feed-forward back propagation algorithm-
based neural networks because there is no problem of local
minimums in GRNNs [19].

The GRNN models developed were three-layer networks
(input layer, output layer and one hidden layer). The number
of neurons in the input layer is equal to the number of inputs
and the number of neurons in the output layer is equal to the
number of outputs, while the number of neurons in the hidden
layer is usually equal to the number of correct patterns given
to the model to learn from.

The inputs were scaled using a linear scale function [0,1].
The GRNN used was genetic adaptive; i.e. it uses a genetic
algorithm to find an input smoothing factor adjustment. The
genetic breeding pool size of 100 was used in the developed
GRNN. An initial smoothing factor was taken as 0.3. The
smoothing factor is an important parameter in the GRNN. The
smoothing factor determines how tightly the network matches
its predictions to the data in the training patterns. Higher
smoothing factors cause more relaxed surface fits through the
data. In general, it is recommended to allow the network to
choose a smoothing factor through Calibration.

For each of the data sets prepared to estimate ® and E, 20%
of the data was randomly extracted to be used as a testing set
while the rest of the data was used as a training set.

IV. ESTIMATING @ FROM CPT RESULTS

A. Output/Input Variables of ANN Analysis

For estimating ® from CPT results, the CPT results, direct
shear test and grain size analysis were used from the available
date. The readings of the CPT test were filtered to be at the
same elevation of the lab tests. A total of 82 data points were
prepared. The parameters that were investigated as input
parameters to be included in the GRNN models developed
were . and F, (obtained from CPT results), Fc (fines content)
and Dsy, D3g, Dy (defined as grain diameter corresponding to
50%, 30% and 10%, respectively, of the material being
smaller) obtained from grain size analysis and . (the
effective overburden pressure) calculated at the same level of
the CPT test. The calculation of effective overburden pressure
was based on a unit weight of soil of 18 KN/m® and the unit
weight of water of 10 KN/m® taking into consideration the
effect of ground water level.

The output of the GRNN models considered is tan ® which
was both measured (obtained from direct shear box) and
estimated by the GRNN models developed. Seven different
GRNN models were developed with different input parameters
to study the influence of the input parameters on the obtained
tan ®. To evaluate the efficiency of the GRNN models
developed, the coefficient of correlation (1*) was used. r* is a

statistical measure of the strength of the relationship between
the actual versus predicted outputs. r* value of 1 indicates a
perfect fit, while that of 0 indicates no relationship.

B. Results of Neural Networks

Fig. 2 shows 7 different GRNN models developed (GRNN1
to GRNN7) with 7 different input combinations and the
corresponding 1> (for all data points) obtained for each
Network. From Fig. 2, it is observed that Fr has a great
influence on the prediction model. This can be observed by
comparing GRNN2 with GRNN7 where the value of r* is
more than doubled by including Fr. GRNN2 includes only the
input parameters commonly used in correlations in the
literature which are qc and .. The combination of inputs in
GRNNT7 yielded the best model for estimation of ®.

Table I presents the data used in GRNN7 as input and the
measured and predicted tan ®. The comparison between the
predicted tan ® from GRNN and the actual measured values is
presented in Fig. 3. It shows very good agreement between
predicted and measured results with r’=0.95.
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| GRNN6 (F=93.0%) | | GRNN3 (P=82.2%) |
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Fig. 2 Trials used to predict tan (@) from CPT results considering
different input parameters with r* coefficient (%)

For GRNN7, the weight (influence) of each input parameter
on the relation is reflected by the individual smoothing factor
of each input parameter. The individual smoothing factors for
each input are shown in Fig. 4. It is concluded from Fig. 4 that
(3efr) 1s the first input variable that influences the network, the
friction ratio (F,) is the second one and q is the last one.
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C.Comparison between Neural Networks and a Set of
Traditional Methods

Table II shows some of the correlations used for estimation
of ® from CPT results available in the literature. The table
includes the values of * calculated by comparing the actual ®
(measured from shear box test) and the predicted @ values
from the correlations. When applying the available data it is
clear that the available correlations in the literature poorly
predict @. This might be attributed to not including the value

of Fr in the estimation of @ in the literature correlations.
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TABLEI
THE USED DATA FOR ESTIMATION OF @ (GRNN7)
qc Fr Effective Measured Predicted
Index pressure tan(¢) tan(¢)
Mpa Y% KN (GRNN7)

1 45.110  1.160 29 0.8687 0.8687
2 44.150  1.250 38 0.8092 0.8092
3 37.500  0.630 51 0.7530 0.7530
4 36.900  0.190 73 0.7530 0.6997
5 46.900  0.400 45 0.7530 0.7530
6 34250 0271 81 0.7530 0.7530
7 42.500  0.350 58 0.7530 0.7530
8 36.950  0.360 58 0.7261 0.7261
9 38.400  0.349 435 0.7261 0.7530
10 24.150  0.560 59.2 0.6997 0.6997
11 13.300  0.400 66 0.6997 0.6997
12 34350 0.175 76 0.6997 0.6984
13 25350  0.460 35 0.6741 0.6741
14 22250 0575 29 0.6741 0.6284
15 13.900 1.032 77 0.6741 0.6741
16 33.400  0.540 65 0.6741 0.6741
17 12.070  0.360 28 0.6490 0.6489
18 20.500  0.560 29 0.6490 0.6468
19 2.330 0.477 345 0.6490 0.6490
20 48.100  0.440 57.5 0.6245 0.6245
21 40.310 0.154 29 0.6245 0.6005
22 22.500  0.430 29 0.6245 0.6221
23 35.820  0.504 52 0.6245 0.6245
24 28.120  0.060 22.5 0.6245 0.6245
25 13.950  0.420 435 0.6245 0.6245
26 27.627  0.522 43 0.6245 0.6179
27 45.100  0.410 28 0.6005 0.6005

. Fr Effective Measured Predicted
Index q pressure ¢ tan(p)
Mpa % KN an(9) (GRNN7)
28 11.610  0.777 26 0.6005 0.6005
29 33.820  0.520 76 0.6005 0.6018
30 11.900  0.316 435 0.6005 0.6245
31 24770  0.430 25 0.6005 0.6005
32 13.120  0.420 255 0.6005 0.6003
33 32.000  0.065 55 0.6005 0.6005
34 30.700  0.680 44.5 0.6005 0.5314
35 35700  0.430 28.5 0.6005 0.6005
36 31.000  0.360 33 0.6005 0.5770
37 22.500  0.320 68 0.6005 0.6005
38 16.500  0.590 29 0.6005 0.5565
39 6.820 1.230 40.5 0.6005 0.6005
40 14.000  1.000 29.5 0.6005 0.6005
41 22.840  0.570 29.5 0.5770 0.6042
42 22.600  0.280 52 0.5770 0.5770
43 14200  0.360 24 0.5770 0.5773
44 9.300 0.440 32 0.5770 0.5770
45 14950  0.730 50 0.5770 0.5770
46 27.460  0.290 435 0.5770 0.5834
47 16.450  0.360 27 0.5770 0.5769
48 22.060  0.550 30 0.5770 0.6079
49 13.250  0.434 30.5 0.5770 0.5770
50 26.100  0.652 62 0.5770 0.5770
51 23.000  0.434 81 0.5770 0.5868
52 8.600 0.270 36 0.5770 0.5770
53 44500 0415 89 0.5770 0.5770
54 24.028  0.531 42 0.5770 0.5770
55 29.000  0.380 41 0.5770 0.5770
56 9.500 0.900 27 0.5770 0.5740
57 10.000  0.730 29 0.5770 0.5756
58 5.830 0.800 42 0.5540 0.5986
59 5.500 0.500 33 0.5540 0.5314
60 10.410  0.300 35 0.5540 0.5536
61 4370 0.240 14.85 0.5540 0.5540
62 19.400  0.500 28 0.5540 0.5493
63 54.200  0.360 61 0.5540 0.6002
64 29.250  0.520 60 0.5540 0.5540
65 17.100  0.704 30 0.5540 0.5540
66 4.500 1.100 39 0.5540 0.5540
67 22.000  0.700 61 0.5540 0.5540
68 12.000  0.900 21 0.5540 0.5540
69 9.300 0.700 26 0.5540 0.5570
70 10.000  0.720 373 0.5314 0.5314
71 26.000  0.380 43 0.5314 0.5316
72 31.000  0.380 43 0.5314 0.5314
73 14.000  0.600 47.01 0.5314 0.5314
74 6.500 0.950 36 0.5314 0.5314
75 18.000  0.420 26 0.5314 0.5238
76 29.000  0.380 47 0.5314 0.5314
77 12.400  0.850 38 0.5314 0.5314
78 16.500  0.850 45 0.5092 0.5441
79 19.500  0.780 49 0.5092 0.5092
80 9.500 0.950 48.07 0.5092 0.5092
81 21.000  0.550 50 0.4874 0.5120
82 18.440  0.500 27.5 0.4660 0.4793

The comparison between the GRNN model developed
(GRNN?7) and the other correlations in the literature (Table II)
are given in Fig. 5. The predicted values by the GRNN are in
very good agreement with measured values compared to
available correlations in the literature. Thus ANN is shown to
be a powerful tool in the prediction of @ and highlights the
importance of inclusion of Fr, which is easily available from

CPT test, in the estimation of ®.
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Fig. 5 Comparison between actual (measured) and predicting (tan®)
from CPT [3]

TABLE Il
THE VARIABLES CORRELATIONS FOR PREDICTING (TAN®) FROM CPT WITH
®R) 3]
Researcher Correlation R?
Robertson and 1 qc
tang = — (log~< +0.29
Campanella (1983) and =5 eg (095, 1029 0.094
qc — 0p
¢ =17.60° + 11 log ——"
Mayne, (2006) T 0.091
Kulhawy and Mayne tang = 0.90 + 038 log L
(1990) ¢ = 090+ 038legs, 011
q
Riceeri et al. (2002) tang = 038 +0.27 log U—O 0.092
Lee et al. (2004) ¢ = 15575 + (oo 0.161
0
DeBeer (1974) & = 1362700 « tan? (45 + %) 0.095

V.ESTIMATING E FROM CPT RESULTS

A. Output/Input Variables of ANN Analysis

For estimating E from CPT results, the CPT results, plate
load tests and grain size analysis were used from the available
date. The readings of the CPT test were filtered to be at the
same elevation of the lab tests. A total of 55 data points were
prepared. The parameters that were investigated as input
parameters to be included in the GRNN models developed
were q., Fc, Dso and depth of water table below plate level

(DWT). The depth of water was considered as 50m (influence
ignored) for depths of water at level greater than twice the
plate width B (B=60cm). The output of the GRNN models
considered is E which was both measured (obtained from plate
load test) and estimated by the GRNN models developed.
Seven different GRNN models were developed with different
input parameters to study the influence of the input parameters
on the obtained E. To evaluate the efficiency of the GRNN
models developed, ? was used.

B. Results of Neural Networks

Fig. 6 shows the different GRNN models developed and the
corresponding 1* obtained for each network. From Fig. 6, it is
observed that Fc has a great influence on the prediction model
after q.. This can be observed by comparing GRNN1 with
GRNN3 where the value of 1* is almost tripled by including
Fe. Also the values of 1* increase significantly in the models
that include Fc as an input (GRNN3, GRNN4, GRNNG,
GRNN?7).

GRNNI1 includes only the input parameter commonly used
in correlations in the literature which is qc. The combination
of inputs in GRNN?7 yielded the best model for estimation of
E.

31 2,7
’ GRNN7(r2=0.9823)
2,5 ] 23
-
5 2]
8
15 ]
e / ,/
g ,f .
3 1 0,717
0,5 1 % 0,3529
qc Fc D50 W. Depth

Fig. 6 The variable GRNNs used to predict E (with %)

280 -

240

200 1

160 1

120 3

E measured (Mpa)

80 3

O  GRNN7 (All Sampels)
r2= I0.9822

40 7 )

02

0 40 80 120 160 200 240 280
E Predicted (Mpa)

Fig. 7 Comparison between predicted and measured E

Table III presents the data used in GRNN7 as input and the
measured and predicted E. The comparison between the
predicted E from GRNN7 and the actual measured values is
presented in Fig. 7. It shows very good agreement between
predicted and measured results with r’=0.98.
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For GRNN?7, the individual smoothing factors for each
input are shown in Fig. 8. It is concluded from Fig. 7 that qc is
the first input variable that influences the network, Fc is the
second followed by D50 then DWT is the last one.
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I W ] l
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Fig. 8 The variable GRNNs used to predict E (with r2%)
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Fig. 9 Comparison between actual (measured) and predicting (E)
from CPT [5]

It should be noted that D50 and DWT have a minor
influence. Accordingly, GRNN3 which includes only qc and
Fc can be adequately used yielding a high r* as well (°=0.97).
The weight of the different input parameters for the 4 GRNN

models with high 1’ values (GRNN3, GRNN4, GRNNG6,
GRNN7) are presented in Fig. 9 that confirms the importance
of the inclusion of Fc in the estimation of E.

C.Comparison between Neural Networks and a Set of
Traditional Methods

TABLEIII
THE USED DATA FOR ANALYSIS
Depth of E E
%’S Water FC D50 qc (Actual  (GRNN
S _Below PLT values) values)
m % mm Mpa Mpa Mpa
1 1.00 5.10 0.14 10.30 28.05 28.05
2 1.13 6.10 0.18 15.20 60.80 60.80
3 50.00 5.30 0.15 13.80 55.42 33.38
4 50.00 9.70 0.14 10.20 22.15 23.17
5 0.70 9.70 0.16 5.45 18.50 18.07
6 0.60 7.10 0.15 2.64 8.78 11.99
7 0.40 41.80 0.08 1.15 24.09 24.09
8 0.40 6.60 0.14 1.05 31.60 31.60
9 0.60 9.70 0.13 2.20 19.00 19.00
10 0.80 9.50 0.16 4.70 15.82 17.37
11 0.70 3.90 0.14 16.20 21.51 21.51
12 0.60 6.30 0.14 7.50 39.06 27.03
13 1.00 23.30 0.12 9.80 49.65 49.65
14 0.90 3.80 0.15 33.50 76.53 72.72
15 1.00 5.70 0.12 6.50 12.18 13.09
16 0.70 7.20 0.16 28.00 62.85 62.85
17 50.00 7.40 0.15 40.00 78.67 78.67
18 50.00 11.40 0.20 38.00 38.01 38.01
19 50.00 3.70 22.00 0.75 19.57 19.57
20 50.00 5.00 0.19 11.50 14.86 13.36
21 0.95 9.40 0.15 9.50 23.89 24.32
22 0.80 7.00 0.14 19.50 35.16 35.16
23 50.00 11.40 0.14 30.00 47.07 57.54
24 50.00 19.50 0.12 32.00 261.63 261.63
25 50.00 11.00 0.14 9.50 100.45 97.01
26 1.10 23.90 0.12 6.00 62.85 62.85
27 1.10 5.60 0.19 3.70 1.88 1.88
28 1.20 10.10 0.13 8.50 42.78 37.89
29 1.30 14.30 0.12 13.00 27.92 27.92
30 1.10 13.40 0.12 18.00 69.02 46.82
31 0.90 5.90 0.13 7.60 11.82 23.32
32 50.00 1.70 0.19 0.65 18.35 18.35
33 50.00 1.00 0.24 20.00 225.00 225.00
34 50.00 1.00 0.28 13.50 24.40 17.75
35 50.00 1.20 0.18 2.50 25.00 24.30
36 50.00 1.00 0.16 3.50 12.81 13.51
37 1.10 10.50 0.14 22.50 55.15 55.15
38 1.20 7.70 0.19 13.50 55.15 55.15
39 1.10 7.80 0.18 7.35 41.98 35.27
40 1.10 10.00 0.16 7.50 19.07 20.52
41 1.20 8.60 0.14 19.50 18.88 35.16
42 1.10 8.40 0.15 4.50 19.07 19.86
43 1.20 8.70 0.14 11.30 13.46 24.07
44 50.00 7.70 0.19 10.50 13.36 13.38
45 1.20 8.80 0.12 4.20 22.06 20.28
46 50.00 8.90 0.14 7.50 24.56 24.56
47 50.00 10.00 0.12 2.20 9.90 9.90
48 1.20 9.10 0.15 8.50 22.10 25.48
49 50.00 9.90 0.16 10.80 22.10 22.20
50 1.10 12.70 0.14 9.50 34.30 34.30
51 50.00 10.00 0.14 18.50 31.16 31.16
52 50.00 9.30 0.14 12.50 33.38 33.38
53 50.00 12.00 0.14 18.50 33.58 31.16
54 50.00 12.50 0.13 9.50 29.15 31.16
55 50.00 11.70 0.13 12.50 29.61 29.61

Table IV shows some of the correlations available in the
literature used for estimation of E from CPT results. The table
includes the values of 1* calculated by comparing the actual E
(measured from Plat loading test) and the predicted E values
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from the correlations. When applying the available data it is
clear that the available correlations in the literature poorly
predicts E. This might be attributed to not including the value
of Fc in the estimation of E in the literature correlations. The
comparison between the GRNN model developed (GRNN7)
and the other correlations in the literature are given in Fig. 10.
The predicted values by the GRNN are in very good
agreement with measured values compared to available
correlations in the literature. Thus ANN highlights the
importance of inclusion of Fc, which is easily available from
grain size analysis, in the estimation of E.
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Fig. 10 The weight factors for every GRNN models
TABLE IV
CORRELATIONS FOR PREDICTING (E) IN LITERATURE [5]
Researcher Correlation R?
Schmertman (1970) E=3.5qc 0.252
Webb (1969) E(t/ft?) =25qc+75 0.260
Schultze (1974) E (Kg/cm?) = 1.141q, + 33.129. 0.2552
South African practice Es=2.5 (q. +3200) kN / m* 0.270

VI. SUMMARY AND CONCLUSIONS

A large amount of field and experimental data from the
United Arab Emirates (UAE) was used to develop artificial
neural networks (ANNS) that can estimate the angle of internal
friction (®) and the soil modulus of elasticity (E) from CPT
results. The general regression neural network (GRNN)
architecture was utilized in the study. Most f the correlations
available in the literature use the value of qc only or qc and
sigma eff to estimate @ or E. Seven different GRNN models
were developed for each of @ and E to study the influence of
other easily available-parameters that can affect the prediction
of the soil properties from CPT results. The predicted soil
properties by GRNN models were compared to other
correlations available from the literature. The following
conclusions can be withdrawn:

A.For Estimating @ from CPT Results:

1) The inclusion of Friction ration (Fr) in the estimation of ®
improved the predicted @ values considerably.

2) The best GRNN model was the model that included qc, Fr
and sigma eff as input parameters to the model.

3) The individual smoothing factors reflecting the weight of
each input parameter for that GRNN model were
compared (qc=0.988, 5eff=3.00 and Fr=2.43). Therefore,
(0eff) is the first input variable that influences the
network, the friction ratio (Fr) is the second one and qc is
the last one.

4) When compared to other predictions from the literature,
the obtained results from GRNN were in very good
agreement with actual measured values of @ (1’=0.9).

B. For Estimating E from CPT Results:

1) The inclusion of fines content (Fc) in the estimation
improved the predicted E values considerably.

2) The best GRNN model was the model GRNN7 that
included qc, Fc, D50 and Depth of water table below plate
(DWT) as input parameters (with 1°=0.98). However, the
influence of D50 and DWT were minor. Therefore,
another GRNN (GRNN3) that includes only qc and Fc
can be used in the estimation (with r’=0.96).

3) For GRNN7, the first input variable that influences the
network is qc followed by Fc then D50 then DWT (with
factors for qc=2.7, Fc=2.3, D50=0.71 and GWT=0.35).
For GRNN3, the first input variable that influences the
model is qc followed by Fc (with factors for qc=2.8 and
Fc=1.6).

4) The obtained results from GRNN were in very good
agreement with actual values of @ (r*=0.9) compared to
other predictions from the literature.

The paper demonstrated the efficiency of the use of ANN in
the estimation of ® and E. ANN was proved to be a very
powerful tool that could include other easily available
influential parameters on the ® and E estimation. It
highlighted the importance of including Fr in the @ prediction
and Fc in the E prediction. It is believed that the developed
prediction models will be of benefit to engineers in UAE
specifically and geotechnical engineers in general.
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